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A coupled Finite Elements Method (FEM) and Machine-Learning (ML) workflow is presented to 

optimize the rate capability of thick positive electrodes (ca. 150 µm and 8 mAh/cm²). An ML 

model is trained based on the geometrical observables of individual LiNi0.8Mn0.1Co0.1O2 

particles and their average state of discharge (SOD) predicted from FEM modeling. This model 

not only bypasses lengthy FEM simulations, but also provides deeper insights on the importance 

of pore tortuosity and the active particles size, identified as the limiting phenomenon during the 

discharge. Based on these findings, a bi-layer configuration is proposed to tackle the identified 

limiting factors for the rate capability. The benefits of this structured electrode are validated 

through FEM by comparing its performance to a pristine mono-layer electrode. Finally, 

experimental validation using dry processing demonstrates a 40% higher volumetric capacity of 

the bi-layer electrode when compared to the previously reported thick NMC electrodes. 
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A promising route to reach higher energy densities is increasing the thickness of the electrodes 

to maximize the loading of active materials. By increasing the active material volume within the 

electrode, larger amounts of energy can be stored, enabling electric vehicles (EVs) to travel longer 

distances on a single charge. However thick electrodes are widely recognized for their inadequate 

rate capability,1 leading to an even lengthier charging time for EVs compared to the already lengthy 

current duration. The main bottleneck hindering fast (dis)charging is still being debated in the 

scientific community.2 Putting aside the mechanical challenges,3,4 it can be attributed either to the 

limited electronic conductivity due to a tortuous carbon network, or the poor wettability caused by 

a tortuous pore phase which will lead to a sluggish ionic transport.5,6  

Modeling can serve as a valuable tool for guiding experimental design and identifying limiting 

factors within a system.7,8 3-D digital twins have been used in the context of thick electrodes first 

by Danner et al. to highlight the importance of the connectivity of the electronically conductive 

network throughout all the thickness of the electrode.8 Lu et al. quantified the heterogeneity within 

an electrode in terms of state of lithiation based on its thickness.9 However, the use of 

computationally expensive 3-D Finite Elements Method (FEM) simulations restricts the ability to 

thoroughly analyze a wide range of parameters and their individual impacts. Machine-Learning 

(ML) is a suitable approach to accelerate the predictions, even for experimental inputs with for 

instance Severson et al.10 who could accurately predict the cycle life (nominal capacity > 80%) of 

a cell based on the first 100 cycles. Recently, Marcato et al.11 employed ML coupled with FEM 

simulations to predict the spatial distribution of the state of discharge (SOD) in 3-D and discharge 

curves. Although this approach significantly reduces the time and resources required for accurate 

predictions, it still lacks deeper insights regarding the relationship between the SOD and the 
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electrode’s features. In the context of thick electrodes, only the graphite electrodes have been 

studied, either through the optimization of the pore-channel design12,13 or the prediction of the 

performance based on the manufacturing parameters.14  

In this work, an ML model is trained using a dataset of FEM simulations to predict the average 

state of lithiation at different depths of discharge for each LiNi0.8Mn0.1Co0.1O2 (NMC811) particle. 

The novelty in this approach is to consider each particle in the electrode as a data point instead of 

each simulation, which will considerably speed up the obtention of a large enough representative 

dataset (Scheme 1). Moreover, through the implementation of Shapley Additive Explanation 

(SHAP) Values,15 the contribution of each parameter to the SOD is elucidated, thereby revealing 

the most prominent hindering phenomena. Based on these findings, a structured bi-layer positive 

electrode design is proposed to enhance the rate capability. This design is firstly validated via an 

FEM simulation and subsequently verified experimentally, where the half-cells at a current 

densities of 8 and 4 mA/cm² (1C and C/2 respectively) demonstrate a volumetric capacity 

surpassing that of any previously reported NMC thick electrodes at those discharge rates. The 

electrodes were manufactured using dry coating, which has been highlighted as an effective 

processing method to obtain mechanically robust and homogeneous thick electrodes.16  
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Scheme 1. Workflow of the computational approach developed in this work, from the stochastic 

generation of electrodes, the finite elements method (FEM) to the training of the machine-learning 

(ML) model based on the state of discharge (SOD) of each particles. For each step, the scale bar 

under the label represents 50 µm.  
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Machine-Learning Validation for Thick Electrode 

The system modeled in this work is a 30×30×150 µm3 electrode with 93 wt% of NMC811, 5 wt% 

of Vapor Grown Carbon Fibers (VGCF), and 2 wt% of Poly(tetrafluoroethylene) binder (PTFE). 

