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Abstract 9 
Impaired metabolism is recognized as an important contributor to pathogenicity of T cells in Systemic 10 
Lupus Erythematosus (SLE). Over the last two decades, we have acquired significant knowledge about the 11 
signaling and transcriptomic programs related to metabolic rewiring in healthy and SLE T cells. However, 12 
our understanding of metabolic network activity derives largely from studying metabolic pathways in 13 
isolation. Here, we argue that enzymatic activities are necessarily coupled through mass and energy 14 
balance constraints with in-built network-wide dependencies and compensation mechanisms. Therefore, 15 
metabolic rewiring of T cells in SLE must be understood in the context of the entire network, including 16 
changes in metabolic demands such as shifts in biomass composition and cytokine secretion rates as well 17 
as changes in uptake/excretion rates of multiple nutrients and waste products. As a way forward, we 18 
suggest cell physiological experiments and integration of orthogonal metabolic measurements through 19 
computational modeling towards a comprehensive understanding of T cell metabolism in lupus.  20 
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Introduction 48 
 49 
CD4+ T cells are an integral component of the adaptive immune system whose central function is rapid 50 
clonal expansion and development of effector functions such as cytokine secretion and expression of co-51 
stimulatory factors following exposure to antigens. To facilitate rapid proliferation, metabolic networks 52 
of T cells undergo a switch from a quiescent metabolic state characterized primarily by catabolic and 53 
homeostatic activities to a proliferative state characterized by anabolic activities1.  54 
 55 
The signaling program2 as well as the associated changes in gene expression3 that affect the metabolic 56 
switch4 have been thoroughly explored and reviewed elsewhere2-4. In contrast, our understanding of the 57 
changes in the metabolic state of cells is nascent but ever expanding4. First concrete explorations of 58 
metabolic rewiring accompanying proliferation of healthy T cells occurred only two decades ago when it 59 
was shown that a switch to the proliferative state is accompanied by a significant upregulation of glucose 60 
uptake5. This initial observation has led to a flurry of research towards understanding metabolic 61 
underpinnings of T cell function.  62 
 63 
There is emergent consensus that impaired metabolic rewiring of T cells during proliferation is an essential 64 
feature of pathogenesis in several autoimmune disorders including systemic lupus erythematosus (SLE)6, 65 
an autoimmune disorder that disproportionately affects women of Hispanic, African, and Asian ancestry7. 66 
Importantly, these differences in metabolic rewiring have led to several potential therapeutic targets, 67 
some in clinical trials, that target biochemical mechanisms that are orthogonal8-10 to the standard of care 68 
for SLE based on immunosuppressants. Therefore, it is crucial that we gain a comprehensive 69 
understanding of impaired metabolic rewiring in SLE.  70 
 71 
Most previous inquiries of SLE metabolism have studied metabolic pathways/nutrients in isolation, either 72 
by using only one approach (e.g. metabolomics or transcriptomics) or one metabolic pathway (e.g. 73 
glycolysis). In this perspective, we argue that the mammalian cellular metabolic network simultaneously 74 
carries out hundreds of interdependent chemical conversions11, with large-scale dependencies and 75 
compensation mechanisms. Moreover, the metabolic network can be probed using multiple approaches, 76 
e.g. transcriptomics, metabolomics, and proteomics. Therefore, a comprehensive understanding of the 77 
impaired metabolic rewiring requires a simultaneous analysis of the exchange of nutrients/waste products 78 
and their relationship with cell proliferation and the cellular metabolic state.  79 
 80 
Here, we first review basics of metabolic rewiring in healthy T cells, followed by highlights of impaired 81 
rewiring in SLE. Next, we discuss how biophysical demands and constraints induce correlation across 82 
multiple pathways in the metabolic network and gaps in our knowledge. Finally, we sketch how 83 
