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ABSTRACT 

Protein-ligand binding affinity prediction is one of the major challenges in computational 

assisted drug discovery. An active area of research uses machine learning (ML) models trained on 

3D structures of protein ligand complexes to predict binding modes, discriminate active and 

inactives, or predict affinity. Methodological advances in deep learning, and artificial intelligence 

along with increased experimental data (3D structures and bioactivities) has led to many studies 

using different architectures, representation, and features. Unfortunately, many models do not 

learn details of interactions or the underlying physics that drive protein-ligand affinity, but instead 

just memorize patterns in the available training data with poor generalizability and future use. In 

this work we incorporate “dense”, feature rich datasets that contain up to several thousand 

analogue molecules per drug discovery target. For the training set, PDBbind dataset is used with 

enrichment from 8 internal lead optimization (LO) datasets and inactive and decoy poses in a 

variety of combinations. A variety of different model architectures was used and the model 

performance was validated using the binding affinity for 12 internal LO and 6 ChEMBL external 

test sets. Results show a significant improvement in the performance and generalization power, 

especially for virtual screening and suggest promise for the future of ML protein-ligand affinity 

prediction with a greater emphasis on training using datasets that capture the rich details of the 

affinity landscape.   
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INTRODUCTION 

Structure-based virtual screening (SBVS) is an important tool for early drug discovery. 

Classically, SBVS is performed using physics-based methods such as docking in which the 3D 

coordinates of a hypothetical ligand and the target are first identified and then scored according to 

an empirical scoring-function.1 The ligand placement is a strength of docking methods, and in 

many cases, they can retrieve molecules in correct binding poses. The more problematic aspect is 

the ranking or scoring of the ligands and poses based on predicted binding affinity. A recent data 

driven approach based on diffusion generative modeling outperformed docking at identifying 

bound poses in a blind docking task.2 As well as ligand positioning and scoring, the study also 

required binding site identification, a problem for which docking is not intended and for which 

other methods are better suited3,4. This may partly account for the worse performance of docking 

in that study, but the ‘all-in-one’ diffusion model was an impressive solution compared to protocols 

of multistep and multimethod physics-based approaches. Thus, the key ligand scoring step in 

docking is known to underperform compared to placement and suffers from a lack of sampling 

and the underlying oversimplicity of docking scoring-functions. More powerful and expensive 

physics-based ensemble approaches such as free energy perturbation can be used for this task.5–7 

However, these methods have a high computational cost, technical difficulty, and sensitivity to 

input setup, that hampers large scale virtual screening and is the subject of active research.8–11  

 

The breakthroughs in machine learning (ML) and deep learning (DL) approaches coupled with 

the increasing experimental structures and bioactivity data have led to the emergence of 3D ML 

and DL models as an alternative to docking scoring functions.12,13 The 3D coordinates of protein-
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ligand complexes are used as input but the aims for specific models can be varied: predict binding 

poses, separate binders from non-binders, rank based on activity or predict activity. The goals are 

attractive not only because of the value for drug discovery, but also the need for improvement 

versus docking, particularly in high throughput applications. There are various caveats for most 

reported ML/DL affinity prediction models that are usually true for docking. They arise from the 

simplification of ligand partitioning from solvent to protein-bound phases and include the lack of 

an ensemble approach, the absence of (de)solvation terms, the simplified or absence of entropic 

considerations, etc. Learning affinity from single experimental 3D protein-ligand complexes 

emphasizes the interaction potential between protein and ligand and only indirectly captures 

entropy or (de)solvation factors.  

 

DL models for binding affinity prediction were reported using different architectures and 

representations.14–23 In brief, several key approaches to featurization have been pursued. One 

approach uses protein-ligand interaction fingerprints that are defined using the atomic interactions 

or contacts between protein and ligand that fall within a specific radius of the ligand24. An 

alternative method uses voxels that encode atomic properties at 3D grid-points in the protein-

ligand binding site14,15,25 and combine with a 3D convolutional neural network (3DCNN). Finally, 

graph descriptions of the protein-ligand complex combined with graph convolutional neural 

networks (3DGNN),21,23 have proved efficient in comparison to 3D convolutions due to their 3D 

invariant encoding. Nevertheless, the increasing complexity of description and model architectures 

has not led to a significant improvement in performance. The latest described 3DGNNs do not 

significantly outperform the first generation of CNNs and more importantly none of the models 

reported show general predictivity power for new targets.25–32 
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The PDBbind dataset33 is widely used for training affinity prediction models. It (v.2020) contains 

approximately 20000 3D protein–ligand X-ray structures of known binding affinity measured as 

the inhibition constant (Ki), dissociation constant (Kd), or half-maximum inhibition concentrations 

(IC50). The set is further split into a refined set of around 5000 high-quality X-ray structures and 

the most reliable affinity data (Ki and Kd only) and a core set of 290 complexes from 58 different 

proteins with five different ligands of various affinities. Either with or without data augmentation 

(inactive compounds, docking pose augmentation) it represents the best public data source to train 

3D models. However, various concerns regarding ML/DL affinity prediction have arisen and the 

composition and completeness of the training dataset is at the forefront.34–36 The major problem 

relates to the sparsity of the protein-ligand training matrix.35 

 

The sparsity of the training dataset is the fraction of the ligand-protein matrix having a missing 

experimental binding affinity. A dataset with a large representation of targets can cover more of 

the available protein space but the sparsity of the data is high, as usually few of the ligands are 

tested against the biological space and the dataset becomes heavily biased. Simple experiments 

have shown that 3D ML/DL affinity models based only on protein description or only on ligand 

description (omitting interactions) can show modest to good performance when trained and tested 

on PDBbind data.35–38 In other words, there are biases in the data that are relatively easy to uncover, 

the bioactivity is likely clustered for each protein and chemical series due to the lack of sufficient 

protein-ligand complexes per target.35 In contrast, drug discovery involves exploration of structure 

activity relationships (SAR) of hundreds or thousands of similar molecules in the same protein 

binding site. There is a richness and subtlety to a dense bioactivity landscape, it contains implicit 
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redundancy over a large descriptor space and number of dimensions. For example, activity cliffs 

are small changes in ligand structure leading to unexpected outcomes in bioactivity and are 

relevant in drug discovery and can be traced to the 3D description 39,40. We hypothesize that it is 

necessary to learn from highly dense and redundant protein-ligand datasets to understand the 

rugged 3D landscape of bioactivity and identify the meaningful origins of activity versus 

memorizable patterns in the data.  Accordingly, ML/DL affinity prediction models trained on more 

dense training data with more generalizable aims will need alternative and improved external 

testing, closer to real world drug discovery scenarios.  

