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Abstract

Detailed chemical kinetic models offer valuable mechanistic insights into industrial

applications. Automatic generation of a reliable kinetic model requires fast and ac-

curate radical thermochemistry estimation. Kineticists often prefer hydrogen bond

increment (HBI) corrections from a closed shell molecule to the corresponding radical

for their interpretability, physical meaning, and facilitation of error cancellation as a

relative quantity. Tree estimators, used due to limited data, rely on expert knowledge

and manual construction currently, posing challenges in maintenance and improvement.

In this work, we extend the subgraph isomorphic decision tree (SIDT) algorithm orig-

inally developed for rate estimation, to estimate HBI corrections. We introduce a

physics-aware splitting criterion, explore a bounded weighted uncertainty estimation

method, and evaluate aleatoric uncertainty-based and model variance reduction-based

pre-pruning methods. Moreover, we compile a dataset of thermochemical parameters

for 2,210 radicals involving C, O, and H based on quantum chemical calculations from

recently published works. We leverage the collected dataset to train the SIDT model.
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Compared to existing empirical tree estimators, the SIDT model (1) offers an automatic

approach to generating and extending tree estimator for thermochemistry, (2) has bet-

ter accuracy and R2, (3) provides significantly more realistic uncertainty estimates,

and (4) has a tree structure much more advantageous in descent speed. Overall, the

SIDT estimator marks a great leap in kinetic modeling, offering more precise, reliable,

and scalable predictions for radical thermochemistry.

1 Introduction

Detailed chemical kinetic models are valuable tools for many industrial applications, includ-

ing investigating the fundamentals of polymer fouling,1,2 fuel pyrolysis and oxidation,3–7 and

active pharmaceutical ingredient oxidative degradation.8,9 Radicals are vital to the chemical

kinetic models in all the abovementioned and many other applications. During the process

of automatic mechanism generation, hundreds of thousands of potential molecules (including

radicals) are generated and assessed for their importance under given reacting conditions.10

Some assessment algorithms utilize the thermochemistry of all involved molecules11 and thus

necessitate the fast estimation of thermochemistry.

The thermochemical properties often include standard enthalpy of formation (∆H◦
f,298),

standard entropy of formation (S◦
298), and heat capacity (Cp(T )) at various temperatures in

order to account for the temperature dependency. There exist experimental measurements

for some radicals,12 but more often than not we need thermochemical properties of radicals

that have not been measured experimentally. One can perform quantum chemical calcula-

tions to obtain thermochemistry for radicals. However, it is computationally expensive to

perform calculations for all involved radicals, as it requires a thorough molecular confor-

mation search, geometry optimization, frequency calculation, and single-point calculation

at a trustworthy level of theory. Rotor scans are particularly important to obtain accurate

entropies and heat capacities.

Estimators are often built to provide fast estimation for radical thermochemistry, while
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the accuracy of estimates and uncertainties often vary. Deep Neural Network (DNN)-based

estimators for thermochemistry have gained much interest in recent years.13–15 While transfer

learning has shown promise as a mitigation strategy,16 obtaining a reliable DNN-based esti-

mator for radical thermochemistry can still be challenging due to the scarcity of high-quality

thermochemical data for diverse sets of radical species. Moreover, DNN-based estimators

often need extra efforts17–19 to improve the model’s interpretability. Even with augmented

explainability, it is difficult for a kineticist to incorporate qualitative chemical knowledge

to improve erroneous predictions for radicals of interest. DNN-based estimators also often

require a non-negligible amount of memory usage even during inference due to millions of pa-

rameters and the use of ensemble models for uncertainty estimation, competing for resources

with the already memory-intensive process of generating detailed kinetic models.20,21

A widely-used approach to estimate thermochemistry for radicals is to combine the

Benson-type group additivity (GA) method22 with hydrogen bond increments (HBIs).23

The Benson-type group additivity method assumes that the thermochemical properties of

a closed-shell molecule can be estimated as a linear combination of contributions from its

atom-centered groups. The HBI method assumes that the thermochemical property of a

radical can be estimated by applying an HBI correction to the corresponding (hydrogen)

saturated closed shell molecule.

Reaction Mechanism Generator (RMG), an open-source software package for the auto-

matic generation of detailed chemical kinetic mechanisms, uses tree structures to estimate

hydrogen bond increments. The search descends from the top of the tree estimator until

it finds the most specific node matching the specific radical. The tree estimator is very

lightweight due to the small number of parameters (hundreds to thousands, not millions).

Historically, the structure of the tree and HBI groups have been defined manually based on

heuristics. This heavily relies on expert knowledge along with manual optimization and does

not guarantee truly optimized performance. Moreover, the heuristic tree provides limited

uncertainty estimates24 so a representative uncertainty is often assigned.25
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In this work, we develop a subgraph isomorphic decision tree (SIDT) estimator for HBI

corrections by extending the preceding work developed for rate estimation by Johnson et

al.26 The SIDT method offers various advantages, making it valuable for automated mech-

anism generation. It is straightforward to extend and (re)train, doesn’t necessitate GPU

access, features a hierarchical structure that facilitates interpretation, enables uncertainty

estimation, allows for the easy integration of expert knowledge, and gives reasonable results

despite smaller dataset sizes. We collect thermochemical parameters derived from quantum

chemistry calculations from past publications of detailed kinetic models.1–3,5–7,27 We consider

equivalent resonance structures of each radical from the collected data and derive the HBI

corrections. We develop a SIDT model to predict the HBI corrections, implement an uncer-

tainty estimation from a bounded weighted standard deviation, and implement and evaluate

pre-pruning methods. We compare the prediction performance with RMG’s empirical tree

and analyze the quality of the uncertainty estimates.

