
1 
 

Qptuna: an automated QSAR modelling platform for 

molecular property prediction in drug design 

 

Lewis Mervin1*, Alexey Voronov2, Mikhail Kabeshov2, Ola Engkvist2, 3 

 

1Molecular AI, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK 

2Molecular AI, Discovery Sciences, R&D, AstraZeneca Gothenburg 

3Department of Computer Science and Engineering, University of Gothenburg, 

Chalmers University of Technology, Gothenburg, Sweden 

*lewis.mervin1@astrazeneca.com 

 

 

Keywords: Molecular property prediction, target prediction, model building, 

hyperparameter optimization, QSAR, active learning, ChemProp, PCM 

  

https://doi.org/10.26434/chemrxiv-2024-2rlk7 ORCID: https://orcid.org/0000-0002-7271-0824 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-2rlk7
https://orcid.org/0000-0002-7271-0824
https://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

 

TOC: 

 

  

https://doi.org/10.26434/chemrxiv-2024-2rlk7 ORCID: https://orcid.org/0000-0002-7271-0824 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-2rlk7
https://orcid.org/0000-0002-7271-0824
https://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

Abstract 

Machine-learning (ML) and Deep-Learning (DL) approaches to predict the molecular 

properties of small molecules are increasingly deployed within the design-make-test-

analyse (DMTA) drug design cycle to predict molecular properties of interest. Despite 

this uptake, there are only a few automated packages to aid their development and 

deployment that also support uncertainty estimation, model explainability and other key 

aspects of model usage. This represents a key unmet need within the field and the large 

number of molecular representations and algorithms (and associated parameters) 

means it is non-trivial to robustly optimise, evaluate, reproduce, and deploy models. 

Here we present Qptuna, a molecule property prediction modelling pipeline, written in 

Python and utilising the Optuna, Scikit-learn, RDKit and ChemProp packages, which 

enables the efficient and automated comparison between molecular representations 

and machine learning models. The platform was developed considering the increasingly 

important aspect of model uncertainty quantification and explainability by design. We 

provide details for our framework and provide illustrative examples to demonstrate the 

capability of the software when applied to simple molecular property, reaction/reactivity 

prediction and DNA encoded library enrichment analyses. We hope that the release of 

Qptuna will further spur innovation in automatic ML modelling and provide a platform 

for education of best practises in molecular property modelling. The code to the Qptuna 

framework is made freely available via GitHub. 
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Introduction 

A typical drug design project consists of a design-make-test-analyse (DMTA) cycle 

aiming to optimise small molecules for activity against a desired protein target whilst at 

the same time maintaining a desirable absorption, distribution, excretion and toxicity 

(ADMET) profile, thereby improving chances for in vivo efficacy[1]. Since measuring 

such properties requires substance samples and is resource- and time-consuming, 

cycle times can be slow and compound prioritisation might be cumbersome[2, 3]. 

 

To address this, Machine learning (ML) and artificial intelligence (AI) approaches have 

been increasingly integrated into medicinal chemistry projects[4-6]. Here their routine 

use towards Quantitative Structure Activity Relationship prediction (QSAR) accelerates 

DMTA cycle times[7-9]. As shown in Figure 1, their application is designed to direct 

resources towards prospective screening experiments, and they have been used to 

screen extensive compound databases and to optimise efficacy[10-12]. In silico safety 

assessment can also minimize ethically concerned activities, such as animal or human 

experimentation[13, 14]. QSAR has also been combined with other fields such as 

molecular de novo design, where molecule property prediction is used to direct the 

objective function (capturing [un]-desired properties) of generative algorithms toward 

desirable chemical space[15-17], or coupled with active learning approaches to 

optimise free energy calculations[18]. Other applications include the prediction of 

chemical reaction yields, where reactants and yield are provided as training data[19]. 

 

The development of novel algorithms capable of rationalising complex relationships 

between chemical and biological information[20, 21], exponentially growing chemical 

and biological space added to molecule databases[22], falling cost of computational 

resources [23, 24], and MLOps systems for accessing production-level models[25] have 

spearheaded the development and use of QSAR models in practice[26-28]. Despite 
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this, the assortment of workflows, algorithmic methods, and parameters means training 

and updating models is non-trivial and finding the relatively optimal modelling setup is 

a time-consuming task for data scientists. Consequently, there is a need to compare 

different models for specific properties reproducibly, efficiently, and robustly across 

different molecular representations and algorithms.  