 

Without an organized effort, the data sparsity problem is unlikely to be resolved by the evolution 

of experimental crystallography which is costly and usually avoids redundancy, focusing on novel 

protein and ligands, further increasing the sparsity problem. Although there has been no robust 

quantification, we speculate that the current number of 15-20K experimental structures needs to 

increase by orders of magnitude to rival the size of datasets used in other common ML supported 

drug-design tasks. It seems computational modeling will be required to reach this level of data and 

one possible solution is to use molecular docking of known actives, but we must avoid adding 

noise from incorrect docked binding poses. For some active molecules the uncertainty can be 

reduced if it has exceptionally high chemical similarity to the ligand in an experimental protein 

ligand structure. Fortunately, the lead optimization (LO) stage in drug discovery generates such 

datasets because it involves the synthesis of many analogue compounds with occasional examples 

being co-crystalized with the protein target. Therefore, we here generate high confidence ligand-

protein complexes by using maximum common substructure docking (MCS) for series of 

compounds with high similarity to experimentally crystalized ligands. We demonstrate that the 
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decrease of data sparsity increases model performance and generalization power. Also, we discuss 

the use of pose decoys to force the model to learn from the interactions thus avoiding ligand 

overfitting and, training one part of the network on ligand efficiency to force the model to learn 

from the interaction type and not by the number of interactions which in turn is correlated to 

molecular weight, a common bias leading to overfitting on the compound size. 

 

METHODS 

Datasets. For initial training of our models and comparison of performance with previous work 

we begin by using the widely employed PDBbind dataset. Then, we increase the training data by 

including drug discovery LO datasets derived from different protein targets. We also use similar 

datasets built from data retrieved from ChEMBL41 The details are shown below, but these datasets 

were chosen to be denser and have a larger chemical coverage and typical affinity range. Ligands 

were selected to be similar to those in the resolved experimental 3D protein ligand structures. 

Dataset details: 

• PDBbind v.2019: Comprises 17679 protein-ligand complexes, each accompanied by 

experimentally determined inhibition constants, including Ki, dissociation constants (Kd), and 

IC50.  

• PDBbind v.2019 Refined: A subset of the PDBbind v.2019 dataset, consisting of 4852 

complexes that have been subjected to stricter quality criteria.42  The final number of structures 

after curation is 4543 excluding the core set 2016, typically used for testing.  The overall range 

of affinity is from 2.0 to 11.9 log units. The mean range in affinity for a specific protein target 

is 2.2 log units when considering proteins co-crystalized with at least two ligands. 
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• PDBbind v.2019 Non-refined: A distinct subset that incorporates an additional 4719 

complexes (4629 after data curation) sourced from the general set, but which are not present 

in the refined subset 43. The overall range of affinity is from 2.0 to 12 log units for all data, the 

mean range in affinity for a specific protein target is 1.8 log units. 

• PDBbind 2016 core set: A representative subset of PDBbind refined dataset widely used for 

benchmarking purposes. From the initial 285 complexes compiling this dataset, 260 survived 

data curation. Affinities in this dataset fall between 2.1 and 11.8, while the mean range in 

affinity for a specific protein target is 4.6 log units. 

• In house drug discovery LO datasets: Twenty protein targets and associated ligands 

corresponding to previous structure-enabled drug discovery projects at Janssen were chosen. 

Eight target datasets were used for training and the remaining were used as new, challenging, 

external test sets, Table 1 (training) and Table 2 (external test sets). An unusually larger 

proportion of datasets were used for external testing in this study as we are particularly 

interested to inspect the model performance in real-world scenarios, and the training data is 

still substantially augmented versus PDBbind alone. The number of experimental structures 

used for each of the protein targets ranged from 5 to 443, with a total of 811 and 1170 for the 

training and test sets. The total number of complexes in the training and testing datasets was 

16318 and 27381 respectively.  Thus, on average the inclusion of the docked close analogues 

led to a factor of 20-23 increase versus using only experimentally solved structures. The 

minimum and maximum number of protein-ligand complexes per target across the datasets 

was 384 and 3995. The overall range of affinity for all the training set data was from 3.1 to 

11.8 and the mean range of affinity per target was 5.4 log units. We note how the total set of 

LO drug discovery data had a narrower overall range compared to PDBbind (8.7 vs 10 log 
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units in total), but each given target had a wider range of 5.4 log units compared to ~2 log units 

in PDBbind.   

• ChEMBL LO datasets: We examined the human protein targets in ChEMBL with the most 

bioactivity data and chose known drug discovery proteins (avoiding ADMET related proteins 

for instance) for which experimental 3D protein structures were available. Crystal structures 

were then retrieved for these proteins from the protein databank44 filtering to retain only X-ray 

structures with 2.5 Å or better resolution. Compounds with experimental data were extracted 

from the ChEMBL database41 for the specified proteins. The pChEMBL value was used as the 

activity measure. Overall, the 6 datasets were prepared using docking to augment the size of 

the dataset as described later. Unlike the prior LO datasets, the increased chemical diversity in 

the ChEMBL data did not always allow for reliable MCS docking. Instead, we performed 

constrained docking by specifying simple and well-known key interaction(s) that need to be 

satisfied, such as the hinge binding motif for the kinase targets, or the interaction with the 

catalytic aspartates in beta secretase. The details for the datasets are summarized in Table 3. 

The overall range of affinity is from 2 to 11.2 log units for all data, the mean range in affinity 

for a specific protein target is 7.0 log units. The mean number of experimental structures per 

target was 32, and the mean number of final complexes per target was 2218. Thus, the density 

of the data was increased compared to the experimental structures alone, and denser than the 

PDBbind data but not as dense as internal drug discovery LO datasets. 
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Table 1. Details of 3D drug discovery LO datasets used for model training. Number of active 

compounds successfully docked with the MCS protocol across 8 proprietary datasets used for 

model training. 

Dataset Total 3D P-L 

complexes 

Crystal structures Min 

affinity  

Max 

affinity  

Activity 

range  

ROS1 384 6 5.0 8.3 3.3 

hOGA 1499 9 3.1 9.5 6.4 

FGFR1 2533 443 5.0 11.8 6.8 

BACE1 2410 106 5.0 9.3 4.3 

PRMT5 582 43 3.9 9.9 6.0 

HPK1 2417 26 5.0 11.3 6.3 

MALT1 2498 48 4.5 8.2 3.7 

IL17 3995 130 4.3 8.9 4.6 

 

Table 2. Details of 3D drug discovery in house LO datasets used for external model testing. Total 

active compounds docked, number of active compounds successfully docked with MCS, number 

of inactive compounds docked, and total number of 3D protein-ligand complexes built for each 

target.  