2 Methods

2.1 Dataset

Thermochemical data for 2,210 radical molecules excluding duplicates are collected from past

publications of detailed kinetic models.3,5–7,27 For duplicate calculations, the one with lower

energy is kept. Among them, 1,978 radicals are collected from Dong et al.,3,7 Pio et al.,6 and

Liang et al.,27 187 are collected from Pang et al.,1,2 and 45 are collected from Johnson et

al.5 The distribution of collected radical thermochemical parameters can be found in Fig. S1

in the Supporting Information (SI).

Most of the collected radical thermochemical parameters were obtained using ARC28

using the following procedure. Conformers were embedded stochastically using the ETKDG

algorithm29 and optimized using MMFF94s force field30,31 implemented in RDKit32 in an

attempt to obtain the lowest energy conformer. Geometry optimization and harmonic vibra-
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tional frequencies and torsional scans were performed using density functional theory (DFT)

at B3LYP/CBSB7, and the single point energy was calculated using the CBS-QB3 composite

method33 implemented in Gaussian.34,35 If a lower energy conformer was found during the

torsional scan, the above steps were repeated with the newly found lowest-energy conformer.

The frequencies are corrected using a factor of 0.99.33 The rigid rotor harmonic oscillator ap-

proximation with 1D hindered rotor corrections was used to compute the ∆H◦
f,298, S

◦
298, and

Cp(T )’s from the quantum chemical calculation results using Arkane.36 Atom energy correc-

tions (AECs) and bond additivity corrections (BACs) are applied to improve the energies

obtained from calculations.37

36 out of 45 from Johnson et al. were obtained using the following procedure. The con-

formers were selected manually. The geometries and vibrational frequencies were calculated

using DFT with B3LYP/6-31G(2df,p), and single point energies were calculated with the G4

composite method38 using Gaussian.34 Torsional scans were performed in an attempt to find

the lowest energy conformer. If found, the above steps were repeated with the newly found

lowest-energy conformer. The rigid rotor harmonic oscillator approximation with 1D hin-

dered rotor corrections was used to compute the thermochemical parameters using Arkane36

with AECs and BACs applied.37

2.1.1 HBI corrections and data augmentation

Benson-type group additivity values are often fitted with multivariate least squares regres-

sion because there are multiple groups, and therefore, multiple molecules need to be fit

simultaneously to determine the group values. In contrast, the HBI of a radical group can

be derived from a single radical (R · ), by taking the difference with the closed shell molecule

(RH) and hydrogen atom contribution using a general relation of

∆B(HBI) = B(R · )−B(RH) + const. (1)

where B refers to a thermochemical property. The specific relations are23
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∆∆H◦
f,298(R···H) = ∆H◦

f,298(R · )−∆H◦
f,298(RH) + 52.1kcal/mol (2)

∆S◦
298(HBI) = S◦

int,298(R · )− S◦
int,298(RH) (3)

∆Cp(T,HBI) = Cp(T,R · )− Cp(T,RH) ∀T ∈ T (4)

The derived HBI corrections contain 9 terms: ∆∆H◦
f,298(R···H), ∆S◦

298(HBI), and ∆Cp(T,HBI)

at 7 different temperatures (T ): 300, 400, 500, 600, 800, 1000, 1500 K. Eqs. (2) to (4) ad-

here to the standard symbol nomenclature prevalent in chemical literature, while S◦
int refers

to intrinsic entropy excluding symmetry and 52.1kcal/mol23 is ∆H◦
f,298(H · ). Note that

∆∆H◦
f,298(R···H) is the bond dissociation energy, while ∆S◦

298(HBI) and ∆Cp(T,HBI) im-

plicitly contain the contribution from the hydrogen atom radical (H · ). While ∆H◦
f,298(R · ),

S◦
int,298(R · ), and Cp(T,R · ) are extracted from the collected data (excluding symmetry for

entropy), since not all radicals come in a pair with its closed shell molecule in the collected

data, ∆H◦
f,298(RH), S

◦
int,298(RH), and Cp(T,RH) have a mixture of sources. If the closed-

shell molecules are in the collected data, we use the calculated parameters; otherwise, we use

Benson-type group additivity estimates. This introduces some uncertainties, as discussed in

Sec. 2.1.2.

As discussed below, the same HBI might be used to estimate the thermochemistry of

many radicals, depending on how specifically one defines the HBI group template. In that

situation, more than one radical could be used to estimate the same HBI, e.g., by averaging

the values derived using Eqs. (2) to (4).

Additionally, multiple HBI corrections can be derived from a single radical if it has

resonance structures. E.g., the radical in Fig. 1 can be used to derive the HBI needed to

estimate its thermo from the closed-shell molecule, 2-butene, or a different HBI needed to

estimate its thermo from 1-butene. These HBIs would be useful for estimating the thermo
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of radicals derived from larger alkene, e.g., if one had thermo data on 1-decene or 2-decene,

but no data on the dec-1-ene-3-yl radical.

Radical Equivalent 
resonance structure Closed-shell

R! ·

R ·
R" ·

R!H

R"H

Δ𝐵 R!…H = 𝐵 R · − 𝐵 R!H + const.