 

A platform offering this functionality should maintain and update QSAR models 

throughout their “life cycle” and needs to involve the standard steps critical for reliable 

model building in a temporal setting. The automatic evaluation of the ML stack 

(including the sequential steps of data ingestion, pre-processing and model training) is 

a distinct area identified as AutoML[29]. The application of AutoML toward the field of 

molecular property prediction has only partially addressed despite the early attempts to 

attract attention towards this unmet need[30]. There remains a lack of robust, modular 

and scalable platforms for QSAR modelling, though some automated tools have been 

presented (see Table 1 for an overview). SL Dixon, J Duan, E Smith, CD Von Bargen, 

W Sherman and MP Repasky [31] developed a machine-learning application 

(AutoQSAR) for automated QSAR modelling. eTOXlab [32] and offers an alternative 

automated QSAR framework, but is no longer maintained and requires advanced 

Python programming skills. An online alternative OCHEM[33] is available, however the 

cloud-based infrastructure renders the software unsuitable for private or sensitive data. 

R Cox, DV Green, CN Luscombe, N Malcolm and SD Pickett [30] designed a Pipeline 

Pilot web application (QSAR Workbench) although this is restricted to Pipeline Pilot 

users. Automated Predictive Modeling[34] is also available but demands expert 

technical skills and significant resources for model development and maintenance. 

More recently, TranScreen provides a transfer-learning setup based on graph 

convolutional neural networks and focuses on small imbalanced data sets, though 

algorithmic choice is restricted to only deep-learning methods[35]. S Kausar and AO 

Falcao [36] also proposed an automated framework for QSAR model building, but this 
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is based on KNIME and requires expert knowledge for their implementation with a 

complicated interface. AMPL[37] was also developed as a modelling pipeline as an 

open-source software suite, allowing users to build models for a wide array of molecular 

properties. It extends the open source DeepChem library, supports an array of ML and 

molecular featurization tools and offers uncertainty quantification. Despite this, only four 

sets of algorithms are available, a restricted number of four descriptors are available 

(the MOE descriptors also require a license), and no GUI is provided. PREdictive 

modeling FramEwoRk (PREFER) was recently proposed by J Lanini, G Santarossa, F 

Sirockin, R Lewis, N Fechner, H Misztela, S Lewis, K Maziarz, M Stanley, M Segler, et 

al. [38]. In this package, popular libraries are used for hyperparameter optimization, 

with the authors stating the most important factor being the ability to customise the 

framework. AutoSklearn is supported by an active community, but the package relies 

on notebooks and requires a detailed four step installation process. Uni-QSAR was 

recently published[39], though this software must combine 1D tokens, 2D topology 

graphs, and 3D conformers to generate learnt representations and does not offer the 

same level of functionality or ease of use compared to other packages. Other 

approaches towards automated QSAR procedures are also available but are tailored 

to specific settings such as blood-brain barrier penetration and aqueous solubility[40], 

Leishmania High-Throughput Screening Data[41] or Gaussian Processes[42], which 

limits applicability. Molflux[43] was also recently released as a foundational package for 

molecular predictive modelling, though this platform does not optimise for algorithm 

hyperparameters. A variety of data mining and automation tools could offer the ability 

to develop custom pipelines, such as Pipeline Pilot[44], KoNstanz Information MinEr 

(KNIME)[45], Orange[46], Taverna[47], Kepler[48] and the Loni Pipeline[49]. However, 

workflow managers require specific competency to design or run pre-existing 

configurations, and developing custom workflows requires time and effort. Ideally a 

platform should provide both a CLI and GUI, without the need for proprietary software 

or licenses, expert knowledge or complicated installation steps. Such a platform be 
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developed with popular maintainable programming language with ability to use the 

state-of-the-art (well-maintained) open access packages for additional functionality. 

Uncertainty estimation and model explainability should also be considered during the 

design and development phase, given the increased focus placed onto these aspects 

of modelling[2, 4, 50], and since this will facilitate decision making when models are 

used in production. 