Dataset nActives nInactive

s 

Total X-rays Min affinity Max 

affinity 

Activity 

range 

FGFR2 247 1713 2310 5 5.6 9.5 3.9 

PIK3G 772 11979 13199 128 4.1 10.0 5.9 

CGAS 807 34390 35740 179 4.3 9.1 4.7 

PIK3D 624 24457 25710 81 4.5 10.2 5.7 

CSNK1D 754 29646 31117 165 3.7 9.3 5.6 

MENIN 1388 46172 48510 124 4.6 10.9 6.3 

KDR 557 21227 22356 82 4.6 8.8 4.2 

PDE2 1401 47339 49849 17 3.3 10.0 6.7 

NIK 146 4539 6002 24 5.0 9.2 4.2 

MGL 797 27747 29169 128 4.3 11.1 6.8 

PDE10 1420 48246 50725 21 3.8 9.5 5.7 

MCL1 472 20886 21650 216 2.7 9.5 6.9 
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Table 3. Details of the ChEMBL LO datasets used for external model testing. Total active 

compounds docked, number of active compounds successfully docked through MCS, number of 

inactive compounds docked, and total number of 3D protein-ligand complexes built for each target. 

Dataset nActives nInactives Total X-rays Min affinity Max affinity Activity range 

EGFR 3220 27604 30824 36 3.9 11.2 7.3 

ABL 1090 10338 11428 17 4.0 10.8 6.8 

MAPK 1349 60094 61443 50 4.4 11.0 6.6 

PLK1 428 7125 7553 6 3.2 9.1 5.9 

VEGF2 2846 53654 56500 21 3.7 10.7 7.0 

BACE1 4026 17100 21478 60 2.5 11.0 8.4 

 

 

Data Augmentation: Actives. Recognizing data density to be a critical challenge we augmented 

the dataset as follows: 

Firstly, internal projects were ranked by the number of available crystal structures. Success of 

the MCS docking heavily depends on the number of experimental structures and their scaffold 

diversity. Maximizing the number of available structures guarantees a higher number of matches 

from the compounds with available bioassay data. Secondly, for each selected target, biochemical 

assays containing pX50 (inhibition or binding) were extracted from our internal database. The 

criteria for selecting assays include the number of tested compounds with a non-qualified pIC50 

value, the range of activity and the shape of the activity distribution, preferring those assays with 

a good representation of high affinity compounds, which are usually less common. Additionally, 

assays for the same target showing high correlation (R2 > 0.8) and an average error below the 

experimental error (< ~0.5 pIC50 units) were combined for the sake of maximum data retrieval.  

Extracted compounds for each target were thus docked against the available X-ray structures 

using MCS docking within the GLIDE molecular docking software.45 The settings used included 
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SP (standard precision) docking, snap MCS core constraints with a tolerance of 0.3 Å and shape 

similarity maximization. Since the same compound is docked against different structures, we keep 

the resulting complex structure that contains the higher number of atoms in the MCS to the 

crystallized ligand. If this criterion does not retrieve a unique structure, then the docking with the 

better docking score is selected. Finally, the docked compounds were filtered according to the 

number of atoms and shape similarity. The procedure involves setting a minimum size for the 

scaffold used in the MCS docking and a minimum shape similarity. Setting an MCS minimum size 

excludes unrealistic dockings based on small fragment MCS matches such as single aromatic rings, 

while shape similarity reduces the possibility of docked compounds diverging from the reference. 

For each target, these values were heuristically selected based on iterative visual inspection of the 

results.  

For ChEMBL datasets we used a similar approach but found it necessary to use feature 

constrained docking instead of MCS docking. Our aim is to increase the size of the datasets but 

not at any cost, instead we want to only retain high confidence docked solutions that remain close 

in 3D to experimental solutions. In brief, the ChEMBL data comprises examples of LO series from 

medicinal chemistry literature but there are fewer actives per scaffold than compared with a full 

internal LO dataset. Also, similar but distinct chemical scaffolds from different publications can 

be seen to share binding modes but not necessarily a substantial MCS. Consider for example a 

change in a nitrogen position in an aromatic scaffold of a kinase inhibitor, wherein similar 

substituents and the hinge binding motif are maintained despite no substantial MCS. Thus, upon 

testing we found that docking with interaction restraints was far better at returning the expected 

overlapping and high confidence docking results. For each target we identified interactions that 

are most repeated and well stablished for the given protein (i.e: kinase hinge hydrogen bond 
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acceptor and donor/s). The sequence motifs in which the interactions are located were used to 

identify the residues taking part in the interactions across the different PDB structures as residue 

and atom numbers are usually not consistent. Constrained docking was then performed over all 

available structures, keeping the complex with better docking score per ligand docking solution, 

visual inspection was performed to remove remaining problematic docked structures. Finally, 

macrocycles were identified and removed from the dataset we well as compounds with poor 

docking scores. The docking score threshold for each dataset was selected based on the distribution 

of scores, thereby removing those at the tail of worse score. 

 

Data Augmentation: Pose Decoys. A concern with 3D ML protein-ligand binding affinity 

prediction models is the over-reliance on ligand information36, which can result in models that 

exhibit comparable predictive capabilities irrespective of the protein structure. To mitigate this 

form of overfitting, one potential approach is to incorporate pose decoys into the training data46. 

These decoys, which are active molecules docked outside the binding site, or active molecules 

docked in just incorrect poses, possess the same ligand information but dissimilar interaction 

information. We assign an affinity label based on the docking score, which is normalized between 

0 and 3, thereby providing the label with a degree of physical significance and facilitating the 

regression task done in logarithmic units of potency. In this manner, the models now train on the 

same ligand bound to the same protein but in different complexes, with different interactions and 

different assigned affinities. The models are compelled to utilize the full combination of protein 

and ligand information for accurate predictions.  
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Data Augmentation: Inactive compounds. Prior research has shown that incorporating inactive 

compounds during the training of DL models can enhance model performance and 

generalizability21,47. In the literature, two primary strategies have been identified: the first entails 

cross-docking all PDBbind compounds and assigning low affinity scores to the resulting virtual 

complexes17, while the second employs decoy compounds sourced from databases such as DUD-

E48 but results show this can be problematic34 and improvements have been suggested49. These 

decoys are presumed to be inactive due to their topological dissimilarities from the reference 

compounds, yet they possess analogous physicochemical characteristics. For every drug discovery 

LO target, we have docked confirmed bioinactive compounds selected from their respective high 

throughput screening data. Additionally, we have reduced the inactive compound pool by filtering 

for drug-like properties, thus impeding the models from readily discerning differences between 

inactive and active compounds. Since we dock the same compound to multiple crystal structures 

for each target, we keep the docking solution with the best score. We noticed that our 2DCNN 

model did not benefit from using this data for training, keeping the generated inactive compounds 

for benchmarking. 

 

Protein and Ligand Preparation. X-ray complexes were prepared using the Schrödinger Protein 

Preparation Wizard.50 In cases where residues with absent side-chain atoms were detected, they 

were filled using Prime.51 PROPKA52 was used to define the protonation states at pH 7, except for 

BACE1, which were determined at pH 5 matching the acidic pH used in the bioassays.  