biophysical measurements and computational integration of orthogonal metabolic, physiological, and 84 
transcriptomic data can estimate the metabolic state of T cells.  85 
 86 
Metabolic rewiring of healthy T cells  87 
 88 
Metabolism of quiescent T cells is driven by homeostatic activities and is largely catabolic, requiring 89 
limited uptake of glucose, glutamine, and fatty acids, which are then routed through the oxidative 90 
pathways - oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO) - to generate energy in the 91 
form of adenosine triphosphate (ATP) in the mitochondria. Consequently, quiescent T cells show very little 92 
aerobic glycolysis and low levels of lactate production1. In contrast, metabolism of proliferating T cells is 93 
more active as it serves homeostatic, biosynthetic, and secretory functions (Figure 1). These functions 94 
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demand a significantly higher energy requirement, utilized for polymerization of macromolecules as well 95 
as production of biomass precursors (amino acids, lipids, nucleotides etc.) from raw materials such as 96 
glucose, glutamine, and other amino acids. 97 
 98 
Upon activation, T cells upregulate glucose consumption through membrane expression of glucose 99 
transporter GLUT15. Most of the consumed glucose enters glycolysis where it produces NADH, ATP, and 100 
pyruvate. Additionally, glucose enters branched pathways including the pentose phosphate pathway 101 
(PPP), where it regenerates the cofactor NADPH and produces ribose-5-phosphate (R5P). NADPH is 102 
required for de novo synthesis of lipids and as a reducing equivalent in regeneration glutathione, a 103 
protective molecule that controls levels of reactive oxygen species (ROS). Glucose-derived R5P is used as 104 
the sugar backbone for nucleotide synthesis. A large fraction of pyruvate is excreted in the extracellular 105 
medium as lactate, in a phenomenon known as the Warburg effect1, 12. The rest of the pyruvate enters 106 
the TCA cycle where it is used in the regeneration of ATP and in synthesis of biomass precursors.  107 
 108 
 109 

 110 
Figure 1. Canonical CD4+ T cell metabolism. Quiescent T cells (left) show little metabolic activity wherein nutrients 111 
are catabolized to generate ATP in the mitochondria (red oval). In contrast, proliferating T cells (right) show high 112 
glucose intake and lactate excretion. Glucose (GLC), glutamine (GLN), and other amino acids synthesize biomass 113 
components to support growth. PYR: pyruvate, LAC: lactate, GLU: glutamate, ACCOA: Acetyl-coA. 114 
 115 
Additionally, proliferating T cells also uptake large amounts of glutamine13. Consumed glutamine is used 116 
for synthesis of proteins and nucleotides. Additionally, glutamine is converted to glutamate and then to 117 
the TCA cycle intermediate 𝛼-keto glutarate in a process called glutaminolysis. Glutamate, which is 118 
essential for epigenetic regulation of T cell differentiation14, 15, is also used in synthesis of nucleotides and 119 
glutathione. Recent work has also shown that surprisingly, supplementation of nonessential amino acids 120 
is crucial in T cell proliferation. T cells may be auxotrophic to alanine16, which can in principle be 121 
synthesized from pyruvate in a single step using alanine transaminase. Similarly, serine which can be 122 
synthesized from glycolysis intermediate 3-phosphoglycerate, also needs to be supplemented externally 123 
in proliferating T cells17. Consumed serine is used synthesis of proteins, lipid headgroups, nucleotides, and 124 
amino acids glycine and proline. Serine is also a key component of the one-carbon cycle which is essential 125 
for generating methyl groups that are used for DNA methylation.  126 
 127 
Pathogenic rewiring of T cells in SLE  128 
There is now a growing consensus that impaired metabolic rewiring of T cells is central to pathogenesis of 129 
SLE. It could be argued that the most well-documented metabolic impairment in SLE T cells, especially 130 
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human, are differences in mitochondrial utilization of glucose. When stimulated, SLE T cells show a 131 
marked increase glycolysis along with an increase in OXPHOS10 with potentially lowered NADPH 132 