 

In this vein, we have developed Qptuna; a platform which employs, to the best of our 

knowledge, all best practices from the field to deploy good QSAR models into 

production. The Qptuna platform deals with all user data inputs, molecule 

standardardisation, deduplication, splitting, hyperparameter optimization and model 

deployment in an easy to use, modular way. In this work, we will outline the platform 

structure, and provide easy to follow examples for how to use the model building tool. 

In the next section, we outline the overall workflow, it’s implementation and the 

additional functions offered for QSAR modelling. The platform is released as open-

source under a permissive license for educational purposes as well as facilitate further 

innovation in automatic QSAR modelling.  It is intended to be a living project with 

continuous updates and new features. Here we consider the application of the tool 

toward three different types of applications reflecting the breath of modelling tasks a 

modern ML platform need to handle. The examples are aqueous solubility prediction, 

probabilistic reactivity prediction and calibrated DEL enrichment classification problems 

representing diverse examples which reflects the emerging landscape of popular QSAR 

tasks and demonstrates the versatility of the platform. 

 

Implementation 

An overview of the standardised protocol toward automated QSAR modelling is shown 

in Figure 2. The workflow is structured around three steps: 
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1. (Bayesian) Hyperparameter Optimization: Train many models with different 

parameters using Optuna. Only the training dataset is used here. Training is 

usually done with cross-validation. 

2. Build (Training): Pick the best model from Optimization, and optionally evaluate 

its performance on the test dataset. 

3. “Producition build (Re-training):  Re-train the best-performing model on the 

merged training and test datasets. This step has a drawback that there is no 

data left to evaluate the resulting model, but it has a large benefit that this final 

model is trained on all available data. 

 

As shown in the figure, the Qptuna workflow starts with data preparation which includes 

import of molecular structures and corresponding biological activity data for a specified 

molecule property prediction task. Several sanity checks are performed on the input 

data, including a check for valid response values and input molecules. Finally, an 

optimisation protocol is initiated, where internal validation can then be used to develop 

a QSAR model by following a rigorous internal and external validation process. Here, 

an initial split of data is performed to partition training instances into internal and 

external validation, to avoid data leakage. This is a critical step, where many different 

splitting strategies are available to afford a more realistic evaluation of model 

performance in practice. Hyper-parameter optimisation is performed using the Optuna 

package; a framework capable of performing Bayesian hyperparameter optimisation for 

a given set of descriptors and ML algorithms. Finally, a selected model can be created 

by initiating a “production build”, which can comprise both internal and external training 

instances (model trained on all available data with the caveat of no performance 

assessment). 

 

Hence, our open-source automated workflow embeds all the tools and steps necessary 

to perform all steps of the QSAR life cycle by following best practicing methods. The 
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workflow is easily applied to build predictive QSAR models without having expertise in 

ML or programming. We illustrate how the model building workflow Qptuna integrates 

Bayesian hyperparameter optimisation and deploy this to example QSAR problems 

from a solubility prediction, a reactivity prediction problem and toward DNA encoded 

library enrichment classification, to illustrate capabilities.  

 

Data Preparation 

One of the most important steps in building QSAR models is the appropriate pre-

processing of the data prior training[51-53]. This section describes how the steps 

implemented in Qptuna to ensure best practice in this regard. 

 

Qptuna expects inputs to be in the form of a CSV or SDF file. The automated integration 

pipeline provides an opportunity for automation since queries can be polled for 

continuous updates from project teams. The proposed workflow is hence intended to 

cater for a variety of approaches. 

 

Input data is retrieved and processed by retaining only the user’s requested biological 

activity type records, and other relevant information related to chemical structures and 

assays (for example co-variates corresponding to time/date/protein) or side-information 

tasks for use in multi-task learning. Since the objective of QSAR is to quantify a ligand–

molecular property values any response column value may be utilised and related to 

the algorithm for training. Qptuna validation also includes the identification of missing 

data and duplicates and dealing with several forms of the same molecule (including salt 

groups). 

 

Next, deduplication of distinct compound replicates (based on the canonicalized 

SMILES of user inputs) is performed, where the current options are: 

• Keep First and Keep Last: keep the first or last occurrence  
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• Keep Random (with a seed): keep a random observation 

• Keep Minimum and Keep Maximum: keep min or max  

• Keep Average: take the average 

• Keep Median (default in Qptuna): take the median  

• Keep All: all observations are retained 

 

The default deduplication method in Qptuna is to Keep Median, which is recommended 

best practice due the ability to utilise all experimental data into one value (account for 

experimental variability across biological replicates), whilst being robust to outliers. 