Preparation of ligands was conducted through the standardization of compounds using LigPrep 

tool from the Schrödinger package, featuring a single conformer and single default tautomer 

generation, and EPIK for generating protonation states53  
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Ligand Docking. MCS docking used the GLIDE software that requires a preprepared docking 

grid that was calculated using default settings specifying the crystallized ligands as the grid center. 

The active compounds were docked with the MCS approach, incorporating standard precision (SP) 

docking, snap MCS core constraints with a tolerance of 0.3 Å, and shape similarity maximization. 

Any compounds that were unable to dock through MCS were subsequently docked without any 

constraints and labeled accordingly. Similarly, inactive compounds were also docked with the 

same grids and the GLIDE SP approach but without any constraints. As mentioned above, the 

single best scored pose for an inactive versus all the structures for a given target was retained. 

Decoy pose generation for active compounds was accomplished via SMINA54, as GLIDE was 

unable to systematically provide decoy poses. Docking scores are used as a comparison metric to 

assess the relative performance of the affinity prediction models versus a classical SBVS approach. 

In those cases, only actives and inactive molecules were considered (not decoys) and the GLIDE 

SP scores were used for the best pose of each ligand docked versus all the structures for a given 

target (i.e., the score for the specific docked solution that was used as model input and as defined 

by the protocol above). Altogether, we have designed a strategy to confidently augment data 

density taking advantage of the LO project data from Janssen. Moreover, we generated pose decoys 

to force the model to learn from interactions and generated challenging inactive datasets for each 

target following the same protocol.  

 

Molecular Descriptors. Our 2DCNN model incorporates protein interaction fingerprints (PLEC) 

from the open drug discovery toolkit package (ODDT) and RDKit molecular properties55 as inputs. 
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PLEC is equivalent to the extended connectivity fingerprint (ECFP)56 which is typically used for 

small molecules but extended to include nearby atoms from the protein structure. The atoms 

included in PLEC are defined by a distance threshold, and both the ligand and receptor radii are 

modifiable parameters. In this work, we have used different configurations of PLEC to improve 

the generalizability of the resulting model as described in the model details section.  

 

Performance Metrics.  

Pearson correlation coefficient: describes the linear relationship between two continuous 

variables. It is denoted by the symbol "r" and ranges from -1 to +1. A value of +1 indicates a 

perfect positive correlation, -1 indicates a perfect negative correlation, and a value of 0 indicates 

no correlation. 

Spearman ranking coefficient (ρ): describes the monotonic relationship between two continuous 

or ordinal variables. It is denoted by the symbol "ρ" (rho) and ranges from -1 to +1. The Spearman 

correlation coefficient does not assume a linear relationship between the variables. Instead, it 

assesses the degree to which the variables tend to increase or decrease together, regardless of 

whether this relationship is linear or not. A value of +1 indicates a perfect positive monotonic 

correlation, -1 indicates a perfect negative monotonic correlation, and 0 indicates no monotonic 

correlation.  

Mean absolute error (MAE): is a metric used to measure the average magnitude of errors 

between predicted and real values.  

Enrichment factor (EF): metric utilized in virtual screening studies to assess the effectiveness of 

a scoring function in discriminating active from inactive compounds. It is defined as the ratio of 

the percentage of active compounds detected in a certain fraction of the total database to the 
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percentage of that fraction of the database. This metric gives a qualitative indication of how 

enriched a subset of compounds is with active molecules compared to random selection. 

Fingerprint 2D similarity calculations were used to compare the diversity of molecules retrieved 

from different models. In this case RDKit fingerprints were used with the Tanimoto similarity 

metric to calculate the average similarity within sets of molecules.  

 

2D convolutional neural network (2DCNN) Model. The 2DCNN model employed a dual 

architecture, consisting of two separate 2D convolutional blocks that were fed with different 

protein-ligand environment configurations (PLECs). Each block was paired with two multi-

perceptron layers (MPL) that were used to analyze the properties of the ligand. The outputs of the 

two 2D blocks were concatenated with their corresponding MPL outputs and then passed through 

a final MPL to produce the final output. To enhance the generalization of the model, one of the 

blocks used a simple PLEC configuration with a 3.5 Å distance threshold and radii of 1 for both 

the protein and ligand. Meanwhile, the other block uses a standard configuration with a 4.5 Å 

distance threshold and radii of 2 and 4 for the ligand and receptor respectively. This approach 

allows the first block to focus on close, simple pair-to-pair interactions captured with short 

fingerprints. This encourages the model to describe ligand and receptor interactions by the 

collection of small features rather than pattern recognition of elaborate lengthy fingerprints that 

tend to be complex specific and lead to over training or less generalizability.  

During training, the model objective is set as the sum of the outputs of both blocks, with the 

more generalizable block driving predictivity through a more heavily weighted loss. At each 

training iteration, both real and decoy poses are fed through the model, with an independent loss 

calculated for each. Additionally, the objective is set to the pseudo ligand efficiency (affinity 
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divided by molecular weight) to ensure that the model focuses on the interactions rather than the 

number of interactions. During prediction, the affinity is recovered by multiplying it back by the 

molecular weight. 

 

Additional architectures 

We implemented the architectures published by Moon et al.21 These architectures include a 

3DCNN, GNN and the physics informed graph neural network PIGNet. We modified the code to 

allow additional data input (LO datasets). We also modify the training process by splitting the loss 

in two terms: public and LO losses. The losses were scaled to account for the difference in the 

dynamic range found in LO datasets in comparison to PDBbind. By normalizing the loss, we 

ensure that the different sources of data are equally weighted during the backpropagation process 

independently of their affinity range. These models were trained with the PDBbind dataset as well 

as augmented data, including docked decoys (292518), inactive complexes generated using IBS 

molecules (831885) and cross-docked inactive compounds generated from PDBbind (527682).  

We tested the published weights trained with this data plus the models trained including also 

internal data. The models are described below. 

3D convolutional neural network (3DCNN) Model. 3DCNNs are a type of DL architecture 

designed to extract and learn complex features from volumetric data. Unlike 2DCNNs, which are 

designed to work with 2D images, 3DCNNs are specifically engineered to work with 3D data, 

such as CT scans, MRI images, and 3D microscopy data.57  3DCNNs convolve a set of filters or 

kernels over the entire input volume, allowing them to extract and learn features that are sensitive 

to the spatial and temporal relationships between the input voxels. These learned features are then 

used to classify, segment, or perform other tasks on the input data. This architecture has been 
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utilized for binding affinity prediction, with kDEEP being a prominent example.14 However, it is 

computationally intensive and non-equivariant, requiring grid rotations to achieve invariant 

predictions for different grid orientations. We implemented the version published by Moon et al.21 

This architecture is identical to kDEEP in all aspects except for the atom features, which include 

atom type, period, group, degree of atom, hybridization, formal charge, and aromaticity.  