For computational strain reasons, the VGCF and PTFE were merged into one single phase known 

as the Carbon Binder Domain (CBD) in the modeling field.17 The electrodes were stochastically 

generated using an in-house MATLAB code, which is provided as well as all the codes and the 

FEM template used to obtain the results presented in this article. This stochastic algorithm uses 

real NMC811 particles extracted from plasma focused ion beam (PFIB) data,18 and generates CBD 

as fibers to mimic the morphology of VGCF and PTFE. The 3-D electrodes were then converted 

into a mesh using the open access Iso2Mesh toolbox.19 

The simulations consist of a single discharge at 8 mA/cm² (1 C) starting from a completely 

delithiated electrode, with a cut-off voltage of 3.0 V. A 3-D Newman model extensively used in 

the literature20,21 was employed and implemented into COMSOL Multiphysics 5.622 to solve the 

partial differential equations (see Table S1,S2). 

The limiting factor to the training of an effective ML model is usually the obtention of a large 

enough amount of data. Here, only 10 FEM simulations were needed to build a satisfactory training 

dataset. This was made possible since the ML model will predict an output for individual particles, 

then in each FEM simulation, each NMC811 particle is a datapoint. The ability to characterize 

individually particles has been introduced fairly recently in the battery modeling field and has 

pushed forward our capability to provide insights currently impossible to obtain experimentally.7,9 

With an average of 200 particles per electrode (excluding the ones on the borders), 2076 datapoints 

were extracted at 4 different depths of discharge (DoD), namely 25%, 50%, 75% and 100% in 
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order to have time-dependent predictions, yielding a total of 8304 datapoints. To increase the 

understanding of the underlying limiting phenomena and go beyond the work of Marcato et al.,11 

the observables fed to the ML algorithm are geometrical features of the particles/electrodes. 

Namely, the volume of the NMC particle, its active surface area (surface in contact with the 

electrolyte), its position along the thickness of the electrode, the surface area in contact with CBD, 

and the tortuosity of the electrolyte from the separator plane to the particle plane (using 

TauFactor)23. The output of the ML algorithm is the prediction of the average SOD for individual 

particles at different DoDs.  

A random forest algorithm was trained with the as described dataset, and its predictions for a 

new dataset was compared to the actual FEM simulation outputs in Figure 1A. In Figure 1A, each 

point represents a particle at a given DoD, and in an ideal case, all the predictions would be 

identical to the FEM outputs, hence all the points would be aligned on the x = y black curve. The 

greater is the distance between this curve and a point, the greater is the prediction error. Here, we 

can observe a satisfactory agreement between the actual values and the predictions, with an 

average error of 0.042 (average relative error of 7.3%), thus validating the accuracy of our trained 

model. An example of an electrode is provided in Figure 1(B,C) with the SOD at the end of 

discharge plotted in 3-D from a FEM simulation and the predictions from the ML algorithm. For 

both, a uniform intra-particle gradient of concentration was assumed for plotting while keeping 

the proper average SOD predicted by both modeling methods. Only few particles display a 

noticeable difference between the FEM simulation and the ML predictions. This is particularly 

impressive since each COMSOL simulation performed in this work required several hours to 

compute, while the prediction time for the ML workflow is 2 orders of magnitude lower (around 

1 min).  
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The novelty of this workflow lies in the simplicity to set it up, requiring only 10 FEM simulations 

and a basic random forest algorithm to achieve such a high accuracy. Moreover, the use of 

geometrical observables of particles allows to get a deeper understanding of their contribution to 

the NMC utilization. This work paves the way towards a wider use of ML tools by proposing a 

quick workflow and by providing all the codes and the COMSOL template necessary. 