production through the PPP18. SLE T cells are characterized by a high oxidative state and depleted levels 133 
of glutathione19. Higher glycolysis in SLE T cells is achieved through a higher expression of GLUT120 and 134 
higher of OXPHOS21 is achieved through an increased mitochondrial biomass22. Paradoxically, 135 
mitochondria in SLE produce less ATP compared to healthy controls (HC) even though they are 136 
hyperpolarized22. Additionally, evidence suggests that there are significant differences in glutamine23 and 137 
lipid metabolism24 in SLE T cells. A subset of CD4+ T cells producing IL-17 (Th17 cells) is expanded in SLE 138 
patients. Based on studies in mice, differentiation of Th17 cells relies strongly on glutaminolysis25, as well 139 
as de novo lipid and cholesterol synthesis26.  140 
 141 
These key differences in metabolic rewiring have led to several potential therapeutic targets, some in 142 
clinical trials, that are orthogonal to the standard of care for SLE based on steroidal and nonsteroidal 143 
immunosuppressants27-29. These include a combination therapy of 2-deoxy-D-glucose (2DG) and 144 
metformin that inhibit the first step of glycolysis and mitochondrial activity, respectively9, 10, and inhibition 145 
of glutaminase, the first enzyme in glutaminolysis30, in lupus-prone mice. Supplementation with N-acetyl 146 
cysteine, a reducing agent that is a precursor of cysteine, an amino acid used in glutathione synthesis, and 147 
treatment with mTOR inhibitor sirolimus or with metformin, have shown promising results in SLE 148 
patients31-34. The overarching goal to use cellular metabolism to selectively dampen the inflammatory 149 
autoreactive immune cells in SLE mirrors a growing effort to activate exhausted immune cells in the tumor 150 
microenvironment also through metabolic reprogramming35.  151 
 152 
A need for system-wide study of metabolic changes  153 
 154 
Several genetic, signaling, and metabolic investigations suggest that there are large scale differences in 155 
the metabolism of HC and SLE T cells4. However, most previous works, including those cited above, have 156 
studied metabolic pathways/nutrients in isolation, either by using only one approach (e.g. metabolomics 157 
or transcriptomics) or one metabolic pathway (e.g. glycolysis). At the same time, the human metabolic 158 
network simultaneously carries out thousands of interdependent chemical conversions36, with in-built 159 
large-scale dependencies and compensation mechanisms. Moreover, metabolic reactions are governed 160 
by tight constraints imposed by mass11 and energy balance37 as well as laws of thermodynamics37. 161 
Therefore, exchange of nutrients/waste product and their relationship with cell proliferation and the 162 
cellular metabolic state must be understood simultaneously.  163 
 164 
Such analysis requires quantitative knowledge of metabolic demands of proliferating T cells, both healthy 165 
as well as those in SLE patients. Unfortunately, even the most basic quantification of differences in 166 
metabolic demands is not available. For example, it is well established that SLE T cells have higher 167 
mitochondrial mass22. But systematic changes in organelle distribution and their effect on overall biomass 168 
composition in SLE is not known. Similarly, the cytokine secretion profile is significantly altered between 169 
SLE and healthy T cells38, with an increased production of pro-inflammatory cytokines in SLE. However, 170 
the metabolic burden of increased cytokine production by SLE T cells has not been quantified. Altered 171 
metabolic demands related to biomass and cytokine production have a direct effect on the nutrient 172 
uptake profile, downstream nutrient usage, and consequently the entire metabolic network. For example, 173 
increased protein (cytokine) production requires higher levels of synthesis of amino acids and higher ATP 174 
demand39. Similarly, increased organelle mass requires higher de novo lipid synthesis, which in turn 175 
requires increased NADPH and NAD+40 regeneration rates.  176 
 177 
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Therefore, to elucidate metabolic driving mechanism of SLE pathogenesis and to discover new druggable 178 
targets for SLE and other autoimmune disorders, we need a systematic and unbiased characterization of 179 
