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Abstract

Constant pH (cpH) simulations are now a standard tool for investigating charge reg-

ulation in coarse-grained models of polyelectrolytes and colloidal systems. Originally

developed for studying solutions with implicit ions, extending this method to systems

with explicit ions or solvent presents several challenges. Ensuring proper charge neu-

trality within the simulation cell requires performing titration moves in sync with the

insertion or deletion of ions – a crucial aspect often overlooked in the literature. Con-

trary to prevailing views, cpH simulations are inherently grand-canonical, meaning

that the controlled pH is that of the reservoir. The presence of the Donnan potential

between the implicit reservoir and the simulation cell introduces significant differences

between titration curves calculated for open and closed systems – the pH of an isolated

(closed) system is different from the pH of the reservoir, for the same protonation state

of the polyelectrolyte. To underscore this point, in this paper we will compare the

titration curves calculated using the usual cpH algorithm with those from the exact

canonical simulation algorithm. In the latter case, titration moves adhere to the correct

detailed balance condition, and pH is calculated using the recently introduced surface

Widom insertion algorithm. Our findings reveal a very significant difference between

the titration isotherms obtained using the standard cpH algorithm and the canoni-

cal titration algorithm, emphasizing the importance of using the correct simulation
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approach when studying charge regulation of polyelectrolyte, proteins, and colloidal

particles.

Introduction

The effective charge of colloidal particles and polymers, produced by weak acid or weak base

functional groups, experiences variation with environmental pH due to the ionization of these

groups.1–15 The pH = − log10(aH),16 is defined as the negative decadic logarithm of dimen-

sionless proton activity, aH = cHeβµ
ex
H /c	, where c	 = 1 M is the standard concentration,

β = 1/kBT , and µexH denotes the excess electrochemical potential.17

The stability of colloidal particles in aqueous suspensions is intrinsically connected with

their surface charge density, which is controlled by the pH of solution. Similarly, the activity

of many biologically relevant proteins and polyelectrolytes is influenced by the solution’s pH

and ionic strength.6,13,17–34 Quantitative understanding of charge regulation in such complex

systems is, therefore, crucial for a wide range of industrial and medical applications.

For some simple colloidal systems, one can use the Poisson Boltzmann theory with the

charge regulation boundary condition to study the degree of protonation.1,2,10–12,14,15,35–41

However, this approach breaks down for suspensions containing salts with multivalent counte-

rions or when studying flexible molecules – such as proteins, polyelectrolytes, polyampholytes

etc., whose three-dimensional conformation is directly determined by the protonation state

of the macromolecules. To overcome this difficulty, in 1992 Reed & Reed (RR) proposed

a constant pH (cpH) Monte-Carlo simulation method,3,42 to calculate the titration curves

for such systems. Originally the RR-cpH algorithm was applied to systems with implicit

ions – the monomers interact with each other through the screened Coulomb potential –

soon after, however, extensions to systems with explicit ions were proposed.3 To preserve

the overall charge neutrality in such approaches, a protonation move is combined with an

arbitrary deletion of one hydronium ion inside the cell and a deprotonation move with an
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arbitrary insertion of a hydronium ion at a random position inside the cell. Such arbitrary

insertion/deletion of ions inside the simulation cell, however, violates the detailed balance

condition, leading to incorrect results.43–45 The problem with the RR-cpH algorithm, when

applied to explicit ions, was pointed out some 20 years ago by Labbez & Jönsson,43 but

unfortunately went unnoticed inside the physical chemistry and soft matter communities,

where RR-cpH became very popular to treat various systems in which charge regulation

plays important role.3 An alternative canonical approach to calculate the titration curves

was proposed by Ullner and Woodward. These authors used a closed spherical simulation

cell with a fixed number of protons. They then used Widom insertion method to obtain the

chemical potential inside the system for a given protonation state.46

Contrary to a common misconception, RR-cpH algorithm is not a canonical algorithm.47

For isolated systems the total number of protons is conserved and the titration algorithm

must use the correct canonical acceptance probabilities for the protonation/deprotonation

moves, which do not explicitly depend on the pH inside the simulation cell.44,48–50 In a

canonical (isolated) system, pH is not a control parameter – it can not be specified a pri-

ori, but only be calculated a posteriori, after the simulation has fully equilibrated and the

number of protonated groups has been determined.50 Therefore, if one wants to modify the

RR-cpH algorithm to properly include the explicit ions, one must take into account that the

simulation cell is implicitly in contact with an external reservoir of acid and salt.44,51 A proto-

nation/deprotonation move should then be combined with a simultaneous insertion/deletion

of an anion from the reservoir, in accordance with the correct grand canonical acceptance

probability.43,44,51 Furthermore, since in such simulation polyelectrolyte is confined within

the cell, while ions can freely exchange between the system and the reservoir, the two will

be at different electrostatic potentials.45,51 This is known as the “Donnan potential”, ϕD.