 

Graph convolutional neural networks (3DGNN). 3DGNNs are a type of neural network that 

can operate on non-Euclidean data structures, such as graphs. 3DGNNs have been demonstrated 

to outperform other architectures in tasks such as node classification, link prediction, and graph 

classification in both accuracy and speed.58  In the realm of biomolecules, 3DGNNs have 

demonstrated superior performance in predicting molecular properties compared to other 

architectures.59 Graph-based models are particularly effective due to their invariance or 

equivariance to complex orientation when properly defined, making them more efficient than other 

models such as 3DCNNs. Additionally, 3DGNNs require less computational power than 3DCNNs. 

Typically, the input to a 3DGNN is a graph representation of the molecule, where atoms are 

represented as nodes and bonds as edges. This graph-based representation enables end-to-end 

training, where feature extraction and prediction steps are learned concurrently from the data. The 

implementation uses the same atom features used in the 3DCNN to encode voxel information. The 

model involves several gated graph attention modules and interaction networks, with two 

adjacency matrices accounting for covalent bonds and intermolecular interactions.  

 

PIGNet. The previously published PIGNet incorporates physics-based knowledge to improve 

generalization in binding affinity prediction.21 The model parameterizes equations describing 

https://doi.org/10.26434/chemrxiv-2024-s5sbs ORCID: https://orcid.org/0000-0003-4709-6030 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-s5sbs
https://orcid.org/0000-0003-4709-6030
https://creativecommons.org/licenses/by/4.0/


 

20 

intermolecular interactions, such as van der Waals, hydrogen bond, metal-ligand, and hydrophobic 

interactions. The predicted affinity is the sum of the atom-atom pairwise interactions, divided by 

a penalty rotor term accounting for the loss of entropy experienced by the ligand upon 

complexation. By integrating physics-based knowledge with DL, PIGNet aims to improve the 

generalizability, accuracy, and interpretability of binding affinity predictions. The architecture is 

identical to the GNN described above except for the output layers. While the GNN provides the 

final output through fully connected layers, PIGNet feeds the resulting node features into physics-

informed parameterized equations.  

 

RESULTS 

Training Test Set Performance.  

Models were subject to the typical training routine in which the performance was evaluated with 

a test set removed from the training set for each target. Details of the model training data 

composition are available at Supplementary table 1. The averaged correlation metrics showed 

modest correlation (Table 4). However, some caution is needed because the averaged values were 

adversely affected by one or two very poor correlations. Supplementary table 2 shows the 

correlation metrics for the disaggregated training test sets. Due to the strategies employed to avoid 

overfitting, such as the simplified descriptors and using decoys etc. (see Methods), modest 

performance in these test sets was expected. Interestingly, the 2DCNN showed a noticeable 

improvement in correlation and errors when using internal data and a superior performance versus 

the rest of the models. The 3DCNN and PIGNet showed no major differences when trained with 

or without the additional internal data, whereas the absolute error in prediction for the 3DGNN 

improved substantially when trained with additional internal data. Also noteworthy, the GLIDE 
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score correlation is similar to the majority of the DL models. Overall, the initial results from the 

training set performance did not show substantial improvements versus docking, except for the 

2DCNN trained using additional internal data. A key interest here was to investigate the 

performance on unseen external test sets and therefore the generalizability of the models, and 

whether they learn interactions and features that describe 3D protein ligand bioactivity.  

 

 

Table 4. Performance metrics for the prediction of activity for the internal validation sets for the 

different models trained with and without drug discovery LO data.  

Architecture r Spearman MAE LO training data 

2DCNN 0.19 0.15 1.05 no 

2DCNN 0.56 0.54 0.84 yes 

3DCNN 0.33 0.29 2.03 no 

3DCNN 0.34 0.32 1.99 yes 

3DGNN 0.23 0.20 4.56 no 

3DGNN 0.35 0.32 1.26 yes 

PIGNet 0.34 0.29 2.54 no 

PIGNet 0.33 0.29 3.55 yes 

GLIDE 0.33 0.29 - - 

r, Spearman and MAE are averages over the same metrics computed for the eight test sets extracted 

from the training data.  

 

PDBbind Core Set Testing. Here we used the PDBbind core set as an external test of the 

performance of the different models. The PDBbind dataset is widely used as a standard benchmark 

for assessing the performance of ML and DL models in predicting binding affinity and evaluating 

docking tools and empirical scoring functions. However, as mentioned above, previous studies 

have identified potential biases in this dataset that can lead to overoptimistic performance. 

Although most studies refer to this dataset as an external test set, it is far from a real-world test to 
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find new actives versus a new protein target. The PDBbind coreset is stratified from the general 

set. Every target present in the set is also present in the training set, so there are no new target 

proteins. This may explain why reports using only PDBbind as training and this external test set 

show modest performance when trained on protein alone. Regarding the compounds, 

approximately 30% are duplicates with the training set but bind to different proteins in the test set. 

If the activity happens to be similar between training and test sets then an overtrained model can 

make a correct prediction based on patterns in the chemical structure alone. 

We trained our models with and without incorporating the dense LO datasets as above and tested 

their performance on this test set using various metrics. Firstly, we were able to reproduce the 

published performance values for all the architectures using their published weights except for 

PIGNet, whose performance was worse (correlation coefficient of 0.67 vs 0.75), Table 5. We found 

that including the LO datasets in training improved the performance of the models across all 

architectures, except for the 3DCNN which exhibited a slight decrease in performance. This 

improvement, of approximately 0.11 units in Pearson correlation coefficient for the 3DGNN model 

for example, suggests a positive impact of adding the dense new datasets to the model training. 

The PIGNet and 3DGNN models top the performance table with almost identical performance (r 

0.79). The 2DCNN model shows the biggest improvement with the dense LO data with a Pearson 

r increasing from 0.5 to 0.72. This dependence can be attributed to the fact that the 2DCNN model 

parameters and hyperparameters were optimized using LO datasets, as such the parameters may 

not be ideal for PDBbind core data alone. To our surprise the performance on this test set (Table 

5) was better than seen in the internal validation discussed previously (Table 4). 
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Table 5. Performance metrics for the prediction of activity for the PDBbind core set for the 

different models trained with and without drug discovery LO data. Performance metrics include 

Pearson correlation coefficient (r). Spearman ranking coefficient, squared Pearson correlation 

coefficient, coefficient of determination (R2) and mean average error (MAE). 

