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The Development and Application of SPSiBox Ligands: Cu-

Catalyzed Enantioselective Carbene Insertion of Ge–H Bonds 

Shi-Hao Chen1, Shengye Zhang1, Zi-Yang Chen1, Yichen Wu1, and Peng Wang*,1,2,3 

A class of C2-symmetrical bisoxazoline ligands with a flexible chiral pocket has been developed, 

which could be readily prepared in three steps from enantiopure SPSiOLs. This type of ligands 

presented high level of enantioselectivity for the Cu-catalyzed asymmetric carbene insertion of Ge–

H bonds with α-trifluoromethyl diazo compounds, thus providing an efficient method for the 

preparation of enantioenriched α-trifluoromethyl ogranogermanes. This reaction features a broad 

substrates scope, mild reaction conditions, excellent enantioselectivity, and low catalyst loading. 

Preliminary mechanistic studies unveiled that this Cu-catalyzed Ge–H insertion might undergo a 

concerted mechanism, and computational studies unveiled the origin of chiral induction of this 

reaction with SPSiBox ligand. 

C2-Symmetric chiral bisoxazoline ligands have significantly contributed to the evolution of the catalytic 

methods for the construction of optically relevant molecules, which are privileged in pharmaceuticals, 

agrochemicals and materials.1 For several decades, tremendous effort has been devoted to the development 

of chiral bisoxzaline ligands in order to achieve high enantioselectivity and reactivity for transition-metal 

catalysis, and a series of C2-symmetric bisoxazoline ligands1-7, including BOX2, Py-Box3, BiOx4, TOX5, 

SpiroBox6 etc. have been prepared and widely applied in many hot areas (Scheme 1a). In the design of 

chiral bisoxazoline ligands, the structure of the backbone normally plays a crucial role, because it could not 

only provide a supported chiral scaffold, but also serve as a key factor to alter the steric and electronic 

properties of the metal-catalyst by adjusting the bite angle and stereo-environments. As a result, to further 
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develop novel chiral bisoxazoline ligands with novel chiral scaffold is highly desired, which might lead to 

visible impacts in many enantioselective processes requiring the use of bisoxazoline ligands with different 

metal catalysts. Recently, we have demonstrated that the chiral spirosilacycle-based scaffold, including 

SPSiOL and SPOSiOL, could serve as novel chiral platforms for the development of new chiral bidentate 

ligands with a large bite angle, which presents superior performance in transition metal asymmetric 

catalysis.8 Further studies indicate SPSiOL-scaffold possesses a flexible and variable “chiral pocket” as the 

dihedral angle of this ligand scaffold could deform from 92.2o to 36.2o due to the long C–Si bond (a weaker 

sigma bond in comparison to C–C bond)8a. Given the bite angle between the two coordination sites and the 

dihedral angle of the scaffold are crucial to the reactivity and stereoenvironment of the metal catalyst, we 

thus hypothesized the SPSiOL-based bisoxazoline (SPSiBox) ligands might provide a tunable “chiral 

pocket” in the transition metal complexes, and could be potentially employed in many unsolved asymmetric 

reactions (Scheme 1b). 

 
Scheme 1. Synopsis for the Development of C2-Symmetric Bisoxazoline Ligands and Cu-Catalyzed Enantioselective 

Carbene Insertion of Ge–H Bonds. 
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Transition metal catalyzed X–H (X = N, O, Si, B etc.) insertion reaction represented one of the most 

efficient ways to access chiral molecules possessing C–X bonds.9-13 In this area, significant progress has 

been made in Si–H,10 B–H,11 N–H,12 O–H13 insertion reactions (Scheme 1c). However, the insertion of Ge–

H bonds with metal carbene species for the efficient preparation of chiral organogermanes is largely 

unexplored, despite of the increasing importance of organogermanes as a versatile linchpin in coupling 

reaction14, bioactive drug candidates, organic light-emitting diodes, and plastic electronics15. In comparison 

to its congener Si, Ge has a larger atom radius (Ge vs Si, 1.22 pm vs 1.11 pm), and the Ge–H bond is slightly 

longer than Si–H bond (Ge–H vs Si–H, 1.53 Å vs 1.48 Å). The structural properties of Ge–H bond might 

result in a flabby transition state in the transition metal-catalyzed carbene insertion event. In addition, the 

strong reductive ability of Ge–H bond also inhabits the development of asymmetric Ge–H insertion reaction, 

which might lead to the incompatibility with known catalytic systems. Despite of those challenges, 