 

Figure 1. (A) Scatter plot of the ML-predicted values of the state of discharge of individual 

particles as a function of the values obtained through FEM simulations. The solid black line 

represents the region where the predictions are identical to the obtained values. 3-D distribution of 

the state of discharge at the cut-off voltage (3 V) for (B) the FEM simulation and (C) the trained 
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ML algorithm. The relative gradients representing state of discharge inside individual particles 

was assumed to be constant and equal to the average value of the relative gradients extracted from 

FEM simulations. 

 

Limiting Factors for High-Rate Capability  

 

ML algorithms usually suffer from the “black box” syndrome, where their predictions are 

accurate, but the users cannot unravel further insights on how each input parameters will impact 

the output. Recently, there has been development in the artificial intelligence field on the topic of 

explanatory artificial intelligence (XAI).24 XAI aims to address this issue by providing techniques 

to have a better grasp at the thought process behind the ML predictions. Among these techniques, 

the study of the Shapley additives explanation (SHAP) values has been on the rise in the battery 

field.25,26 The strength of this approach is to identify for each input feature its impact on the SOD 

depending on its relative value, for instance the impact of large or a small value of CBD contact 

would have on the predicted SOD. In essence, sub-ML algorithms of all the combinations with a 

lower amount of input features will be trained. For each data point, the evolution of the prediction 

when introducing a new input feature in the ML model will be studied. For instance, let us consider 

a data point consisting of an NMC811 particle with a given volume and active surface area. Starting 

from an ML model with the only input being the volume of the particle, a first prediction of the 

SOD would be obtained. Then, a second model would be trained with both features, and its SOD 

prediction for this given particle would be compared to the prediction of the 1-feature model. If by 

introducing the active surface area of the particle in the model, the predicted SOD would increase, 

then the SHAP value for this data point and the active surface area feature would be positive, 
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because it had a positive impact on the predicted SOD. If the predicted SOD is lower after adding 

the active surface area as a second input, then the SHAP value would be negative. The weakness 

of this method is the computational cost necessary to train all the sub-ML algorithms which hinders 

its practical use. However, Lundberg et al. were successful in reducing the complexity of SHAP 

calculations for tree-based models, 27,28 thus allowing us to compute their values for each feature 

in the ML algorithm. 

Figure 2A displays the SHAP values for all the data point of the validation dataset, and each 

feature is ranked from the most to the least impactful from top to bottom. The ionic transport 

through the electrolyte tortuosity is the feature with the highest range of SHAP values, with low 

tortuosity inducing a better NMC811 utilization. Indeed, from Figure 2B the electrolyte tortuosity 

as well as the average SOD are plotted as a function of the distance from the current collector from 

ML predictions. Opposite trends can be observed, with the NMC811 particles being more utilized 

near the separator, while the tortuosity increases as we get closer to the current collector. It 

corroborates the impact of the tortuosity of the electrolyte on the particles’ utilization as 

highlighted by Figure 2A. Regarding the volume of the NMC811 particles, it transpires that smaller 

particles will have a higher SOD than larger particles, which is in agreement with the current 

studies in the literature to optimize the particle size of active material.29 Further investigations on 

the distribution of the SOD for NMC811 particles separated into 3 groups (Figure 2C) demonstrates 

that the peak of distribution for larger particles corresponds to a lower SOD than the other groups. 

Interestingly, the “Small particles” group has a wider distribution of SOD than the others, which 

can be explained by the difficulty to connect all the smaller particles to the carbon network. Indeed, 

Figure S1 sheds light on the lower current density at the surface of the “Small Particles” compared 

to the larger NMC811 particles. 
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The third most impactful feature is the thickness position of the particle (0 µm being the current 

collector), with particles closer to the separator experiencing a higher lithiation than the particles 

close to the current collector. This phenomenon can also be attributed to systems limited by the 

ionic transport, as mentioned in the literature.7,9 Lastly, the active material surface and the contact 

with the carbon network are both following the same trend, the higher the feature value the higher 

the SOD. Here, the contact with the CBD phase has a minor impact on the SOD because the fiber 

morphology and the homogeneous distribution of the VGCF enables an efficient electronic 

network for all the NMC811 particles. 
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Figure 2. (A) Plot of the SHAP values extracted from the trained ML algorithm for the different 

features. Each point represents a data point of the dataset used for verification, and the color code 

is a function of the relative value of each parameter. (B) The tortuosity factor in the electrolyte and 