Presence of the Donnan potential between the implicit reservoir and the simulation cell

introduces significant difference between titration curves calculated for open and closed sys-

tems – the pHc of an isolated (closed) system is different from the pHR of the reservoir,
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for the same protonation state of the polyelectrolyte.44,45,52 When discussing pH of inho-

mogeneous systems, such as a polyelectrolyte solution separated from the reservoir of acid

and salt by a semipermeable membrane, it is usual to define activity by separating the

mean-electrostatic potential within the phase. Such definition is equivalent to placing the

reference (saturated calomel) and hydrogen electrodes within the same phase when mea-

suring the pH.52 The equivalence of electrochemical potential of hydronium ions across the

membrane is then expressed as ln aSH +βq ϕD = ln aRH , where aSH is the activity of hydronium

ions inside the polyelectrolyte solution (system) and aRH is the activity inside the reservoir.

The pH inside the system is then defined as pHS = − log10(aSH) and inside the reservoir as

pHR = − log10(aRH). In a recent paper we have discussed the problems that may arise due

to the violation of the Gibbs-Guggenheim principle,52 when mean-electrostatic potential is

excluded from the definition of activity. Nevertheless, since this is the usual convention, we

will adopt it in the present paper. The pH inside the system is then different from that of the

reservoir46. Furthermore, if after the equilibrium is established, the system is disconnected

from the reservoir (is closed) its pHS will not be affected. Therefore, if we would perform

a canonical reactive simulation on such a closed system, we will obtain exactly the same

pH, i.e. pHc = pHS. The relation between pH inside the system and pH in the reservoir is

then:45

pHS = pHR +
qβϕD
ln(10)

(1)

This allows us to use grand canonical simulations, in which the chemical potential of hy-

dronium ions (pHR) is specified inside the reservoir, to determine the pHc=pHS inside an

isolated system. To do this, however, requires the knowledge of the Donnan potential differ-

ence between the system and the reservoir.

To preserve the charge neutrality, usual grand canonical simulation methods involve

insertions of neutral pairs of ions into the system – making the Donnan potential cancel in

the acceptance probability of such pair moves. This prevents us from obtaining the Donnan

potential using such approaches.51,53 Therefore, a corrected constant pH algorithm – in which
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the charge neutrality is properly taken into account through the pairwise insertions – will

only allow us to calculate the protonation state of polyelectrolyte as a function of pHR

inside the reservoir and not the pHS inside the system (simulation cell). On the other hand,

most experiments are conducted on closed systems, which according to Eq. (1) will have

different pH from that of the reservoir. Recently we have developed a new reactive grand

canonical Monte Carlo Donnan (rGCMCD) simulation method that allows us to calculate

both the Donnan potential and the protonation state of polyelectrolyte solution in contact

with a reservoir of acid and salt.45 Eqn. (1) then permits us to simultaneously calculate the

titration isotherms for an open system, as a function of pH in the reservoir; and for a closed

system, as a function of pH inside the simulation cell.

If one is interested in studying closed systems, rGCMCD approach is not very convenient

since it calls for the specification of the chemical potential of all ions inside the reservoir

in order to perform the grand canonical moves. This requires a separate simulation of the

reservoir in which Widom insertion method is used to obtain the chemical potential of all the

ions.54–58 Furthermore, the calculation of the Donnan potential within the grand canonical

formalism makes such simulations slow. Recently we have developed a new method for

canonical titration simulations utilizing the surface Widom insertion algorithm that enables

us to easily calculate equilibrium pH.50 In such systems, the traditional Widom insertion

method can not be used, since at high pH there maybe few or no hydronium ions present

inside the simulation cell, preventing us from accurately determining the chemical potential

of these ions. The difficulty of calculating pH in canonical reactive simulations is probably

one of the reasons for the widespread use of the incorrect RR-cpH algorithm in the soft

mater and biophysics literature.3

The primary objective of this paper is to quantitatively explore the limitations of the

RR-cpH algorithm. To achieve this, we compare the RR-cpH algorithm with three different

methods: the surface Widom canonical reactive simulation, the rGCMCD simulations, and

the pair insertion simulations for systems with high salt content. At high ionic strength, the
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Donnan potential vanishes, and the titration isotherms for open and closed systems become

identical. We will see that canonical, pair, and rGCMCD methods agree perfectly between

themselves, while they disagree strongly from the RR-cpH algorithm – showing its complete

failure under a very wide range of experimental conditions.