Gouverneur group16a reported one case of enantioselective Ge–H insertion reaction with Rh2(S-tertPTTL)4 

as the catalyst. Very recently, Zhou and coworkers16b have demonstrated an elegant example of 

enantioselective Ge–H insertion reaction with both donor-accepter and donor-donor carbene precursors by 

using chiral dirhodium phosphate catalyst (Scheme 1e). Notably, the enantioselective Ge–H insertion 

reaction with cheap Cu-catalyst has not been disclosed to date. Here, we report the design, synthesis of 

SPSiOL-based bisoxaline ligands (SPSiBox), and the application of this type of ligands in the Cu-catalyzed 

enantioselective Ge–H insertion reaction (Scheme 1f). Employing α-trifluoromethyl diazo compounds as 

the carbene precursor, a number of enantioenriched α-trifluoromethyl organogermanes were prepared in 

high yields and excellent enantioselectivities. This protocol features mild reaction conditions, excellent 

chiral induction, and the catalyst loading could be lowered to 0.5 mol%. Notably, our catalytic system is 

not sensitive to the steric hindrance on both diazo compounds and monohydrogermanes, probably due to 

the flexible and tunable “chiral pocket” with SPSiBox ligand. As the trifluoromethyl group is privileged in 

many pharmaceuticals and materials17, this protocol also provides a new method for the preparation of 

trifluoromethyl-containing chiral molecules, which is highly synthetic useful in pharmaceutical industry 

and drug discovery. 
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Scheme 2. Synthesis of SPSiBox Ligands and Condition Optimization. 

With those chiral SPSiBox ligands in hand, we commenced our studies by investigating the asymmetric 

Ge–H insertion of α-trifluoromethyl diazo compounds with a Cu catalyst (Scheme 2d). Although the 

pyridine-oxazoline ligand L9 cannot afford the desired product, bisoxazoline ligand L10 and Py-Box L11 

could gave the desired product in high yields albeit without chiral induction. Notably, the Box ligand L12 

gave the desired α-trifluoromethyl organogermane 3a in 92% yield and 52% ee. To our great delight, our 

SPSiBox ligand L1 gave the desired product in 97% yield and 85% ee. Following this lead, systematically 

evaluation of the structures of SPSiBox ligands was carried out. Further increase the steric hindrance of the 

substitute provided inferior chiral induction (L4). The benzyl substituted SPSiBox ligand L5 and phenyl 

substituted SPSiBox ligand L6 resulted in 83% ee and 75% ee, respectively. To clarify the role of chiral 

oxazoline ligand, we further checked the ligand with (R)-phenyl substituent, which provided the desired 

product in a slightly higher yield and inferior ee values. This outcome indicated that both the chiral 

backbone and chiral oxazoline fragment are crucial for the high enantioselectivity. Notably, the methyl 
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group on the chiral backbone didn’t significantly alter the chiral induction, giving similar outcomes (L8, 

92% ee vs L3, 93% ee). 

 

Scheme 3. Substrate Scope of Cu-Catalyzed Enantioselective Carbene Insertion of Ge–H Bondsa,b. aReaction conditions: 1 or 

4 (0.2 mmol, 1.0 equiv), 2 (0.2 mmol, 1.0 equiv), CuBr (5.0 mol%), SPSiBox L3 (6.0 mol%), NaBArF (6.0 mol%), PhCF3 (2.0 

mL), -20 oC, N2, 12 h. bIsolated yield, and the enantioselectivity was determined by chiral HPLC. cThe reaction was conducted at 

0 oC for 24 h. dThe reaction was conducted at 9 oC for 24 h. 
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Under the optimal conditions, the breadth of this SPSiBox ligand-enabled enantioselective Ge–H 

insertion reaction was evaluated. As showed in Scheme 3, a wide range of monohydrogermanes bearing 

various functional groups, including alkyl (1a-b), aryl (1c), methoxy (1k), fluoro (1g, 1l), chloro (1h), 

trifluoromethyl (1i) etc. are well tolerated, delivering the desired products in high yields and excellent 

enantioselectivities. Notably, both trialkyl (1a-b) and triaryl (1c) monohydrogermanes are compatible with 

this protocol, providing the desired products in 75-93% yields and 93-98% ee. The evaluation of 

substituents on aryl group of the dimethylaryl monohydrogermanes (1d-n) all gave similar reactivities and 

enantioselectivities, which is not normal in the transition metal catalyzed asymmetric reactions. This 

observation might be explained by the tunable “chiral pocket” the SPSiBox ligands possessed. 