CBD measured from the separator to different depths of the electrode and the average state of 

discharge (from ML) as a function of the distance from the current collector. (C) Fitted normal 

distributions of the state of discharge of the NMC811 particles of the half of the electrode closer to 

the current collector (where differences are higher) divided into three groups based on the volume 

of NMC particles.  
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Structured Bi-layer Electrode 

Due to the coupled FEM-ML workflow, the most impactful features have been identified in the 

context of fast discharge for thick NMC811 electrodes, with the tortuosity of the pores network at 

the top of the list. While there has been many research on how to decrease tortuosity in thick 

electrodes using laser structuring,30 its use can lead to a deterioration of the mechanical integrity 

of the electrode,31 and its scalability and practical use at an industrial scale are still under 

development,32 Therefore, this work will focus on the second most impactful feature to improve 

the electrochemical performance, namely the volume of the NMC811 particles. As evidenced by 

Figure 3A, smaller particles tend to have a higher SOD than larger particles. Reducing the size of 

the particle will in turn increase the specific active surface area which is beneficial to the NMC811 

utilization according to the SHAP values. Also, in Figure 3B we observe a poor utilization of the 

NMC811 in the lower half of the electrode, i.e. the half closer to the current collector. These 

observations motivated the suggested bi-layer design, where the top layer, i.e. the one close to the 

separator, will remain unchanged, but the bottom half will consist of a mix of pristine (75 wt.%) 

and ball-milled (25 wt.%) NMC811 particles. This ratio was chosen based on the quickly degrading 

mechanical properties of the film with higher ball-milled particles content. Also, using the dry 

process, the layer with a mix of NMC811 would achieve a higher degree of compaction during the 

rolling step with a higher number of ball-milled particles, increasing the tortuosity of the pore 

network and hindering its performance. The added ball-milled particles with a lower volume and 

higher specific active surface area should help in achieving a higher utilization. Also, one might 

expect to have the mixed NMC811 layer slightly more compact than the pristine layer due to the bi-

modal particle size distribution. Shodiev et al. have shown that having a more porous layer close 
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to the separator and denser layer close to the current collector will have a positive impact on the 

performance.33 Hence, the choice of putting the mixed NMC811 layer close to the current collector. 

Structured electrodes have already been reported in the literature either through modeling 

studies,33,34 or investigated experimentally through slurry processed electrodes.35,36 However, the 

slurry method can lead to inhomogeneous distribution of lighter components (carbon, binder) 

during the drying step facilitating weak mechanical properties,37,38 especially for thick electrodes. 

Moreover, the bi-layer electrode requires 2 different steps of slurry coating and drying, which is 

not cost/energy efficient. While, for dry coating, stacking two different films and calendaring them 

together suffices to yield a bi-layer electrode, yet none have been reported in the literature to the 

authors’ knowledge. 

To validate the benefit of this design, 1 C discharge simulations comparison was performed 

between a pristine electrode, and a bi-layer electrode, both sharing the same top layer. The bottom 

layer of the bilayer electrode consisted of 75 wt.% of pristine particles and 25 wt.% of the same 

particles but shrunk. Due to the associated computational cost, it was impossible to use primary 

particles instead of secondary ones for the ball-milled particles to mimic the experiment (see 

Figure S2). The 3-D distribution of the SOD at the end of discharge is represented for the pristine 

and bi-layer electrodes respectively in Figure 3A and Figure 3B. Since 3-D visuals can be hard 

to interpretate, Figure 3C offers a quantitative comparison of the average SOD along the thickness 

of both electrodes. Regarding the top layer, the two electrodes share a similar NMC811 utilization, 

but there is a significant improvement at the bottom layer of the bi-layer design. The bi-layer 

electrode achieves a discharge capacity 11% superior to the pristine one at 8 mA/cm² (1 C), mostly 

due to a higher utilization of the bottom layer thanks to the new bi-layer architecture. The opposite 

configuration with the mixed NMC811 layer being near the separator has also been investigated. 
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As confirmed through modeling and experiments in Figure S3 and S4, stronger gradients and a 

decay in performance are observed, further validating the structured electrode adopted in this work.  