HBI

Δ𝐵 R"…H = 𝐵 R · − 𝐵 R"H + const.

Figure 1: Example of deriving multiple hydrogen bond increment corrections from equivalent
resonance structures of a radical. B refers to ∆H◦

f,298, ∆S◦
298, or Cp(T ).

We augment the data by deriving multiple HBI corrections to help the final predicted

radical thermochemistry to be invariant for all resonance structures. We generate radical

resonance structures using RMG’s resonance algorithm.39 The distribution of the number

of equivalent resonance structures found for each radical is shown in Fig. S2. After reso-

nance structure augmentation, the number of radical data points increases to 2,805. For

thermochemical parameters of closed-shell molecules, 1,824 of them are Benson-type group

additivity estimates, 959 of them were computed at CBS-QB3 level of theory, and 22 of them

were computed at G4 level of theory.

The key molecular features of collected radicals after augmentation can be found in Fig. 2.

Fig. 2(a) indicates that there are radicals containing H, C, N, and O atoms, while there are

only either carbon-centered or oxygen-centered radicals. The collected data cover a range

of number of rings, atoms, and rotatable bonds. The distribution of HBI corrections can be

found in Fig. 3. As a sanity check, we plot the node values of the empirical tree estimator

in Fig. S5, which have a similar range seen in Fig. 3. Fig. 3 aligns with the HBI corrections

reported in published works.40,41
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Figure 2: Key molecular features of radicals collected from past publications1–3,5–7,27 after
data augmentation with equivalent resonance radicals: (a) atom types in radicals and of
radical centers, (b) number of rings, (c) number of heavy atoms, and (d) number of rotatable
bonds.
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Figure 3: Distribution of HBI corrections for (a) standard enthalpy of formation, (b) intrinsic
entropy, (c-i) heat capacities at various temperatures.

2.1.2 Uncertainties in HBI corrections

As delineated by Eqs. (2) to (4), the error in the HBI corrections can come from both the

radical and the closed-shell components.

There are several possible sources of error in the collected radical data. First, there are

errors associated with the level of theory. For CBS-QB3 level of theory, a root-mean-square

deviation (RMSD) of 1.2 kcal/mol in ∆H◦
f,298, 1.0 cal/mol/K in S◦

298, and 0.4 cal/mol/K in

Cp,298 are found for radicals by benchmarking with experimental measurements.42 Somers et

al. also reported an RMSD of 1.2 kcal/mol in ∆H◦
f,298 of radicals.43

For G4 level of theory, a mean absolute deviation of 0.83 kcal/mol in ∆H◦
f,298 was re-
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ported originally38, while an RMSD of 1.1 kcal/mol in ∆H◦
f,298, 1.0 cal/mol/K in S◦

298, and

0.4 cal/mol/K in Cp,298 were reported for radicals by benchmarking against experimental

measurements.42 Somers et al. reported a smaller RMSD of 0.5 kcal/mol in ∆H◦
f,298 for

radicals.43

Aside from errors associated with the level of theory mentioned above, the separable

rotor approximation (1D hindered rotor) can also introduce errors to the computed thermo-

chemical parameters, particularly to the entropies and the heat capacities. Sharma et al.

identified a worst-case scenario, where using the separable rotor approximation introduces

errors of 1.1 kcal/mol for ∆H◦
f,298, 5.66 cal/mol/K for S◦

298, and 15.62 cal/mol/K for Cp,298

if starting from the ring-shape conformer for hydroperoxyalkylperoxy radicals using CBS-

QB3.44 Large errors like this are most likely if there is intramolecular hydrogen bonding.

Additionally, there could be a significant error in ∆H◦
f,298 if a calculation did not converge

to the lowest energy conformer.

We use 1.2 kcal/mol as a representative error for radicals calculated at CBS-QB3 level

of theory and 1 kcal/mol for those at G4 level of theory. This is a reasonable assumption

for ∆H◦
f,298 as long as we find the lowest energy conformer. Radicals with fewer rotatable

bonds are more likely to find the lowest energy conformers. We use a representative error

of 1 cal/mol/K for S◦
298 and Cp(T )’s. This is a reasonable number for the level of theories

used in the dataset, similar to what has been assumed in past kinetic model works.45 We

are aware of worst-case scenarios as shown in Sharma et al.,44 so this may be optimistic,

but we have limited ability to verify all collected radical data. Also, we expect partial error

cancellation due to the similarity between the radical and the closed-shell molecule, so the

HBIs may be more accurate than the total ∆H◦
f,298, S

◦
298, Cp(T )’s.

We use the representative errors mentioned above for the closed shells computed using

quantum chemistry. We benchmark the group additivity estimated thermochemistry for

closed shells against those collected from past publications of detailed kinetic models,3,5–7,27

as shown in Fig. S4. From that benchmark, we derive a representative error of 4 kcal/mol for
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∆H◦
f,298, 4 cal/mol/K for S◦

298, and 2 cal/mol/K for Cp(T )’s coming from group additivity.

The uncertainty in the derived HBI corrections is taken to be the root sum of the uncer-

tainty squared in the radical component and the closed-shell component.