 

Response value transformations 

Qptuna can be used to transform input labels so that log-scaled or irregularly distributed 

data can be transformed to a normal distribution as required for many Machine Learning 

inputs. The scaling or transformation of user response columns to normalise highly 

varying values in raw data is often performed for proper training of a predictive model, 

where often data is transformed with a logarithmic function. This transformation is 

deactivated and skipped by default, assuming that data is already normalised. 

 

 

Data partitioning 

To facilitate external assessment of the predictive performance of the developed QSAR 

model, user data is divided into the internal training set and external validation set 

through a variety of different approaches. By default, the platform applies a stratified 

(real-valued) shuffle split, where for classification the data is split ensuring the same 

distribution of classes. For regression, data is split according to a binning scheme of 

response values, ensuring that the (binned) distribution of regression values for 

modelling is kept consistent between test and training sets. This split is robust for both 
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classification and regression settings and should provide a good approximation for most 

cases. A random split, predefined split and scaffold-based split (to emulate when 

models may be used for scaffold hopping) are also available. Hence there are a wide 

array of splitting strategies for most user applications. Next, the internal training set is 

further split using a K-fold cross validation process (either stratified or random) for 

internal hyperparameter optimisation, evaluation, and selection. The external split is 

never used for any feature selection or model training procedure, to avoid leakage. The 

full list of splitting strategies in Qptuna are as follows: 

• Random  

• Stratified (real-value) shuffle  

• Temporal  

• Scaffold-based  

• Predefined (from a user column) 

 

Descriptor calculation 

The proposed workflow automatically calculates several molecular descriptors and 

structural characteristics for the retrieved molecules for each Optuna trial evaluated. 

Descriptors are also cached to reduce trial runtime. Users may submit own molecular 

descriptors using the precomputed descriptors option. Our workflow uses RDKit for 

most descriptor calculations, but the full complement includes: 

• RDkit circular fingerprints (Morgan-like) 

• RDkit circular fingerprints (Morgan-like) with counts 

• RDKit physchem descriptors 

• Avalon[54] 

• MACCS[55] 

• Jazzy[56] 

• Composite descriptors (concatenate any combination of descriptors together) 
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• Predefined descriptors 

• Scaled descriptors (ensures custom descriptors are scaled) 

 

Model Selection 

A variety of different algorithms for classification or regression are provided. We apply 

many popular ML approaches, such as neural networks (ChemProp[57]), support 

vector machines (SVMs), random forests (RF). We also provide an implementation of 

the Probabilistic Random Forest (PRF)[58] for use with the probabilistic data transform, 

which has been shown to improve uncertain bioactivity predictions[59]. Other 

algorithms are easily integrated given the modular nature of Qptuna. 

 

Each Qptuna trial is evaluated via the primary performance metric (this is ROC-AUC or 

negated Mean Squared Error (MSE) by default) which can be altered by the user. 

Qptuna offers a many performance metrics offered by Sciki-learn in addition to 

BEDROC (implemented via RDKit)[60]. All are calculated and reported for review by 

the user, although one primary metric is normally used as an objective function in 

Optuna trials. The user may also (optionally) specify a multi-parameter optimisation for 

minimisation of the standard deviation of performance scores across the folds, thereby 

suggesting descriptor and algorithm pairs that are more generalisable across splits (and 

therefore in production). External validation is finally performed for the realised model 

on the external test set. 

 

Functions offered by Qptuna compared to other platforms 

 

Probabilistic modelling transformation 

Since molecule properties derived from experiments have reproducibility limits due to 

experimental errors, any model based on this data have such unavoidable error 
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influencing performance which should ideally be factored into modelling and output 

predictions. Consequently, a probabilistic transform of the activity scale is available in 

Qptuna, based on the approach performed here[59]. 