the differences in metabolic requirements as well as metabolic network activity of SLE and healthy T cells.  180 
 181 
Towards a system-wide understanding of T cell metabolism using computational integration  182 
 183 
How do we obtain a network-wide characterization of T cell metabolic activity? Advances in genomics, 184 
proteomics, and metabolomics allow us to obtain a high dimensional and high-resolution characterization 185 
of cellular metabolism. However, these measurements only provide indirect information about the 186 
metabolic state of cells - network-scale enzyme activity or reaction rates. This is because reaction fluxes 187 
are a complex function of enzyme kinetics41, thermodynamics41, metabolomics41, and gene expression42, 188 
and therefore are not uniquely determined by -omics characterizations. For example, metabolite levels 189 
may be high either because of a high rate of production or a low rate of clearance. Similarly, high gene 190 
expression levels may imply higher reaction rates or a compensatory mechanism to maintain constant 191 
reaction rates. Therefore, typical omics measurements cannot be directly used to infer differences in 192 
metabolic states of cells. Moreover, while labeled carbon experiments allow estimation of intracellular 193 
fluxes in bacteria43, 44, a direct measurement of most intracellular fluxes is not possible in mammalian cells, 194 
owing to compartmentalization43. Consequently, metabolic states cannot be characterized using direct 195 
measurements either.  196 
 197 
A way to overcome these limitations is through computational modeling and data integration. Notably, 198 
omics-based indirect characterizations can be integrated with cell physiological information such as 199 
proliferation rate, cell size, cytokine excretion rate, and crucially, the consumption and release rates 200 
(CORE) of several nutrients and waste products, which can be accurately measured in cell culture using 201 
mass spectrometry45. This integration can be achieved using the flux balance analysis (FBA) framework11 202 
(Figure 2). 203 
 204 

 205 
Figure 2. Flux balance (FBA) framework integrates biophysical constraints and measurements with 206 
transcriptomics. (A) Genome-scale map of metabolic interconversions is expressed as the stoichiometric matrix 𝑆 207 
whose entries 𝑆!" denote the participation of metabolites 𝑚 in reactions 𝑟. If metabolite concentrations are at steady 208 
state, the vector  𝚥 ̅of reaction rates must be in the null space of 𝑆. These linear constraints and reasonable upper and 209 
lower bounds on reaction fluxes ( 𝑙 ̅ ≤ 𝚥̅ ≤ 𝑢)) defines a feasible space. The feasible space can be further constrained by 210 
biophysical and transcriptomic measurements. Markov chain Monte Carlo methods can sample flux distributions 211 
consistent with imposed constraints. (B) Consumption and release (CORE) rates of high flux metabolites (glucose (glc), 212 
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glutamine (gln), lactate (lac), and glutamate (glu)) and lower flux nutrients (other amino acids) are shown. Error bars 213 
represent standard error of the mean from n = 4 measurements each. (C) Inferred intracellular metabolic fluxes in in 214 
vitro stimulated CD4+ T cells from in HC and SLE mice. Shown are key metabolic reactions in glycolysis (green), TCA 215 
cycle (cyan), and oxidative pentose phosphate pathway (red). Key enzymes in these pathways are shown in magenta 216 
boxes. Numbers represent model estimated reaction rates in millimoles per gram dry cell weight per hour (mmol/g-DW-217 
hr). 218 
 219 
While omics data do not uniquely determine the fluxes using FBA, they do constrain the plausible fluxes 220 
to a feasible space11. To further identify unique fluxes, FBA approaches typically invoke optimality of an 221 
underlying objective function, for example, fast growth or maximum yield, to obtain a unique flux 222 
solution46. While these optimality-based approaches have been quite successful in modeling metabolism 223 
of single cell organisms46, mammalian cells have not necessarily evolved for fast growth, and the specific 224 
metabolic objective (e.g. lipid production, cytokine secretion, cell proliferation, etc.) may depend on cell 225 