We next turned to evaluate the scope of α-trifluoromethyl diazo compounds, using 

dimethyl(phenyl)germane 2d as the model substrate. Again, the substituents on the aryl group didn’t 

significantly affect the outcomes, and a wide range of functional groups are well tolerated, delivering the 

desired α-trifluoromethyl organogermanes in good to excellent yields and excellent enantioselectivities. It 

is noteworthy that both electron-deficient and electron-rich substituents at para- and meta- positions on the 

aryl group in α-trifluoromethyl diazo compounds are suitable carbene precursors for this Ge–H insertion 

reaction. A wide range of functional groups, including alkyl (4b-d), methoxy (4n), trifluoromethoxy (4e), 

fluoro (4f, 4n), halo (4g, 4h), ester (4i), nitro (4j) etc., are all tolerated, providing the desired products 88-

96% ee values. Notably, this protocol also showed high level of compatibilities with multiple substituted 

substrates (4n-p) and heterocyclic substrates (4q, 4r), giving the desired products in high yields and 

excellent enantioselectivities. The stereo-configuration of the enantioenriched α-trifluoromethyl 

organogermanes was determined by the analysis of crystal structure of enantiopure compound 5p, 

disclosing a (S)-configuration. 

To further understand this Ge–H insertion reaction, the competitive KIE experiments were conducted, 

indicating the Ge–H cleavage might not be involved in the rate-determining step (Scheme 4a). The control 

experiments with deuterium-labelled PhMe2Ge–D (D-2d) and nBu3Ge–H (2a) in one pot gave the 

corresponding products in 58% and 33% yield, respectively (Scheme 4b). The cross-over phenomena of 
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deuterium was not observed, unveiling that this Cu-catalyzed Ge–H insertion reaction might undergo a 

concerted mechanism, similar to Cu-catalyzed Si–H insertion9g. According to the known reports and our 

preliminary mechanistic studies, we thus hypothesized that this reaction might undergo the formation of 

Cu-carbene species, concerted Ge–H insertion along with the regeneration of Cu(I) species (Scheme 4c). 

To further understand the stereoinduction model of this reaction with our newly developed SPSiBox ligand, 

preliminary computational studies on the transition states of Ge–H insertion step via a concerted mechanism 

have been performed. The energy barrier in the transition state via (Re)-face insertion is 2.6 kcal/mol higher 

than that via (Si)-face insertion, which is consistent with our experimental results (Figure 1d). The steric 

repulsion between the s-butyl group and the substituents on organogermane has been proven as the key 

factor to provide high enantioselectivity. Further analysis of the transition state and the Cu-carbene 

intermediate disclosed that the dihedral angle in the transition state (TS1) is slightly compact in comparison 

to that in the Cu-carbene intermediate (49.5° for TS1 vs 51.9° for Cu-carbene). The aforementioned 

preliminary computational results further confirmed our SPSiBox ligand might have a tunable “chiral 

pocket” (For details, see supporting information). 

 

Scheme 4. Mechanistic Studies and Stereoinduction Model. 
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The scalability of this newly developed process has been demonstrated by conducting this reaction on 

gram scale. Notably, the catalyst loading of CuBr could be reduced to 0.5 mol%, without observation of a 

decrease of efficiency and enantioselectivity (Scheme 5a). The further derivations of chiral α-

trifluoromethyl germane have been demonstrated using 3d as the model substrate. The dimethylphenyl 

germane could be stereospecific oxidized to corresponding chiral α-trifluoromethyl benzyl alcohol 7 in 80% 

yield and 94% ee upon the activation of TfOH (Scheme 5b). In addition to the transformation of C(sp3)–Ge 

bond, the C(sp2)–Ge bond could also be converted via the same intermediate 6 via nucleophilic substitution 

or reduction, thus providing corresponding enantioenriched allylic organogermane 8, alkynyl 

organogermane 9 and monohydrogermane 10 in high yields and high ee values (Scheme 5c). The 

development of efficient transformations of chiral organogermane not only demonstrates the synthetic value 

of current methods in the preparation of chiral molecules, but also paves a new avenue for the construction 

of various Ge-containing functional molecules. 

 

Scheme 5. Gram-Scale Reaction and Synthetic Applications. 

In summary, we have developed a series of SPSiOL-based bisoxazoline ligand, which could be 

efficiently preparation in three steps starting from optical pure SPSiOL. With the newly developed SPSiBox 

ligand, a Cu-catalyzed enantioselective Ge–H insertion reaction with α-trifluoromethyl diazo compounds 

has been realized for the first time. This reaction features low catalyst loading, a broad substrate scope, and 
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excellent enantioselectivity. Further development and application of spirosilacycle-based chiral ligands and 

catalysts are underway in our laboratory. 
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