  

With this setting turned on, Qptuna treats compound response labels as probability 

distribution functions (rather than deterministic values) on a per-threshold basis based 

on the cumulative distribution function (CDF) of a normal distribution. Hence the activity 

values become represented in a framework in-between the classification and 

regression architecture, with philosophical differences from either approach. Compared 

to classification, this approach enables better representation of factors 

increasing/decreasing inactivity. Conversely, one can utilize all data (even 

delimited/operand/censored data far from a cut-off) at the same time as considering the 

granularity around the cut-off, compared to a conventional regression framework. 

Thereby, this Qptuna setting combines characteristics from both classification and 

regression settings. 

 

Probability calibration 

Probability calibration methods are also provided via the Calibrated Classifier with 

Cross Validation option (a procedure based on the inductive cross-validated approach 

available in Scikit-learn). The available functions are Sigmoid, Isotonic regression and 

VennABERS[61], and a review of those calibration methods for QSAR has been 

performed here[62]. Calibration should make predicted probabilities more accurate and 

thus more useful for making allocation decisions under uncertainty.  

 

Uncertainty estimation 

Qptuna also offers uncertainty via three different methods. 

1. VennABERS calibration based on the “Uses for the Multipoint Probabilities from 

the VA Predictors” from [62] 
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2. Ensemble uncertainty (ChemProp models trained with random initialisations). 

3. Dropout uncertainty at inference time (ChemProp models) 

4. Model Agnostic Prediction Interval Estimator (MAPIE)[63] (uncertainty for 

regression) 

 

Model Explainability 

Model explainability is incorporated into Qptuna using two different approaches that 

focues on the input descriptors for molecules. Each depend on the algorithm chosen: 

1. SHapley Additive exPlanations (SHAP)[64] (available for all models) 

2. ChemProp interpret (available for ChemProp models and based on the interpret 

function in the original package) 
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Results and Discussion 

This section demonstrates three diverse and relevant use cases for Qptuna: 

1.) ESOL aqueous solubility regression[65] 

2.) Probabilistic reactivity prediction (evaluated via regression metrics)[66] 

3.) DNA encoded library (DEL) enrichment classification[67] 

 

Each example use case is selected to exemplify platform capabilities and reflects the 

latest prediction task trends in the QSAR. The first solubility represents a typical 

regression task based on an assay readout important in early drug discovery. The 

second demonstrates how Qptuna can be deployed to different fields of 

cheminformatics, such as reactivity prediction, whilst the final third task highlights the 

scalability of Qptuna when applied to larger amounts of noisy data such as a 

classification DEL dataset. 

 

Solubility modelling 

As a first test case, we used Qptuna to generate models for a water solubility dataset 

and an overview of external performance is provided in Table 2. Our results show that 

there is a marked improvement during scaffold-based testing when using Qptuna over 

other approaches; with an improvement in Pearson correlation from 0.264 to 0.636 

(margin of 0.372) between the simple RF & ECFP (No optimisation) baseline compared 

to a full Qptuna run (150 start-up trials, proper 300 trials) optimising for low standard 

deviation across hyper-parameter folds. Optimising for folds improved performance by 

a Pearson correlation margin of 0.130, which highlights that this approach can lead to 

better selection of hyperparameter in the analysis presented here. To our knowledge 

minimising for standard deviation across folds in an automated multi-parameter 

optimisation in this manner is not available in alternative open-source AutoML 

platforms. Results for the RF grid search also highlight the clear benefit for performing 
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proper optimisation within Qptuna, since the grid optimised RF achieved a Pearson of 

only 0.297. 

 

The stratified split also showed benefit in performing optimisation over a baseline, with 

improvements from 0.725 to 0.907 for the RF and ECFP model and obtained Qptuna 

models, respectively. Qptuna identified the same optimal (start-up) trial for this splitting 

evaluation approach, so there is no benefit to activating the multi-parameter 

optimisation approach for standard deviation for this analysis. The RF grid search 

present only modest performance gains over the baseline model, with a Pearson 0.763, 

further highlighting the importance of fully optimising both algorithm and descriptor 

spaces. 

 

Taken together, these results highlight the benefit in performing hyper-parameter 

optimisation using the Qptuna package for a solubility dataset and present evidence for 

usefulness of the unique functionality offered by our package. Although some additional 

latency is introduced by the time taken for optimisation, we consider that this is mitigated 

by substantial performance gains as observed for the ESOL dataset. 