RR-cpH algorithm

In this methodology, dissociation and association reactions of polyelectrolyte monomers occur

with probabilities linked to the acid dissociation constant Ka of the reaction3

HA↔ H+ + A−. (2)

For the forward direction (deprotonation), a site of a polyelectrolyte undergoes change from

0 to −q, where q is the proton charge, while simultaneously, a hydronium ion is “created” at

a random position inside the cell. Conversely, in the backward reaction (protonation move),

a negatively charged site is neutralized and simultaneously, one random hydronium ion is

deleted from the cell. The simulation starts with a charge neutral system, so that for each

negative site of polyelectrolyte, there is a hydronium ion present in the bulk of the cell.

The acceptance probabilities for forward and reverse reactions are::3,44

P = min [1, exp (−β∆U + ζ (pH− pKa) ln(10))] , (3)

where ∆U is the change in electrostatic energy, pKa = − log10(Ka/c
	), and ζ = ±1 for

deprotonation and protonation moves, respectively.

In the RR-cpH algorithm, one specifies the pH and concentrations of ions and polyelec-

trolyte inside the simulation cell as the input parameters. The method then provides the

degree of ionization, along with ensemble averages of observables after equilibrium has been

established. It is often stated that pH in Eq. 3 corresponds to the pH inside the canonical
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simulation cell.47 This, however, is not correct. In a canonical reactive Monte Carlo sim-

ulation, the total number of protons inside the system is fixed, simulation algorithm then

determines how many of these protons will remain free (in the form of hydronium ions) and

how many will become associated with the polyelectrolyte surface groups. The pH of the

system, which is related to the electrochemical potential of hydronium ions, does not make

part of the detailed balance condition and can not appear in the acceptance probabilities of

titration moves. The correct canonical reactive Monte Carlo algorithm will be presented in

the following section.

In order to understand the shortfalls of Eq. 3, it’s crucial to first recognize that RR-

cpH algorithm is inherently grand-canonical. This is evident when examining the weight

for a protonation move in Eq. 3, in which appears e− ln(10)pH ∼ eβµH , where µH is the

electrochemical potential of a hydronium ion. This is precisely the grand canonical weight

associated with transferring a hydronium ion from the reservoir into the simulation cell. In

the context of the Grand Canonical Monte Carlo (GCMC) simulations of Coulomb systems,

maintaining charge neutrality within the simulation cell is paramount, in particular when

using Ewald summation to treat long-range Coulomb interaction. Consequently, a grand

canonical protonation move necessitates a corresponding grand-canonical insertion move for

an anion, and a deprotonation move should be coupled with a GCMC removal of an anion, to

preserve the overall charge neutrality inside the system. One can’t arbitrarily delete or create

ions inside the simulation cell, as is usually done in the framework of RR-cpH algorithm.3

Instead, ions must be inserted or removed from the system with the correct grand-canonical

acceptance probabilities.

Canonical ensemble method

Consider now a closed system containing polyions with titratable surface groups, salt, and

acid. We can start the system in a initial state in which all polyelectrolyte groups are com-
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pletely deprotonated, with the corresponding number of hydronium ions placed in the bulk

of the simulation cell. The cell also contain ions derived from the dissociation of salt, say

Na+ and Cl−. The reactive MC simulation then determines how many of polyelectrolyte

groups will become protonated in equilibrium. The acceptance probabilities for deprotona-

tion/protonation moves are given by44,48–50

Pd = min

[
1,
V NAKa

NH + 1
e−β∆U

]
Pp = min

[
1,

NH

V NAKa

e−β∆U

]
(4)

where, NH is the number of free hydronium ions inside the simulation cell at a given moment

and NA is the Avogadro number. Note that for canonical (closed) systems, the acceptance

probabilities do not explicitly depend on pH. The pH of the system, after the equilibrium is

established, has to be calculated using a separate procedure that require determination of the

chemical potential of hydronium ions inside the simulation cell. The conventional approach

of employing Widom’s particle insertion method encounters practical challenges for moderate

and high pH, when cell’s interior has few or maybe even no free hydroniums at all, resulting

in a very inaccurate reading of the chemical potential of hydronium ions. To overcome this

difficulty, we have recently introduced a surface Widom insertion algorithm, which allows us

to easily calculate the pH inside the system after equilibrium has been established.50