 

Figure 3. Modeling Validation of the Structured Bi-layer Electrode Design 

Simulated 3-D distribution of the state of discharge at the end of a 1 C discharge for the (A) Pristine 

and (B) Bi-layer cases. Both electrodes share the same right half, only the left half is different. (C) 

Difference in the average state of discharge as a function of the distance from the current collector 

between the Pristine (A) and Bi-layer (B). 

 

Experimental Validation for the Bi-Layer Thick Electrode 
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Based on the insights gathered from the coupling of FEM and ML, a bi-layer structured electrode 

was proposed to decrease the volume of particles and increase their specific surface area. Further 

modeling investigations demonstrated the effectiveness of this design to improve the rate 

capability compared to the pristine electrode. To prove the capability of this modeling workflow, 

3 coin cells were fabricated for the pristine and bi-layer electrodes, which were paired with lithium 

foils as the counter electrode.  

Electrodes with a loading of 8 mAh/cm² (ca. 150 µm) were manufactured with the dry process 

method using NMC811 (LG Chem), VGCF (Sigma Aldrich), and PTFE (Chemours) following a 

weight ratio of 93 : 5 : 2. In the case of the bi-layer, within the 93 wt.% of NMC811, 75 wt.% were 

pristine and 25 wt.% were ball-milled NMC811. Figure 4A shows the morphology of a bi-layer 

electrode in the case of a bottom layer with twice the amount of ball-milled particles and binder to 

enable a robust film. The volume of ball-milled particles has been increased to enhance the visual 

difference between the two layers, but scanning electron microscope images of a pristine and 

standard bi-layer electrodes are available in Figure S5. While we do observe a larger number of 

pristine NMC811 particles at the top and a larger number of primary particles at the bottom, ball-

milled particles can still be found even close to the separator, i.e. the pristine layer. This could be 

induced by the calendaring process, indeed NMC811 is known to be prone to cracking, especially 

the region close to the separator/calendaring roll.39 Furthermore, some degree of merging of the 

two layers could be expected at their interface since they are two soft and porous films. Despite 

the slight deviation from the ideal design investigated in the modeling study, a bi-layer structured 

electrode was still achieved.  

https://doi.org/10.26434/chemrxiv-2024-6f9cq ORCID: https://orcid.org/0000-0002-9140-7951 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-6f9cq
https://orcid.org/0000-0002-9140-7951
https://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

A formation cycle at 0.4 mA/cm² (C/20) was followed by a discharge rate test ranging from 0.8 

to 8 mA/cm² (C/10 to 1 C), with a constant charge at 1.6 mA/cm² (C/5). The areal loading was 

fixed at 8 mAh/cm² (40 mgNMC/cm²), which is twice the commercial standard currently used. The 

rate tests results are summarized in Figure 4B, and the discharge curves are presented in Figure 

4C. Similar discharge capacities are obtained at low rate until the C/2 threshold where the bi-layer 

outperforms the pristine electrode. The bi-layer half-cells achieve an average discharge capacity 

at a current density of 8 mA/cm² (1 C) of 86 mAh/gNMC, and an average of 168 mAh/gNMC at 4 

mA/cm² (C/2), respectively around 125% and 25% higher than the pristine coin cells. The 

dispersion of values at a given rate is negligeable at low rates (range of ca 7 mAh/gNMC at C/10 for 

the bi-layer) but significantly increases at higher rates (range of ca. 54 mAh/gNMC at 1C for the bi-

layer) as one could have expected. Such variations are inherent to the manual manufacturing of 

thick electrodes through dry processing.  