Architecture r Spearman MAE LO training 

data 

2DCNN  0.50 0.50 3.15 no 

2DCNN  0.72 0.7 1.9 yes 

3DCNN 0.69 0.68 1.76 no 

3DCNN 0.67 0.66 1.8 yes 

3DGNN 0.68 0.68 2.08 no 

3DGNN 0.79 0.78 1.43 yes 

PIGNet 0.67 0.66 2.04 no 

PIGNet 0.79 0.77 1.48 yes 

 

Drug Discovery LO External Test Sets. Up to this point we have built models using state of 

the art approaches and using many more protein ligand complexes than previously reported. The 

models displayed similar performance on the PDBbind core set suggesting they were behaving as 

expected, and the additional data led to further improvement. Therefore, we set a difficult but 

realistic challenge to understand if such models can be used for new drug discovery targets. We 

deliberately chose a large number of test cases to avoid bias and aid analysis. Twelve drug 

discovery LO datasets were not used for training and instead reserved for external testing. Each 

dataset corresponds to a unique protein target that overall cover several typical drug discovery 

relevant protein families. Models trained with and without the drug discovery LO data training 

sets were tested against these target sets.  
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Figure 1 and table 6 show the performance of the different model architectures trained with and 

without internal data. Overall, the performance is poor, with low correlation coefficients in the 

range of 0.0 to 0.29 but in most cases a small improvement in performance is seen for those models 

trained with internal data. This improvement is observed for the 3DGNN and 2DCNN neural 

network architectures. On the other hand, PIGNet and the 3DCNN models are not benefiting from 

using internal data, rather the opposite. Importantly, none of the models built from the different 

architectures outperform GLIDE molecular docking software that shows the best average 

correlation.   
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Figure 1. Pearson correlation coefficient of the different architectures per LO test set. 
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Table 6. Average Pearson correlation coefficient for the twelve drug discovery LO test datasets, 

calculated considering only active compounds.  

Architecture r Spearman MAE LO training 

data 

2DCNN 0.17 0.25 1.85 no 

2DCNN 0.25 0.22 3.04 yes 

3DCNN 0.19 0.15 2.32 no 

3DCNN 0.12 0.13 2.58 yes 

3DGNN 0.05 0.07 3.24 no 

3DGNN 0.29 0.24 3.46 yes 

PIGNet 0.00 -0.05 4.43 no 

PIGNet 0.06 0.06 4.97 yes 

GLIDE 0.34 0.22 10.58 - 

r, Spearman and MAE are averages over the same metrics computed for the 12 LO test sets. 

 

 

 

Based on our experience with models of this type we anticipated poor results to predict the absolute 

binding affinity for a set of entirely new protein targets. Afterall, the models treat the binding 

process in a highly simplified manner. However, despite the poor correlation metrics, there is an 

improvement in performance when using the additional LO data for training. Figure 2 shows a few 

examples where the 3DGNN trained with internal data showed superior performance compared to 

the model trained without internal LO data and GLIDE molecular docking. 
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Figure 2. Experimental binding affinity versus predicted binding affinity for 3 of the LO test sets 

showing improved correlation when trained with internal LO data compared to the same model 

trained without LO data and GLIDE molecular docking software. Note the correlation in these 

plots is calculated using only samples with measured experimental affinity. 

 

 

We therefore sought to understand if the models could still be used in a virtual screening scenario, 

asking the question: are they enriching the selection of more active compounds amongst the better 

ranked molecules? For this we calculated the enrichment factor (EF) to assess whether the models 

still show discriminating power against inactive compounds. Given that this is one of the main 

aims of this study, and we are principally interested to learn about 3D ML affinity prediction as a 

competitive computational tool, we again included the GLIDE docking software performance. 

https://doi.org/10.26434/chemrxiv-2024-s5sbs ORCID: https://orcid.org/0000-0003-4709-6030 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-s5sbs
https://orcid.org/0000-0003-4709-6030
https://creativecommons.org/licenses/by/4.0/


 

28 

For the external LO datasets, we observe that the addition of drug discovery LO datasets in training 

improved the performance of 3DGNN and 2DCNN architectures while PIGNet and 3DCNN 

models showed reduced performance compared to the original models trained only with PDBbind 

data (Table 7). The 3DGNN model showed the best performance with an average EF at 1% of 9.0 

followed by 2DCNN with 7.3 and GLIDE with 6.6. However, performance of the models is not 

homogenous among the different datasets as shown in Figure 3. The 3DGNN appears to be the 

most consistent method by ranking best in six of the twelve datasets, second in five and third in 

one of the datasets (Table 7). Interestingly, GLIDE performed admirably and was best for three of 

the LO target datasets while being last or penultimate ranked for five of the targets. Particularly, 

these targets represent examples of structures with challenging docking conditions. For example, 

the binding site of PDE2 and PDE10 contain two metallic cations and KDR shows flexibility 

across the structures in one of the loops forming the binding site. 

 

 

Table 7. Average enrichment factor performance metric for the retrieval of actives for the twelve 

drug discovery LO test datasets.  The enrichment factor is the number of active compounds 

retrieved in top 1% predictions compared to random and averaged for each model architecture over 

all the drug discovery target datasets. Models were trained with and without LO datasets. 

Architecture EF_1% LO training data 

2DCNN  3.1 no 

2DCNN  7.3 yes 

3DCNN 6.3 no 

3DCNN 3.1 yes 
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3DGNN 6.3 no 

3DGNN 9.0 yes 

PIGNet 2.6 no 

PIGNet 2.0 yes 

GLIDE  6.6 - 

EF_1% is the average enrichment factor at top 1% predictions for the 12 LO test sets. 
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Figure 3. The enrichment factor for the retrieval of active compounds in the top 1% of the 

predictions of the different architectures per LO test set. Data shown for models trained with the 

LO datasets.  

 

MW bias. One critical issue we considered is the molecular weight bias. MW is a simple 

property that can show a low positive correlation with affinity and models tend to shortcut learning 

by overweighting the importance of MW or a correlated feature (number of atoms, number of 

interactions). To know if our models trained with the drug discovery LO data are providing 

enrichment in different MW ranges, we stratified the data by MW and computed the enrichment 

factor. Surprisingly, our models did not show a bias in enrichment towards high MW ranges. 

Instead, the best enrichments are found within the range 350 to 500 Daltons. Figure 4 shows the 

average top 1% EF by method for all datasets. Noteworthy, 3DGNN is showing consistently good 

EFs (top 1%) in all MW ranges except for the 500-550 range where GLIDE is better.  
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Figure 4. Active compounds enrichment factor at the top 1% predictions for various MW ranges 

using different architectures on the external LO test datasets. The MW ranges are divided into 

bins separated by 50 Daltons, and each tick on the x-axis represents the range of its value minus 

50. Data shown for models trained with the LO datasets. 

 

 

Hit diversity analysis. We investigated whether the models were predicting the bioactivity of 

chemically diverse or similar molecules in comparison to GLIDE as a representative state of the 

art docking software. We computed the average similarity among the top 100 active molecules 

(real active compounds) ranked by each method (Table 8). The results show that the 3DGNN 
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returned the most similar actives with an average Tanimoto similarity of 0.6, while PIGNet 

produced the most diverse set with an average similarity of 0.49. However, these differences were 

dependent on the dataset, as the differences were smaller between models within most of the 

datasets (Figure 5).  