2.2 Machine learning methodology

This work extends the subgraph isomorphic decision tree (SIDT) algorithm developed for

predicting rates by Johnson et al.26 to predict HBI corrections. The input format can be

a SMILES, InChI, or adjacency list, which is first converted into an RMG molecule.46,47

An RMG molecule is a 2D graph representing a molecule, storing molecular information

such as atom type, bond type, and connectivity. Unlike the conventional regression decision

trees that use rules to split the data points, SIDT uses group structures that are subgraph

isomorphic to the molecule 2D graphs for molecular splitting. Additionally, SIDT belongs

to the Non-Mandatory Leaf-Node Prediction (NMLNP) category,48 where prediction can be

made from both the internal nodes and the leaf nodes.

A flow chart of generating a SIDT model for HBI corrections can be found in Fig. 4. There

are two stages in this process: the tree extension stage (left-hand side loop in Fig. 4) and

the internal and leaf node fitting stage (last step in Fig. 4). During the tree extension stage,

potential local extensions are proposed to split radicals based on their substructure, and

a splitting criterion is evaluated to determine the local optimal split. Sec. 2.2.1 discusses

our choices of the splitting criterion to maintain physical meaning during optimization.

Additionally, to prevent an unnecessarily complex tree, we explore two pre-pruning methods

based on uncertainty and model variance reduction (Sec. 2.2.2). Once the tree extension

completes, methods described in Sec. 2.2.3 are used to fit HBI corrections and uncertainties

for each node.
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Figure 4: Flow chart of generating a subgraph isomorphic decision tree for HBI corrections.
Blocks with light blue shades are associated with pre-pruning.

2.2.1 Splitting criterion

During the tree extension stage, the model takes in radicals as RMG molecules and generates

a set of possible extensions (P ∈ P) that split the radicals into two partitions based on their

substructures. We want to select the extension that puts radicals with the most similar HBI

corrections into the same partition. We define the following splitting criterion (Π)

Π = N(p1|P)σ(p1|P) +N(p2|P)σ(p2|P) (5)

where N(pi|P) is the number of radicals in partition i given the extension P , and σ(pi|P)

is the standard deviation of targets within partition i given the extension P . We then
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determine the (local) optimal extension (P∗) by

P∗ = argmin
P∈P

Π(P) (6)

Since the model is a multi-target (9 HBI correction targets) regression tree, there are

many possible ways to define σ. We can define it directly related to the prediction targets,

as shown in Eq. (7). Hyperparameters (α, β, γ) would be needed as ∆∆H◦
f,298, ∆S◦

298, and

∆Cp(T )’s are often not on the same scale. We could also scale the raw data using Z-score,

but by doing so we lose the interpretability of the physical meaning.

σ(pi|P) = α std(∆∆H◦
f,298(pi|P)) + β std(∆S◦

298(pi|P)) + γ
∑
T∈T

std(∆Cp(T, pi|P)) (7)

Alternatively, we can define it using the HBI correction for Gibbs free energy of forma-

tion at temperatures of interest (∆∆G◦
f (T )). There are some advantages to this definition.

First, Gibbs free energy of formation (∆G◦
f ) incorporates the information from the enthalpy,

entropy, and heat capacity in a way that retains their physical meaning. Second, ∆G◦
f is

what’s actually used during kinetic modeling.

We obtain ∆∆G◦
f (T ) using the equations below. We bring ∆∆H◦

f and ∆S◦ to the

desired temperature using Eqs. (8) and (9), and then compute ∆∆G◦
f (T ) using Eq. (10).

For simplicity during node splitting, we use a simple linear interpretation to evaluate the

integrals in Eqs. (8) and (9).

∆∆H◦
f (T ) =

∫ T

298

∆Cp(T )dT +∆∆H◦
f,298 (8)

∆S◦(T ) =

∫ T

298

∆Cp(T )

T
dT +∆S◦

298 (9)
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∆∆G◦
f (T ) = ∆∆H◦

f (T )− T∆S◦(T ) (10)

We then define the σ using the standard deviation of ∆∆G◦
f (T ) in partition i at selected

temperatures (T )

σ(pi|P) =
∑
T∈T

std(∆∆G◦
f (T, pi|P)) (11)

Eqs. (5), (6) and (11) are used for the splitting criterion to extend the tree presented in

this work.

2.2.2 Pre-pruning methods

In decision tree learning, a compact tree can often offer more interpretable insights and avoid

over-fitting. Pre-pruning and post-pruning methods are developed to learn a small decision

tree. In this work, we introduce two pre-pruning methods for the SIDT algorithm.

There are two sources of uncertainty in machine learning for chemistry: the aleatoric

uncertainty and the epistemic uncertainty.49 The aleatoric uncertainty is associated with

noises in the training data and is not reducible during training, while the epistemic uncer-

tainty is associated with the model bias and variances and is reducible. The original SIDT

algorithm26 extends the tree until exhaustion. This work implements and evaluates two

new pre-pruning methods for the SIDT algorithm to consider the uncertainty during tree

extension.

The first pre-pruning criterion is based on the aleatoric uncertainty limit. Let the HBI

corrections of molecules matched to a node be Y ∈ RN×M , where N is the number of

molecules in the training set and M is the number of HBI corrections for each molecule

(M = 9). Let the uncertainty in these data points be Yϵ ∈ R+
0
N×M

, which contains the

errors in HBI corrections for each molecule due to reasons described in Sec. 2.1. The first

column of Yϵ contains the uncertainty in ∆∆H◦
f,298. The second column in Yϵ contains the
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expected error for ∆S◦
298. The third to ninth columns in Yϵ contain the data uncertainty for

∆Cp(T ) at defined temperatures.