 

 

 

Reactivity modelling 

Qptuna was applied to a Buchwald-Hartwig reactivity prediction dataset[66] in order to 

demonstrate its usefulness when applied to this molecule property prediction endpoint. 

Probabilistic thresholding of the regression scale was implemented to outline the 

functionality offered within Qptuna, which to our knowledge is not offered by alternative 

software. In this procedure, reactivity response values were discretised in Qptuna using 

an activity threshold boundary of 5 and provided a standard deviation of 2, thereby 

accounting for experimental variability of reactivity assays within the modelling 
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procedure and representing the reactivity prediction task in a probabilistic framework. 

In this setting, a yield of 5 is assigned a likelihood score of 50%, whereas scores of 2.5 

or 7.5 would be assigned scores of 10.6% and 89.4%, respectively. Yields below or 

above the standard deviation range would also obtain the minimum and maximum 

values of 0% and 100%, respectively, thereby allowing the use of even delimited 

(qualified) values of “<” or “>”. 

 

Results are shown in Table 3 and demonstrate that Qptuna with probabilistic modelling 

combined with PRF performs with the most relatively optimal performance of any of the 

approaches evaluated; with an improvement in Pearson correlation from 0.880 and 

0.967 (margin of 0.087) between the simple RF & ECFP (No optimisation or 

probabilistic modelling) baselines when compared to a full Qptuna run (15 start-up trials, 

proper 15 trials). This finding highlights the clear benefits for representing the reactivity 

scale in this manner and accounting for uncertainty near the decision boundary. To our 

knowledge, this approach is a unique option offered by Qptuna compared to other 

publicly available QSAR building platforms currently available. 

 

 

DEL modelling 

In this section we chose to evaluate Qptuna performance for a DEL enrichment dataset 

from KS Lim, AG Reidenbach, BK Hua, JW Mason, CJ Gerry, PA Clemons and CW 

Coley [67], since task type represents a more recently popularised prediction problem, 

comprising a highly imbalanced classification set with large numbers of enrichment 

response values. This provides an opportunity to not only benchmark the software on 

a larger, more noisy data set, but also to demonstrate the calibration methods available 

in Qptuna, to obtain better probability estimates representing the ground truth. This is 

an important aspect of model behaviour to consider since the outputs from poorly 

calibrated models can be misleading and not always actionable. 
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Results from our DEL classification analysis is presented in Table 4. The findings 

highlight the clear benefit for using Qptuna with the VennABERS calibration approach, 

since the VennABERS scaling has the most relatively optimal ROC AUC whilst also 

maintaining the highest negated Brier score loss (which indicates superior calibration 

performance), with 0.906 and -0.003, respectively. To our knowledge, this approach is 

a unique option offered by Qptuna compared to other publicly available QSAR building 

platforms currently available. 

 

We next analysed how well calibrated the VennABERS (optimal Qptuna run) is 

compared to a (uncalibrated) Qptuna model obtained without the VennABERS 

functionality activated, for a stratified subset of 3,800 test set compounds. Results 

provided in Figure 3 illustrate a reliability plot, which is a common method to evaluate 

model calibration by relating the ground truth likelihood of compounds obtaining a 

positive prediction as a function of different discretised probability bins. Our findings 

clearly demonstrate the superior calibration performance of the model obtained by the 

VennABERS predictor over the uncalibrated baseline, where a higher proportion of 

compounds are assigned estimates closer to the ideal as outlined by markers near to 

the diagonal (ideal) line. Again, this represents a key benefit for Qptuna over alternative 

software (when considering model calibration) which do not offer such techniques. 

 

 
Discussion & Conclusion 

In this work, we present a robust, modular, and extendable platform designed to be 

used as a QSAR modelling pipeline to obtain robust predictive models for molecule 

property prediction tasks. The pipeline can be utilized for fully automated QSAR 

modelling to assist all users including those not an expert in the ML field or those which 

have limited knowledge in data preparation and best practices for QSAR. 
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Since the training of a most relatively optimal model is reliant of many critical and time-

consuming steps (including data collection and processing, data representation via 

descriptors, ML model fitting, validation, and hyper-optimisation), this QSAR modelling 

workflow completely automates these laborious and iterative processes. The following 

are the main advantages of Qptuna framework: 