 

 

Table 8. Comparing the average 2D fingerprint similarity of the top 100 predicted actives per 

model architecture.  

ARCHITECTURE Average similarity 

2DCNN  0.57 

3DCNN 0.51 

3DGNN 0.60 

PIGNet 0.49 

GLIDE 0.53 
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Figure 5. Average cross-similarity for the top predicted 100 active compounds per LO external 

test set and model architecture. Data shown for models trained with the LO datasets. 
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External ChEMBL LO test sets. To add further diversity to the test sets, and consider data 

available in the public domain, we assessed the performance of our models on prepared ChEMBL 

datasets, as described in the Methods, both with and without the drug discovery LO training data. 

Again, the inclusion of the LO data resulted in improved performance for all models except for 

the 3DCNN (Table 9). Notably, the 3DGNN model trained with internal LO data showed the best 

performance in both Pearson correlation coefficient and enrichment in the top 1% with averages 

of 0.5 and 10.70 respectively. GLIDE appears as the second best in terms of correlation coefficient 

(r 0.47), while the 3DGNN trained without the LO data ranked second in terms of enrichment 

factor (9.53).  

 

Table 9. ChEMBL datasets average Pearson correlation coefficient (r), Spearman correlation 

coefficient, mean average error (MAE) and enrichment factor of at top 1% (EF_1%) predictions 

among the different neural network architectures used in this work with and without drug 

discovery LO data in training. 

Architecture r Spearman MAE EF_1% Internal 

data 

2DCNN 0.21 0.28 2.02 2.20 no 

2DCNN 0.17 0.05 1.29 7.19 yes 

3DCNN 0.31 0.28 2.68 7.46 no 

3DCNN 0.11 0.10 1.69 3.38 yes 

3DGNN 0.30 0.34 2.81 9.53 no 

3DGNN 0.50 0.37 1.38 10.65 yes 

PIGNet 0.07 0.04 3.31 3.25 no 

PIGNet 0.16 0.13 3.51 9.49 yes 

GLIDE 0.47 0.38 10.60 7.99 no 

r, Spearman, MAE, and EF_1% are averages over the same metrics computed for the 6 ChEMBL 

test sets. 
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Figure 6. Pearson correlation coefficient of the different architectures per ChEMBL test set 

trained with LO data. 
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Figure 7. The enrichment factor for the retrieval of active compounds in the top 1% of the 

predictions of the different architectures per ChEMBL test set trained with LO data. 

 

The performance by dataset and neural network architecture is shown in Figures 6 (Pearson 

correlation coefficient) and 7 (enrichment factor) for the models trained with internal data. The 

3DGNN shows the most consistent performance in both correlation and enrichment factor, ranking 

first in 3 and 4 out of the 6 datasets respectively. GLIDE ranks first in 3 out of 6 datasets in terms 

of Pearson correlation coefficient. However, GLIDE falls to the 4th position in average enrichment 

factor (7.99), a noticeable drop in performance compared to the 3DGNN trained with internal data. 
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The 3DGNN model trained without internal data ranked second in average enrichment factor 

(9.53), but with a noticeable drop in Pearson correlation coefficient (0.30). Interestingly, the 

PIGNet model trained with internal data achieved 3rd position in terms of enrichment factor, with 

very low correlation coefficient.  However, average enrichment factor for this model is biased by 

the disproportionate performance in a single dataset (MAPK, Figure 7). The 2DCNN architecture 

ranked 5th in average enrichment factor (7.19), showing on the other hand low average correlation 

coefficient (0.17). Lastly, the 3DCNN architecture, the only one which showed no improvement 

by training with internal LO data, showed an average enrichment factor of 7.49 and an average 

Pearson correlation coefficient of 0.31. 
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Figure 8. Active compounds enrichment factor in the top 1% predictions for various MW ranges 

using different architectures on the external ChEMBL test sets. The MW ranges are divided into 

bins separated by 50 Daltons, and each tick on the x-axis represents the range of its value minus 

50. 

 

MW bias. Hit enrichment was also analyzed for ChEMBL datasets. We stratified the data by MW 

and computed the average enrichment factor among datasets. As observed with internal LO test 

sets, our models (3DGNN, 2DCNN) showed consistently better enrichment factors compared to 
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docking, especially the 3DGNN. In the range between 250-300 Daltons GLIDE showed better 

performance.  

 

 

 

Hit diversity analysis. We also conducted the analysis of hit diversity for ChEMBL datasets. The 

average similarity is similar across the different architectures (Table 9, Figure 9). The diversity of 

hits in these datasets exhibits a pattern consistent with that observed in LO datasets. Diversity of 

hits appears to be more influenced by the characteristics of the dataset itself rather than by the 

specific architecture of the model. 

 

 

 

 

 

 

 

 

Table 9. ChEMBL test datasets average similarity of top 100 predicted actives per architecture.  

Architecture AVG_Similarity 

2DCNN 0.46 

3DCNN 0.50 

3DGNN 0.51 

PIGNet 0.48 

GLIDE 0.51 
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Figure 9. Average cross-similarity for the top predicted 100 active compounds per LO ChEMBL 

test set and model architecture. 
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DISCUSSION AND CONCLUSIONS 

The prediction of absolute binding affinity using AI is a challenging task that has received 

considerable attention in recent years. Numerous efforts have been made to improve prediction 

performance, focusing on both the generation and implementation of new DL architectures and 

data improvement and augmentation. Despite significant progress, it is evident that the 

improvement of architectures has shown only a minor impact on performance, especially for 

external test sets. Our data showed the DL affinity prediction models do not perform better than 

docking with GLIDE on new external test sets (as measured by correlation coefficient). This is not 

evident from testing using the PDBbind core set that is commonly used in literature studies. We 

must consider truly new and challenging external datasets to reveal the issues. The limitations are 

likely centered on the available data, the underlying description or the overarching simplification 

of binding that ignores entropy, desolvation and other terms. These complex terms can be partly 

canceled if we were to consider bioactivity differences between similar compounds, a concept that 

motivated our previous work to learn based on differences in binding affinity60  a topic recently 

revisited by others61. Regarding the data, the primary source of public data is the PDBbind 

database, which comprises curated protein-ligand complex structures available at the protein 

databank. However, it is worth noting that complexes formed by proteins and small molecules 

with reasonable quality are limited to approximately 5000 structures. This is a small number that 

does not adequately address the complex problem of predicting binding affinity from a data hungry 
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perspective. Furthermore, biases that allow AI models to shortcut learning by correlating activity 

with simple data features like MW have been identified.  