One difficulty when working with Coulomb systems is that we can not cutoff the long

range electrostatic interactions between particles and use simple periodic boundary condi-

tions. Instead the system has to be infinitely replicated. To efficiently sum the replicas,

we use Ewald summation method, which effectively creates a spherical macroscopic crystal

comprised of periodically replicated microscopic simulation cells.59–62 Typically a simulation

cell will have a net electric dipole moment MMM =
∑

i qirrri, and a finite second moment tensor

of the charge density. Electrostatically, the field produced by a dielectric sphere of uniform

polarizability MMM is equivalent to that of a sphere with non-uniform surface charge density
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MMM ·nnn/V , where nnn represents the unit normal to the surface of the macroscopic sphere. The

existence of an effective surface charge induces an electric field within the crystal’s interior.

Simultaneously, existence of a non-zero second moment tensor of the charge density in the

simulation cell results in a dipole layer at the macroscopic crystal’s surface.45,63 This leads

to a difference between the mean electrostatic potential inside and outside the crystal. This

potential difference is known as the Bethe potential:50

φB = − 2π

3εwV

∑
i

qirrri
2, (5)

where εw is the dielectric constant of the medium (water). To quantitatively explore the

difference between the titration isotherms calculated using the standard RR-cpH algorithm,

Eq. 3, and the canonical algorithm Eq. 4, we focus on a colloidal particle with Z active

surface groups, placed at the center of a cubic simulation cell of volume V = L3, where L

is the side length of the cell. The cell also contain H3O
+, Cl–, and Na+ ions, ensuring the

overall charge neutrality. We execute the reactive Monte Carlo simulation to ascertain the

average number of protonated surface groups after equilibrium has been established. We

then use the surface Widom insertion method to obtain the pH inside the system.50 Briefly

the idea behind the surface Widom method involves bringing a virtual proton from infinity

to a randomly chosen colloidal active site. If the selected site is unoccupied (bearing charge

−q), it “reacts” with the virtual proton, causing its charge to transition to 0. We then

calculate the change in the electrostatic energy between the initial and final states ∆U . If

the site is already occupied, ∆U is infinite. The system’s pH is then given by,50

pH = − log10

(
N + 1

Z

)
+ pKa +

log10

(〈
e−β(∆U+qφB)

〉
0

)
, (6)

where N is the number of protonated sites at equilibrium. The average in Eqn. (6) is

calculated using 5,000 uncorrelated virtual proton insertions, and the subscript 0 on the
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brackets signifies that the evolution of the system between the virtual proton insertion events

is performed with the unperturbed Hamiltonian.

The electrostatic energy inside the system is calculated using the Ewald formalism:45

U =
1

2

∑′

ij

∑
nnn

qiqjerfc(κe|rrri − rrrj − Lnnn|)
εw|rrri − rrrj − Lnnn|

+
∑
k 6=0

2πexp(−kkk2/4κe)

εwV kkk
2 (A(kkk)2 +B(kkk)2)

−
∑
i

q2
i κe

εw
√
π
− Q2

t

2εwV κ2
e

+
2π

3εwV
MMM2, (7)

where

A(kkk) =
∑
i

qi cos (kkk · rrri) , (8)

B(kkk) =
∑
i

qi sin (kkk · rrri) .

In Eq. (7), nnn = (n1, n2, n3) are the integer vectors, kkk = (2π
L
n1,

2π
L
n2,

2π
L
n3) are the reciprocal

lattice vectors, Qt =
∑

i qi is the total charge inside the simulation cell, and κe is the damping

parameter. The prime on the first sum of Eq. (7) signifies the exclusion of the terms i = j

for n = 0. In the calculation of U we use the tin foil boundary condition50 that eliminates

the MMM2 term in Eq. (7). Note that if one places a virtual proton into the system, it will

no longer be charge neutral. A periodically replicated charge non-neutral system will have

infinite energy. To avoid this in the calculation of Eq. (7), we have introduced a uniform

neutralizing background.45 In practice, to calculate Ewald sums we used 600 k-vectors. The

damping parameter is set to κe = 5/L, so that we can use simple periodic boundary conditions

for calculating the short range – erfc term in Eq. (7) – contribution to the total electrostatic

energy.