The aleatoric uncertainty-based pre-pruning is shown in Alg. 1. We first compute the

standard deviation of HBI corrections for molecules matched to a node (σT ) weighted by the

inverse of their uncertainties squared. We use the minimum expected uncertainty in training

data (ϵT ) as a proxy of the aleatoric uncertainty limit. Note that other functions can be

used instead of min for Yϵ. Using min is more forgiving, while using functions like mean,

median, or max can result in more conservative splitting. We only attempt splitting if there

is still room for improving model variance (any(σT > ϵT )).

Algorithm 1 Aleatoric uncertainty-based pre-pruning

σT ←
√
cov(Y, axis = 0,weighted=True)

ϵT ← min(Yϵ, axis = 0)
if any(σT > ϵT ) then

Attempt to split
end if

The second pre-pruning criterion is based on the magnitude of model variance reduction,

which we use as a proxy of the significance of the splitting. The algorithm is shown in Alg.

2. We first compute the pre-splitting residual (Π0). The pre-splitting residual is computed

using all the molecules matched to the current node, where Π0 is defined as Nσ, where

N = N(p1 + p2|P∗) = N(p1|P∗) +N(p2|P∗), and σ = σ(p1 + p2|P∗).

We then determine the local optimal split by evaluating the splitting criterion defined

in Eq. (6) and compute the residual of the optimal split (Π∗). Note that the residual after

splitting should always be smaller or at least equal to the one prior to splitting. We compare

the pre-splitting and post-splitting residuals and only accept the split if the residual improves

by a user-defined threshold (λ). In this work, we evaluate the performance of this pre-pruning

algorithm with various λ’s.
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Algorithm 2 Model variance reduction-based pre-pruning

Π0 ← Nσ
P∗ ← argminP∈PΠ(P)
Π∗ ← N(p1|P∗)σ(p1|P∗) +N(p2|P∗)σ(p2|P∗)
if Π0−Π∗

Π0
> λ then

Accept split
end if

2.2.3 Internal and leaf node fitting

Once the tree structure is generated, we fit an HBI correction group value for each node

on the tree. Let Y = [y
1
, ..., y

M
], where y

m
∈ RN×1 refers to the mth column in the data

matrix Y. The prediction value for each HBI correction (m) is fitted using the weighted

least squares (WLS) of molecules matched to the node using Eq. (12).

β̂m = (XTWmX)−1XTWmym (12)

where X ∈ Z+
0
N

is a column vector containing ones of length number of molecules matched

to the node (N). β̂m ∈ R1 is a scalar of the fitted group value for HBI correction m. Wm is

a N by N matrix that contains the weights. The diagonal of Wm is the inverse of the data

variance, while the rest of the entries are zeros as shown in Eq. (13). Note that the weights

are different for each HBI correction m due to different associated uncertainties.

Wm = diag

(
1

y2
ϵ,m

)
(13)

Eq. (12) is equivalent to computing the weighted average of HBI corrections for molecules

matched to the node. The prediction uncertainty for HBI corrections can be estimated from

weighted covariance. We report the prediction value for the HBI correction at each node as

Eq. (14). The factor of 2 is because it is conventional to use 95% confidence intervals (2 σ)

in thermochemistry.
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β̂m ± 2

√
V (β̂m) (14)

where

V (β̂m) = (X⊤WmX)−1σ̂2
m (15)

σ̂2
m =

1

N − 1
(y

m
−Xβ̂m)

⊤Wm(ym −Xβ̂m) (16)

As mentioned earlier, there are two sources of uncertainties in machine learning for chem-

istry: the aleatoric uncertainty, and the epistemic uncertainty. Eq. (14) only indirectly

makes use of the aleatoric information from the data points, and the uncertainty estimate

is dominated by the model variance. Consequently, Eq. (14) can greatly underestimate the

uncertainty for nodes closer to the terminal nodes, due to the smaller amount of data points

matched to the node.

Instead, we believe an ideal uncertainty estimate should account for both aleatoric un-

certainty and model variance. We can propagate the data uncertainty through Eq. (12),

assuming negligible covariance between each y
m

V (y
ϵ,m

)≈

∣∣∣∣∣∂β̂m

∂y
m

∣∣∣∣∣
◦2

y◦2
ϵ,m

=
(
(XTWmX)−1XTWm

)◦2
y◦2
ϵ,m

(17)

where ◦ denotes the Hadamard power.

We introduce a new uncertainty estimation equation (Eq. (18)). When the model variance

is small, the uncertainty estimate has a lower bound set by the uncertainty propagated from

the data points. We evaluate the effects of this uncertainty estimation in Sec. 3.1.
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β̂m ± 2
√

V (β̂m) + V (y
ϵ,m

) (18)

3 Results and Discussion

The results and discussion will unfold as follows. We first show the effectiveness of the

proposed bounded uncertainty estimation method in Sec. 3.1. Then, we assess the effects of

the aleatoric uncertainty-based and model variance-based pre-pruning methods in Sec. 3.2.

The names of the models and their descriptions are shown in Table 1 Finally, in Sec. 3.3, we

present a comprehensive comparison between the empirical tree model in RMG50 and the

new SIDT model.

Table 1: Names and description of SIDT models presented in this work.