• Automatically deployable in the three-step framework, to generate production 

ready models 

• Data ingestion (selecting only the property of interest) offering classification and 

regression 

• Deduplication, removing invalid/missing data 

• Descriptors calculation across a wide range of state-of-the-art options 

• Data normalization, standardisation and transformation (including probabilistic 

transformation for probabilistic modelling) 

• Best practice validation procedure using internal and external splits are followed  

• State-of-the-art interpretation or explainability methods available 

• Model calibration using inductive methods 

• Uncertainty quantification options depending on the algorithm selected, which 

will aid the use of active learning in the DMTA cycle 

• Support for model architectures utilising auxiliary domain information (e.g. 

Proteochemometric [PCM] modelling, dose, timepoint, etc.) 

 

Due to the modular nature of the platform, the automated QSAR modelling framework 

is transparent in comparison to the more black-box solutions available from other QSAR 

modelling platforms. This extensible and highly customisable package will aid the 

development of robust predictive models and provide an ideal framework for a robust 

predictive model life cycle. Moreover, it ensures that the same protocol is used for 
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updating models with new molecules as they become available, thereby improving 

reproducibility. By integrating the latest explainability and uncertainty quantification, we 

intend for the models generated by Qptuna to have more impactful and actionable 

predictions when used in production. Qptuna is made open source as an automated 

QSAR modelling framework to spur further innovation in the field. We hope to guarantee 

that the most important aspects of QSAR modelling are addressed and consistently 

applied when using Qptuna including for educational purposes. 
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Figure 1. Importance of integrating well-trained models into the drug design 
process. A well-established infrastructure of model hosting (MLOps) and re-training of 
models is required for effective model deployment. The principal way to impact the cycle 
via modelling approaches is to make the best up-to-date models available to all 
scientists at the point of Design.
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Figure 2. Overview of the standardised Qptuna model building platform. Data 
quality validation, curation and descriptor calculation are considered by design in the 
Qptuna framework. A three-step optimisation, Cross Validation (CV) scoring and 
“production” build workflow is used. Recommended best practices for CV and rebuilding 
is followed. 
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Figure 3. Most relatively best calibrated model are VennABERS scaled Qptuna 
models. A calibrated model using VennABERS generated predictions is closer to the 
ideal perfectly calibrated (dashed) diagonal line and with a superior (lower) Brier score 
loss of 0.028 versus 0.047 for an uncalibrated counterpart. On the bottom trellis, the 
change in the distribution of predictions is depicted via the histogram of mean predicted 
value versus discretised probability bins. 
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Table 1. Qptuna comparison with alternative open-source software for molecule property prediction.  

Software 

Dataset 
modellabili

ty/ 
pre-

modelling 
analysis 

Custom 
Splitting 

technique
s 

Number of 
descriptor

s 

Composite 
descriptor

s 

Custom 
descriptor

s? 

Custom 
train/test 
splits? 

Shallow 
models 

Neural 
network-

based 
algorithms 

Inductive 
model 

calibration 

Uncertaint
y 

estimation 

Explainabi
lity 

Multi-
parameter 
optimisatio

n? 

Probabilist
ic 

transform 

Qptuna No Yes 8 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

AMPL No No 4 No No No Yes Yes No Yes No No No 

PREFER No No 4 No No No Yes Yes No No No No No 

Uni-QSAR No No 5+ No No No Yes No No No No No No 
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Table 2. ESOL prediction performance demonstrates the value of optimising parameters. Hyperparameter optimisation obtains better models regardless 
of split method considering all six performance metrics evaluated. Negated Mean Squared Error was used as the objective function for optimisation. 
 