Titration is performed by adding NaOH base to the system. Since hydrolysis of water
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is so weak, addition of one OH– will result in a reaction with hydronium ion inside the

cell and appearance of a new water molecule. Within the present implicit water model,

addition of one sodium hydroxide molecule is then equivalent to replacing one proton inside

the simulation cell with a sodium ion, H+−→Na+. Therefore, to vary pH, we simply replace

one of the protons by Na+ and rerun the simulation. This will result in a new polyelectrolyte

charge and new equilibrium pH. Repeating this procedure until all protons inside the cell

have been replaced by sodium ions, we obtain the full titration curve.

Semi-grand canonical reactive Monte Carlo

We next briefly discuss how the RR-cpH algorithm can be modified to properly account for

the requirement of charge neutrality inside the simulation cell. As was stressed previous,

RR-cpH algorithm is intrinsically grand canonical. Therefore, we must treat the system as

if it is connected to a reservoir of acid and salt. In a physical system this would require

presence of a semipermeable membrane, which would allow for a free exchange of ions, but

would restrict the motion of polymers to the system’s interior. Since the concentration of

counterions is larger inside the system than in the reservoir, they will tend to diffuse into

reservoir, resulting in electric field and a potential drop across the membrane. This is the

physical origin of the Donnan potential, ϕD.

The reactive grand canonical Donnan Monte Carlo (rGCMCD), involves the usual grand

canonical insertion and deletion moves of individual ions. To preserve the overall charge

neutrality inside the cell, a neutralizing background, must also be taken into account. The

acceptance probabilities for protonation and deprotonation moves are given by:45

φp = 10pKa−pHe−β(∆Uele+q[ϕD+φB ]),

φd = 10pH−pKae−β(∆Uele−q[ϕD+φB ]).

(9)

11

https://doi.org/10.26434/chemrxiv-2024-6tqm6 ORCID: https://orcid.org/0000-0001-5448-5179 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-6tqm6
https://orcid.org/0000-0001-5448-5179
https://creativecommons.org/licenses/by/4.0/


Throughout the simulation, the Donnan potential ϕD is automatically adjusted to drive

the system to a charge neutral state.45 The pH in the above equation refers to that of the

reservoir, however, knowledge of ϕD, also allows us to simultaneously calculate the pHc

inside an isolated canonical system using Eq.(1).45 We should also note that the presence

of a neutralizing background requires a modification of the Bethe potential, φB.45 We stress

again that pH of the reservoir is not the same as of an isolated system of the same ionic

content.

We can also combine a protonation move with a grand canonical insertion of an anion

into a simulation cell and a deprotonation move with a grand canonical removal of an anion

from the cell. The probabilities of such pair moves are respectively:

Pp = min

[
1,
c	V NA10pKa−pH−pCl

(NCl + 1)
e−β∆U

]
Pd = min

[
1,
NCl10pH−pKa+pCl

c	V NA

e−β∆U

]
, (10)

where pCl = − log10(aCl). Note that the Donnan and Bethe potentials cancel out in the pair

moves. This algorithm allows us to calculate the protonation state of polyions as a function

of pH and salt concentration inside the reservoir. For systems of large volume fractions and

low ionic strength such titration curves will differ significantly from the titration curves of

isolated systems of the same polyelectrolyte concentration and salt content.45 However, if

the reservoir contains large concentration of salt, the Donnan potential will be very small

and the difference between pH of canonical and grand-canonical systems will vanish, see Eq.

(1). This provides us with an additional check of consistency of different simulation methods

presented here. For large ionic strengths, the canonical, rGCMCD, Eq. (9), and the pair

insertion algorithms, Eq. (10), should both produce identical titration curves.