Model name Description
BC Base case model with Eq. (14) as uncertainty estimation
BC UB Base case model with Eq. (18) as bounded uncertainty estimation
AP UB Model with aleatoric uncertainty-based pre-pruning and Eq. (18)

as bounded uncertainty estimation
MPλ UB Model with model variance reduction-based pre-pruning using λ as

reduction threshold and Eq. (18) as bounded uncertainty estimation

3.1 Uncertainty estimation evaluation

Accurate uncertainty estimates are vital for uncertainty analysis for kinetic modeling, making

it important to examine how well the uncertainty estimates represent the true errors. To

assess this, we use the fraction of test error bounded by the uncertainty estimate as a metric

of uncertainty estimation performance.

We use 9:1 random splitting as the training and test set and train the SIDT model with

various fractions of the training set (0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0).

We compare the uncertainty estimation by weighted standard deviation (Eq. (14)) and the

bounded equation (Eq. (18)) using this metric. Fig. 5 shows the fraction of test error bounded
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by the predicted uncertainty as a function of the number of training data used, along with

either Eq. (14) or Eq. (18). Using Eq. (18) improves the bounded fraction, suggesting that

Eq. (18) reports a more realistic uncertainty estimate.
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Figure 5: Fraction of test error bounded by uncertainty estimate as a function of various
number of training data. The dashed line at 0.95 indicates the ideality (95% confidence level
from using 2 times weighted standard deviations as uncertainty estimates). BC refers to
the base case SIDT with a weighted standard deviation for the uncertainty estimate, while
BC UB uses a bounded weighted standard deviation.

Additionally, in the discussion of uncertainty estimation, there are three terms at play.

The first is the prediction error, which we measure using the difference between the model

prediction and the hold-out test set (also referred to as test error). The second is the data

uncertainty in the test set. The third is the uncertainty estimate, which is the uncertainty
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in model prediction estimated by the model. If the data has no noise, the ideal uncertainty

estimate should be similar to the test error. However, since both the data have noises, the

uncertainty estimate should also reflect both the epistemic components (error caused by the

model variance and biases) and the aleatoric components (noises in the data).

Fig. 6 shows the distribution of normalized uncertainty estimates from the BC UB model

trained on the full training set and tested on the hold-out test set to assess the quality

of uncertainty estimates with the noisy dataset. We normalize the uncertainty estimate

using the root sum squared of test errors and the data noises. The bounded uncertainty

estimation shifts the long tail of underestimated uncertainty towards the more reasonable

range of estimates (within the region between the dashed lines).
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Figure 6: Distribution of normalized uncertainty estimate for BC and BC UB. The left-side
vertical dashed line shows accurate uncertainty, and the right-side vertical line indicates a 3x
overestimation. The space in between is the reasonable uncertainty region. BC refers to the
base case SIDT with a weighted standard deviation for uncertainty estimate, while BC UB
uses a bounded weighted standard deviation.

Additionally, Fig. 7 shows the normalized uncertainty estimate for BC UB only, distin-

guishing between data points where test errors dominate and those where data uncertainties

dominate. If the model learns the molecules well, it tends to estimate more reliable uncer-

tainties, while uncertainty can be underestimated when the test error dominates.
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Figure 7: Distribution of normalized uncertainty estimates for BC UB only for cases where
the test error dominates (red) or the data uncertainty dominates (purple).

3.2 Effects of pre-pruning

Fully-expanded trees can overfit the noise in the data and decrease model interpretability,

unless special algorithms are implemented, such as the ascending scheme used in the original

SIDT for rate estimation26. Thus, a compact tree without the loss of prediction accuracy

(tree regularization) is often desired,51 motivating us to explore new pre-pruning methods for

our application. Here, we evaluate the effects of aleatoric uncertainty-based pre-pruning on

BC UB, measuring prediction accuracy through test errors and evaluating tree compactness

based on tree sizes. We use 9:1 training:test random splitting.

Fig. 8 shows the reduction in tree sizes in terms of the number of nodes by comparing
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the base case model (BC UB) and the model using aleatoric uncertainty-based pre-pruning

(AP UB). Additionally, Figs. S6 and S7 show the root-mean-square error (RMSE) and mean-

absolute error (MAE) as a function of the training data size. It is clear that AP UB has

smaller tree sizes compared to BC UB while achieving almost the same model performances.

Moreover, the degree of tree size reduction becomes more apparent when the training size

becomes larger by preventing unnecessary exhausted splitting.
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Figure 8: Tree size reduction (%) as a function of various training data sizes by
adding aleatoric pre-pruning to BC UB. Tree size reduction (%) is computed as (1 −
Nnode,AP UB/Nnode,BC UB)× 100%.

The model variance reduction-based pre-pruning requires a hyperparameter for the model

variance reduction threshold (λ). We further split the abovementioned training set by 8:1

for training:validation, and use the validation set to search for the optimal λ. Figs. S8 to S10

23

https://doi.org/10.26434/chemrxiv-2024-20zjc ORCID: https://orcid.org/0000-0001-9381-7500 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-20zjc
https://orcid.org/0000-0001-9381-7500
https://creativecommons.org/licenses/by-nc-nd/4.0/


show the validation errors and tree size as a function of λ.

We also evaluate the effects of model variance reduction-based pre-pruning compared

to the aleatoric uncertainty-based pre-pruning. Figs. 9 and S11 show the test errors as a

function of various number of training data for the model with aleatoric uncertainty-based

pre-pruning (AP UB) and model variance reduction-based pre-pruning (MP UB).