One of the most significant data limitations is the sparsity of the protein-ligand matrix, which 

presents a good representation of the protein space but limited chemical space. The chemical space 

of the ligands co-crystallized with a protein is usually diverse, which hinders the learning of the 

impact of small modifications in ligand structure and more importantly facilitates model 

overfitting on ligand chemical properties. As a result, DL models trained on PDBbind data often 

show poor performance when applied to external sets, especially drug discovery LO datasets, as 

studied here, where the data density is reversed with thousands of ligands (actives) for a limited 

number of proteins. Moreover, our results show how realistic measures of model performance can 

differ substantially versus testing with PDBbind core set, whose composition provides 

overoptimistic results. 

To reduce the effect of data biases, data augmentation using inactive compounds with similar 

physicochemical properties have been included in training. Furthermore, we included pose decoys 

where active molecules in incorrect bound complexes were used for training. While both of these 

efforts are expected to improve model generalization by forcing the model to focus more on the 

interactions or learn that the features of the ligand alone are not responsible for the activity, it may 

be introducing noise via a ‘virtual binding’ mode and an assigned low pX50 (normalized between 

0 and 3 in this work). From the DL architecture perspective, recent efforts make the models more 

generalizable by limiting learning to just interaction information, thus avoiding overfitting on the 

ligand, the protein or both. For example, Volkov et al. recently analyzed the problems related to 

the PDBbind dataset and DL models, concluding that for prospective applications, a model trained 

using interaction data might be more generalizable. However, the analyses performed in their work 
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showed that even after subsampling the data to avoid overfitting, and considering only interactions 

in the graph representation, hidden biases were still present. There have also been efforts to 

incorporate more inductive biases into the models. For example, PIGNet, used in this work, is a 

physics-informed 3DGNN model in which the binding affinity is predicted as a sum of 

parameterized physics equations fed by interactions, corrected by a rotor term. The PIGNet models 

used in this work showed inconsistent results across datasets compared to other architectures. We 

think that the reason for this could be related to the difficulty for a few parameterized equations to 

learn all the aspects of binding affinity, which includes chemistry and the dynamical features like 

conformational sampling and solvation. Another interesting model is Dynaformer62
, a 3DGNN 

model trained with molecular dynamics data. Although the model accomplishes remarkable 

performance on the PDBbind coreset, performance on external sets is not provided, leaving doubts 

as to whether the model is learning physics thanks to the underlying simulations, or potentially 

learning new biases.  

We have addressed the data sparsity problem by augmenting the data using drug discovery LO 

datasets and a rigorous docking protocol to ensure that resulting complexes are as close as possible 

to their hypothetical crystal structures. Interestingly, we unexpectedly observed an increase in 

PDBbind core set testing performance when training the model with drug discovery project LO 

data in comparison to training using only PDBbind data. More importantly we observed modest 

correlation for some of the external LO datasets where models trained with only PDBbind or 

GLIDE showed no trend. Interestingly, for the internal validation test sets the models performed 

rather poorly and similar in all cases but for the LO external test sets performance was also poor 

in terms of correlation of predicted and experimental activity but there was an improvement when 

using internal data. It must also be noted the increased difficulty of obtaining correlation for LO 
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datasets where the distribution of activities across the activity range is imbalanced with most 

activity points concentrated in 2 to 3 pIC50 units. Considering the correlation between the predicted 

and experimental activity the overall performance was unclear if the DL models were 

outperforming docking. It is notable that docking (using GLIDE here) often performs well in the 

respective tests performed throughout our study. This contrasts with some reports where DL 

models often substantially outperform docking. However, upon close inspection, some of those 

studies use docking inappropriately, for instance to find a site in addition to the binding mode. As 

mentioned in the introduction, site identification was not the purpose for which docking algorithms 

were developed. Here, the docking performance is likely tending towards a better or more typical 

use case scenario because we are filtering to only retain the best scored, most reliable poses that 

may also conserve an MCS or certain interactions.  

Overall, there were signs that for a virtual screening or hit finding application, the 3DGNN 

model trained including drug discovery LO training datasets achieved the highest performance 

with an EF at top 1% of 9.0 followed by the 2DCNN model and GLIDE with 7.3 and 6.6, 

respectively. The best model trained without LO datasets (3DGNN) achieved an EF at top 1% of 

6.3. The 3DGNN was not only performing the best on average in terms of enrichment but also was 

more frequently the best model for a given target dataset. The models were resilient for challenging 

systems where there are ions and loop flexibility (PDE2, PDE10 and KDR). Hit enrichment is 

important, but also the quality/diversity of the hits. Molecular weight bias is also present in LO 

datasets, where hits are grown to improve their affinity during lead optimization. We evaluated the 

hit enrichment factors at different MW ranges and the similarity among the top scored active 

compounds. DL models were able not only to retrieve more hits, but also this was accomplished 

in all MW ranges. This suggests that the models can provide better enrichment at more attractive 
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lower molecular weight ranges. Additionally, we measured the average similarity for top predicted 

active compounds. All methods show a similar average similarity demonstrating there is no clear 

advantage for any method in retrieving more diverse hits.  

We also evaluated the model performance on ChEMBL datasets that were compiled using the 

same pipeline utilized for the drug discovery project LO datasets. Although the best model was 

the 3DGNN trained with internal data, the addition of the LO data did not offer an improvement 

as substantial as seen for the internal LO test sets. This finding can be explained by two main 

reasons: data quality and differences in chemical space. The data quality issue is mainly due to the 

difficulty in finding congeneric series of compounds with a representative analogue in a public 

domain crystal structure. This challenge compelled us to use constrained docking, which can result 

in inaccuracies in the computed best pose. Moreover, the advantage of training with the LO data 

may not be as relevant for the ChEMBL data as for the LO datasets due to increased difference in 

the chemical space between the two data sources.   

We demonstrated that incorporating LO data during training can be beneficial in improving the 

performance of DL models for predicting binding affinity on datasets beyond the training domain. 

The increased data density facilitates the learning of SAR and reduces the biases associated to 

sparse data, like MW bias and the classification of activities by targets. Specifically, the Graph 

Neural Network (3DGNN) consistently showed better enrichment and MW diversity across most 

of the datasets in our external tests using LO project data compared to molecular docking scoring 

function. However, our models are not yet capable of providing a strong correlation between 

experimental and predicted activities. A particular limitation is the static representation of the 

system which underestimate the impact of the dynamics and the conformational changes, entropy 

and (de)solvation. The quantity and quality of data required to properly rank compounds within 
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the small activity range are unknown, and it is unlikely that they will be available in the short or 

medium term. Instead, we believe that incorporating more physics into DL models and providing 

a complete picture of the thermodynamic cycle, either from simulations or other DL models, is a 

more promising direction to pursue.  
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samples contain a decoy pose for each active compound complex for the 2DCNN models while 
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Supplementary Table 4. Per-dataset disaggregated performance statistics for chEMBL LO 

external test sets
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