12

https://doi.org/10.26434/chemrxiv-2024-6tqm6 ORCID: https://orcid.org/0000-0001-5448-5179 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-6tqm6
https://orcid.org/0000-0001-5448-5179
https://creativecommons.org/licenses/by/4.0/


Results

To compare the predictions of the RR-cpH algorithm with the canonical titration method,

we consider a colloidal particle of radius of 60 Å and Z = 600 surface groups. Simulations

are carried out within a cubic box of side lengths L, containing a colloidal particle at its

center. Ewald summation is used to account for Coulomb interactions. In the spirit of

coarse grained RR-cpH algorithm, we use the primitive model of solvent that treats water

as a uniform dielectric continuum of Bjerrum length λB = q2/(kBTεw) = 7.2 Å. Active

functional groups have intrinsic pKa = 5.4. The simulation cell also contains ions H3O
+,

Cl–, and Na+, which we all treat as hard spheres of radius 2 Å with a point charge located

at the center.

In Fig. 1 we present the titration isotherm of colloidal particles in suspension of volume

fraction 11%, containing 10 mM NaCl.

0 5

pH

-200

-150

-100

-50

0

σ
[m

C
m

-2
]

Canonial
rGCMCD
cpH

Figure 1: Titration curve for colloidal suspension of 11% volume fraction in the presence of
10 mM salt inside the system. The solid line represents RR-cpH algorithm, the dashed line
represents the canonical simulations, and circles are the results obtained using rGCMCD
algorithm and Eq. 1 to relate the pH of the reservoir to the pH inside the system.

Fig. 1 clearly shows that there is a very significant disparity between the results obtained
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using RR-cpH algorithm and the canonical-Widom reactive simulation algorithm. Further-

more, the figure also shows that the canonical simulation is in perfect agreement with the

results obtained using rGCMCD method (indicated by the circles), demonstrating the con-

sistence between two very different approaches. We must conclude that for such systems,

the usual implementation of the RR-cpH algorithm is simply wrong.

For systems containing large salt concentration, 100 mM, the disparity between cpH algo-

rithm and canonical simulations diminishes, but still remain very significant for intermediate

and large pH, as is illustrated in Fig. 2.
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Figure 2: Titration curve for colloidal suspension of 11% volume fraction in the presence of
100mM salt inside the system. The solid line represents RR-cpH algorithm, the dashed line
represents the canonical simulation, the circles are the results obtained using rGCMCD and
Eq. 1 to relate the pH of the reservoir to the pH inside the system. The solid (blue) squares are
the result of pair-insertion algorithm, Eq. (10). Note that for large ionic strengths, Donnan
potential vanishes, and canonical and grand canonical titration curves become identical.

On the other hand, we see a perfect agreement between the canonical, rGCMCD Eq.(9),

and the pair insertion simulations, Eq. (10). Recall that for large ionic strengths, the Donnan

potential vanishes and the pH of the reservoir is the same as inside the system. Under such

conditions, there is no difference between canonical and grand canonical titration curves.
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Finally, we compare RR-cpH algorithm with canonical titration and rGCMCD simula-

tions for different volume fractions of colloidal particles: η = 20% and 30%. Figs. 3 and 4

show that the large deviation of RR-cpH algorithm persists for all studied volume fractions,

while rGCMCD and canonical simulation results remain identical.
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Figure 3: Titration curves obtained using RR-cpH algorithm, canonical titration simulations,
and rGCMCD simulation, for colloidal suspension of 20% volume fraction with 10 mM of
salt inside the system.
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Figure 4: Titration curves obtained using RR-cpH algorithm, canonical titration simulations,
and rGCMCD simulation, for colloidal suspension of 30% volume fraction with 10 mM of
salt inside the system.

Conclusion

In this paper we have explored the validity of the usual RR-cpH algorithm. Constant pH

simulations are now a standard tool for investigating charge regulation in coarse-grained

models of proteins, polyelectrolytes, and colloidal systems. It is commonly believed that

RR-cpH algorithm can be applied to isolated (canonical) systems. This, however is not

the case. The pH specified in the RR-cpH algorithm refers to that of the reservoir, which

because of the presence of the Donnan potential can be very different from that of the system.

Furthermore, the arbitrary deletions and insertions of ions, which are usually performed to

preserve the charge neutrality inside the simulation cell, do not respect the detailed balance

condition and can lead to very erroneous results.

To thoroughly investigate this issue, we conducted a comparative analysis of titration

curves generated by the standard RR-cpH algorithm and the exact canonical simulation

algorithm. The latter incorporates the recently developed surface Widom insertion method
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for pH calculation. Our results reveal a substantial disparity between the titration isotherms

obtained through the standard RR-cpH algorithm and the canonical titration algorithm.

This underscores the critical importance of employing the correct simulation approach when

studying charge regulation in polyelectrolytes, proteins, and colloidal systems.
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