The model variance reduction-based pre-pruning is highly sensitive to the choice of model

variance reduction threshold (λ). The size of λ can depend on the dataset and the learning

target, and a large λ can result in an underfitting tree.

For our HBI correction dataset, we find that model variance reduction-based pre-pruning

has a mix of impacts on the model performance. As shown in Figs. S9 and S10, a large λ

decreases the RMSE for ∆S◦
298 and many of ∆Cp(T ), but significantly increases the RMSE

and MAE for ∆∆H◦
f,298. We notice that at the root node, the SIDT algorithm often attempts

to split the radicals based on whether the atom with the radical is in a ring. This splitting

decision makes chemical sense, but it doesn’t necessarily lead to a large reduction in the

model variance, as the radicals are still diverse. Instead, the larger reduction in the model

variance often occurs at nodes closer to the terminal nodes. Consequently, the SIDT learning

can be greatly hindered, as this pre-pruning method tends to prune nodes closer to the root.
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Figure 9: Test root-mean-square error (RMSE) as a function of various fractions of training
data used for the model with aleatoric uncertainty-based pre-pruning (AP UB) or model
variance reduction-based pre-pruning with various model variance reduction thresholds (λ)
(MPλ UB).

Based on the above results, we recommend the AP approach, given its ability to achieve

the same performance with reduced tree sizes. The MP approach is not recommended for

this application.

3.3 Comparison with empirical tree

This work aims to replace the hand-made empirical tree that requires expert knowledge

to improve and update in RMG-database.50 On one hand, the empirical tree was trained

historically over decades by many generations of researchers covering a wide scope of chem-
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istry.24,41,52–54 On the other hand, the empirical tree could have errors and missing values

due to human errors, non-systematic construction, and implicit assumptions that successor

researchers are not aware of. Both the empirical tree estimator and the SIDT estimator can

suffer from the scarcity of high-quality data. The SIDT model presented below uses the

aleatoric pre-pruning and bounded uncertainty estimation, following the same settings as

AP UB.

3.3.1 Comparison with original empirical tree

We compare the empirical tree model and the SIDT model by examining their performance on

the test set from 9:1 training:test random splitting. It is worth noting that we are comparing

with RMG’s current empirical tree with no modifications or refitting. The current empirical

tree model has 1994 nodes. Among them, 1828 have group values, while the rest borrow

the group values from their parent, ancestor, or other nodes. 1473 of them are recently

added for halogenated radicals with uncertainty estimates,24 107 of them are recently added

for radicals involving H, C, N, O with uncertainty estimates,24 while 248 of them have no

uncertainty estimates. A representative value of 0.1 kcal/mol per group in ∆∆H◦
f,298 is often

assumed for them.25

Fig. 10 shows the error distribution of the empirical tree and SIDT models. Surprisingly,

although the two models are constructed using different approaches with different training

data, they have similar error distributions. Fig. S12 shows a parity plot of the absolute test

errors of SIDT model compared to the empirical tree model. Despite the two models having

similar error distribution, molecules with larger errors are different for the two models for

most HBI corrections.

As shown in Fig. 10, SIDT improves the estimation of ∆∆H◦
f,298(R···H) by 1.96/1.35

kcal/mol in terms of RMSE/MAE. The improvements in other HBI corrections are smaller

due to the use of ∆∆G◦
f (T ) in the splitting criterion, which can place more weight on the

performance for ∆∆H◦
f,298. However, we note that the improvements in the HBI correction
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estimation are limited by the error in the closed shell thermochemistry estimated using the

group additivity method (see Fig. S4).
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Figure 10: Histogram of error in HBI corrections estimated by the hand-made empirical tree
model and the SIDT model.

Figs. 11 and 12 show the parity plots of the empirical tree and SIDT models. The

SIDT estimator improves the parity of HBI corrections compared to the empirical tree,

particularly for enthalpy. In Fig. 11, many dots are forming horizontal lines. This suggests

underdeveloped branches in the empirical tree. Some terminal nodes match molecules with

a wide range of HBI corrections, leading to overgeneralization. The SIDT does not have this

problem.
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Figure 11: Parity plot of HBI corrections predicted by the empirical tree compared to the
true values.
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Figure 12: Parity plot of HBI corrections predicted by the SIDT compared to the true values.

Fig. 13 shows the distribution of normalized uncertainty estimates by the SIDT model

(AP UB) and the empirical tree model. In general, the SIDT model has realistic uncertainty

estimates that center around 1, while the uncertainty estimates from the empirical tree model

in RMG, which stem from previously published works,24,25 are too optimistic. Additionally,

Fig. S13 show the distribution of normalized uncertainty estimates by the SIDT model
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(AP UB) only, separating test data whose closed-shell components are derived from GAV

and QM. The quality of uncertainty estimates for test data with closed-shell components

from QM is generally better than its GAV counterpart.
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Figure 13: Distribution of normalized uncertainty estimates for the empirical tree model
in RMG and the SIDT model (AP UB). The left-side vertical dashed line shows accurate
uncertainty, and the right-side vertical line indicates a 3x overestimation. The space in
between is the reasonable uncertainty region.

3.3.2 Comparison with re-fitted empirical tree

As mentioned in Sec. 2.2, there are two stages to construct a SIDT model: the tree exten-

sion stage, and the internal and leaf node fitting stage. For the empirical tree model, the
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researchers do the tree extension manually based on domain knowledge, and then they fit

small subbranches of the tree to small specialized sets of training data. For the SIDT model,

the algorithm learns the tree structure from the given training set and fits node values from

the same set of training data. In light of this, we perform additional comparisons to assess

the empirical tree model and the SIDT model, as discussed below.