These performances are particularly impressive when compared to the reported thick NMC 

electrodes discharge capacities for the same rates. Figure 5 highlights how this work’s results 

stand out from the literature in terms of discharge capacities for such a high loading. While this 

study uses a constant charge rate during the discharge rate tests which can boost the capacity 

compared to a symmetric rate test, it is noteworthy that most of the data points reported in Figure 

5 are obtained by using further electrode modification (laser structuring for instance). Another 

significant difference is the volumetric capacity achieved by the bi-layer coin cells (ca. 450 Ah/L) 

which is almost twice as much as the other electrodes. The volumetric capacity is particularly of 

interest for small nomadic devices (laptop, phones, etc…), where the space allocated to the battery 

is minimal. Such an impressive volumetric capacity stems from the high discharge capacity at such 

a high loading, but also from the low porosity achieved by the dry coating method (ca. 30%), 
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significantly lower than the standard porosity for thick electrodes, usually over 40%. Additionally, 

thanks to the areal loading (8 mAh/cm²) twice as high as the conventional one, a cell pack with the 

same capacity would require a lighter weight, owed to less modules required inside a pack. This 

higher gravimetric capacity is a key factor to the development of batteries for electric vehicles, 

hence the active research on thick electrodes. The dry processing combined with the bi-layer 

design presented here is promising because it yields both a high volumetric capacity at the 

electrode level and a high gravimetric capacity at the pack level at high rates. 
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Figure 4. (A) Scanning electron microscope image of a bi-layer electrode with twice the amount 

of ball-milled NMC811 and PTFE in the bottom layer. The NMC811 is represented in blue, the 

VGCF+PTFE in purple, the current collector in gray and the pores in black. The image has been 

segmented based on the gray levels in MATLAB. The scale bar represents 15 µm (B) Discharge 

rates comparison between the pristine and bi-layer cases in coin cells with an areal loading close 

to ca. 8 mAh/cm² and a constant charge at C/5. The bars represent the average value, and the error-

bars represents the maximal and minimal values. (C) Discharge curves for the pristine and bi-layer 

cases at different discharge rates. For each rate, the shaded area are delimited by the discharge 

curves of the half-cells with the largest and smallest discharge capacities, and the dashed line 

represents the average discharge curve of all cells. 

 

Figure 5. Literature review of the discharge capacity of thick NMC electrodes at high rates as a 

function of the areal loading and the volumetric capacity.1,36,40–44 For the bi-layer and pristine cases 
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presented in this work,  the average coin cells results are represented with thicker edges. The size 

of the symbols is proportional to the NMC mass loading and the color white represents data points 

for which the volumetric capacity could not be calculated. See Table S3 for the complete summary 

of the data used in this plot. 

 

In this work an ML model has been trained using a limited number of lengthy FEM simulations 

and could yield dynamic SOD predictions for thick NMC811 electrodes with only 7.3% of relative 

error. This unique FEM-ML coupling workflow draws its strength from having each particle in 

the electrode as a data point instead of each FEM simulation, significantly cutting down the 

required FEM simulations to build a large enough dataset to train an ML model. The latter has a 

computation time 2 orders of magnitude lower than the FEM, allowing wide screenings of 

parameters which are too costly with FEM.  

Subsequently, more in depth understanding of the limiting phenomena during the discharge have 

been evidenced using XAI through the study of SHAP values. The ionic transport and the 

morphology of the NMC811 particles were identified as the most impactful parameters during the 

lithiation of the positive electrode. The methodology of this work is promising and could be applied 

to a number of different systems to gain insights and address the bottlenecks in the battery fields. 

To promote the implementation of this approach, all the computational files necessary to reproduce 

the workflow are provided to the community in the SI.  

Based on those insights, a structured bi-layer electrode with a layer close to the current collector 

consisting of a mix of pristine and ball-milled NMC811 was implemented. Its ability to improve the 

performance at rates as high as 8 mA/cm² were first investigated through modeling and then further 

verified through experimental validation. The bi-layer electrodes displayed the highest volumetric 
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capacity (450 Ah/L) than any reported thick NMC electrodes at such C-rates, twice as much as an 

electrode with a similar loading and discharge rate. The impressive performance with dense thick 

electrodes and the simplicity of the manufacturing process to obtain bi-layer dry electrodes is 

promising for its scalability at the industrial level. 
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