 

Modelling Approach 

Split Methods Time External Performance 

External 
 

Internal 
(hyper-

parameter) 

Optimisa
tion Build Total Explained 

Variance 
Max 
Error 

Negated 
Mean 

Absolute 
Error 

Negated 
Mean 

Squared 
Error* 

Negated 
Median 

Absolute 
Error 

Pearson 
correlation 

RF & ECFP  
(No optimisation) 

Scaffold 

- - 00:00:29 00:00:29 0.347 -4.13 -1.1 -2.274 -0.693 0.264 

RF grid optimisation 
& ECFP Stratified 00:28:06 00:00:28 00:28:34 0.362 -3.907 -1.095 -2.174 -0.764 0.297 

Qptuna Stratified 09:28:26 00:08:30 09:36:56 0.533 -3.601 -0.867 -1.527 -0.709 0.506 

Qptuna Min Std.Dev Stratified 02:44:56 00:01:11 02:46:07 0.675 -3.496 -0.698 -1.124 -0.553 0.636 
RF & ECFP  

(No optimisation) 

Stratified 

- - 00:00:27 00:00:27 0.727 -3.972 -0.819 -1.172 -0.631 0.725 

RF & ECFP  
(grid optimisation) Random 00:18:25 00:00:22 00:18:47 0.766 -3.964 -0.745 -1.009 -0.585 0.763 

Qptuna Random 04:14:41 00:01:29 04:16:10 0.907 -3.587 -0.448 -0.398 -0.326 0.907 

Qptuna Min Std.Dev Random 02:47:08 00:01:16 02:48:24 0.907 -3.587 -0.448 -0.398 -0.326 0.907 
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Table 3. Probabilistic modelling for reactivity prediction best considers experimental variability. Qptuna with probabilistic modelling 
provides the most optimal setup for modelling the probabilistic likelihood of a successful reaction (considering experimental variability), since the 
obtained performance is highest across all external performance across evaluated here. 
 

  

Modelling Approach 

Split Methods Time External Performance 

External 
 

Internal 
(hyper-

paramete
r) 

Optimisa
tion Build Total Explained 

Variance 
Max 
Error 

Negated 
Mean 

Absolute 
Error 

Negated 
Mean 

Squared 
Error* 

Negated 
Median 

Absolute 
Error 

Pearson 
correlation 

RF & ECFP (No 
optimisation & no 

probabilistic 
modelling) 

Stratified 

- - 00:01:40 00:01:40 0.880 -0.710 -0.078 -0.017 -0.040 0.880 

RF grid search & 
ECFP ( No 
probabilistic 
modelling ) 

Random 00:22:49 00:01:59 00:24:48 0.905 -0.688 -0.064 -0.013 -0.025 0.905 

Qptuna ( No 
probabilistic 
modelling) 

Random 01:56:09 00:05:27 02:01:36 0.953 -0.565 -0.042 -0.007 -0.010 0.953 

Qptuna (Probabilistic 
modelling) Random 01:25:41 00:26:34 01:52:15 0.967 -0.480 -0.035 -0.005 -0.004 0.967 
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Table 4. VennABERS calibration (scaling) for optimally calibrated DEL enrichment models. Qptuna with VennABERS scaling provides 
the most optimal setup during modelling, where the performance obtained shows the relatively best balance between ROC AUC (objective 
performance) whilst being well calibrated (indicated via negated Brier score loss, [an indicator for calibration performance]). 
 

 

Modelling 
Approach 

Split Methods Time External Performance 

External 
 

Internal 
(hyper-

parameter) 

Optimis
ation Build Total AUC PR 

Calibrated 

Average 
precision 
(AUC PR) 

BEDROC F1 
(macro) 

Negated 
brier score 

loss 

Precision 
macro 

Recall 
macro 

ROC 
AUC 

RF & ECFP 
(No 

optimisation or 
scaling 

Stratified Stratified 

- 02:22:48 02:2
2:48 0.367 0.021 0.341 0.519 -0.08 0.514 0.647 0.801 

RF & ECFP 
(No 

optimisation & 
VennABERS 

scaling) 

- 02:31:33 02:3
1:33 

0.331 0.017 0.295 0.499 -0.003 0.498 0.5 0.802 

RF grid search 
& ECFP 

(No scaling) 

1-
03:10:2

6 
02:24:55 

1-
05:3
5:21 

 

0.508 0.051 0.424 0.499 -0.08 0.498 0.5 0.906 

Qptuna 
(No scaling) 

1-
02:22:2

0 
00:11:19 

1- 
02:3
3:39 

 

0.486 0.226 0.467 0.553 -0.122 0.553 0.793 0.874 

Qptuna 
(VennABERS 

scaling) 

3-
21:56:4

4 
02:24:55 

1- 
00:2
1:39 

 
0.499 0.033 0.437 0.499 -0.003 0.498 0.5 0.906 
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