We refit the empirical tree model with the same training set as the SIDT model, while

keeping the empirical tree model’s structure. We use the same 9:1 training:test random

splitting employed previously. The error distributions of the retrained empirical tree model

and the SIDT model can be found in Fig. S14. Small improvements can be found in the

RMSE and MAE of the 9 HBI correction targets. We also re-estimate the uncertainties for

the empirical tree model using Eq. (18), which significantly improves its quality of uncertainty

estimation as shown in Fig. S16.

3.3.3 Comparison with empirical tree using advanced data splitting

The random splitting approach employed above assesses the interpolation ability of the tree

models.55 Here, we assess the extrapolation ability of the empirical tree model and the SIDT

model with a more challenging data split, i.e., cluster split. The details on how we perform

cluster split can be found in Sec. S3.3.3. We split the dataset using a 9:1 training:test cluster

split. The error distribution of the SIDT model compared to the empirical tree model and

the re-fitted empirical tree model can be found in Figs. S18 and S19, respectively. Both

empirical tree models outperform the SIDT model with the cluster split test set.

However, this is not a fair comparison due to two reasons. First, as we don’t know

what datasets were used to train the empirical model, the test set likely partially overlaps

with the training set of the empirical model. Second, the chemical knowledge embedded in

the empirical tree acts as a “learned” representation even when relevant data are missing.

Nonetheless, this signals the importance of being exposed to a wide range of chemistry during

the tree extension stage, as the empirical tree’s handmade tree structure aids its performance
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in the extrapolation task. It’s possible that an expert-informed design of the tree structure

near the root node, while filling the rest of the tree out with the SIDT algorithm to solve

the known issue of underdeveloped branches (as discussed in connection with Fig. 11), could

be beneficial.

3.3.4 Tree structure comparison

Fig. 14 shows the number of branches for each internal node, the depth of individual leaf

nodes, and the number of subgraph isomorphic comparisons needed when descending from

the root node to leaf node in the ordinary empirical tree in RMG and the SIDT model.

From Figs. 14(a), (b), (d), and (e), the empirical tree model is wider but shallower, while

the SIDT model is narrower but deeper. Figs. 14(c) and (f) show that SIDT requires fewer

subgraph isomorphic comparisons when descending from the root node to the leaf node than

the empirical tree, signaling a more efficient descent during parameter estimation.
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Figure 14: Number of branches for each internal node in the empirical tree (a) and SIDT
(d), depth of individual leaf nodes for the empirical tree (b) and SIDT (e), and number of
subgraph isomorphic comparisons needed when descending from the root to leaf node for the
empirical tree (c) and SIDT (f). The number of needed subgraph isomorphic comparisons is
estimated by the sum of the number of children for nodes on the route descending from the
root node to the leaf node; note that this is an upper-bound estimation.
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Overall, SIDT provides a method to easily extend, (re-)train, and improve empirical tree-

based methods that have previously required intensive manual care. As shown in Sec. 3.1,

SIDT provides reasonable uncertainty estimates. The SIDT model has great computational

and memory efficiency both for training and inferencing. Specifically, the SIDT model takes

around 6 min to train, has around 3000 nodes, and has around 3000 parameters for each of

the 9 HBI correction targets.

4 Conclusions

We extended the subgraph isomorphic decision tree (SIDT) algorithm originally developed

for rate estimation26 to estimate hydrogen bond increment (HBI) corrections in the context of

automated mechanism generation. We evaluated different uncertainty estimation methods

and pre-pruning, and compared the performance of SIDT model with the empirical tree

model. For uncertainty estimation evaluation, we showed that using a weighted standard

deviation bounded by aleatoric uncertainty consistently improves the quality of uncertainty

estimates. Additionally, we explored and evaluated two pre-pruning methods. Aleatoric

uncertainty-based pre-pruning demonstrated significant improvements in tree compactness

without compromising prediction accuracy. However, model variance reduction-based pre-

pruning showed sensitivity to the choice of hyperparameter λ and did not grant meaningful

improvements when applied to the noisy HBI correction data. Eventually, we compared the

SIDT model with the existing hand-made empirical tree model in the Reaction Mechanism

Generator (RMG) database. While the empirical tree was constructed manually over time

by many researchers to cover a wider range of chemistry, it can have errors and missing

values due to human error. Compared to the empirical tree model, the SIDT model (1) is

much easier to generate and extend, (2) improves the accuracy and R2 for HBI correction

prediction, (3) provides significantly more reliable uncertainty estimates, and (4) has a more

advantageous tree structure for descending speed. We also compared the SIDT model with

33

https://doi.org/10.26434/chemrxiv-2024-20zjc ORCID: https://orcid.org/0000-0001-9381-7500 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-20zjc
https://orcid.org/0000-0001-9381-7500
https://creativecommons.org/licenses/by-nc-nd/4.0/


a re-fitted empirical tree and assessed its extrapolation ability through cluster splitting,

highlighting that a tree structure learned from a diverse chemical space could potentially

improve the robustness of the tree estimator. In conclusion, the SIDT algorithm provides a

promising alternative for estimating HBI corrections, offering an automated way to construct

lightweight and easy-to-update estimators for kinecticists.
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