type and extracellular environment and may not even be metabolic in nature.  226 
 227 
In the absence of direct measurements, a conceptually straightforward way to obtain an estimate of 228 
intracellular fluxes is probabilistic sampling of the feasible space using a Bayesian framework and Markov 229 
Chain Monte Carlo47 that integrates all available measurements and biophysical constraints. For example, 230 
the feasible space defined by CORE measurements and proliferation rates can be further constrained 231 
using transcriptomics by requiring fluxes to align with reaction activity scores42. Moreover, fluxes can be 232 
required to satisfy energy balance37, thereby eliminating unrealistic loops that satisfy mass balance but 233 
violate the 2nd law of thermodynamics.  234 
 235 
To test whether such an integration can consistently identify potential differences in metabolic states of 236 
SLE and healthy T cells, we performed preliminary analyses on splenic CD4+ T cells from lupus-prone and 237 
healthy control mice (see methods). CD4+ T cells that do not express surface markers associated with 238 
receptor activation (i.e. “naïve”) were used to eliminate the differences in activation status that exist 239 
between SLE and HC T cells. We measured uptake/excretion rates of amino acids, glucose, and lactate in 240 
these T cells that were activated in vitro through their CD3ε, a signaling subunit of the T cell receptor, and 241 
the co-receptor CD28. As shown in Figure 2B, there are large scale differences in nutrient exchange profile 242 
with highest exchange fluxes were glucose/lactate and glutamine/glutamate. Surprisingly, while most 243 
amino acids were consumed, glutamate, alanine, aspartate, and glycine were excreted. Importantly, there 244 
were significant differences in exchange fluxes between T cells from healthy and lupus mice.  These data 245 
already hint at global metabolic differences between SLE and healthy T cells that could not be detected 246 
by traditional metabolomic analyses.  247 
 248 
Next, by sampling the feasible space constructed using the FBA framework, we obtained posterior 249 
distributions of intracellular fluxes. Fluxes from these distributions satisfied mass balance and laws of 250 
thermodynamics as imposed by the metabolic network. The fluxes were constrained to reproduce the 251 
measured growth rate and nutrient exchange rates. The fluxes were also biased to align with gene 252 
expression profiles obtained by RNA sequencing. Figure 2C shows that according to the Bayesian model, 253 
there are network-wide differences in metabolism of T cells. Overall, SLE T cells had a more active 254 
metabolism, ∼ 76% of the reactions in the model had a higher flux in the TC mouse. These preliminary 255 
analyses show that simple biophysical and metabolic experiments, combined with transcriptomics and 256 
genome-wide metabolic models can allow us to estimate a detailed picture of intracellular fluxes.  257 
 258 
These predictions offer a systematic route to integrate measured information to obtain testable 259 
hypotheses. For example, consistent with known SLE pathology, glucose consumption by TC mice is 260 
significantly higher compared to B6 mice10. Surprisingly, while lactate excretion by TC mice is also higher4, 261 
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10, the fraction of pyruvate excreted as lactate is similar between B6 and TC mice. This suggests that higher 262 
lactate production by T cells of TC mice may largely be explained by their higher proliferation rate and 263 
consequent higher metabolic activity. Indeed, consistent with the model prediction, despite shifts in 264 
glucose and lactate utilization, the ratio of oxygen consumption rate (OCR) to extracellular acidification 265 
rate (ECAR), a proxy for pyruvate utilization, is similar between B6 and TC mice10. In contrast, the absolute 266 
amount as well as the fraction of glucose entering the oxidative pentose phosphate pathway is higher in 267 
T cells from TC mice. This may reflect not only the higher demand for anabolic NADPH but also NADPH 268 
required to regenerate glutathione. While fluxes in Figure 2B are only predictions, these examples show 269 
that they offer numerous testable hypotheses about utilization of nutrients.    270 
 271 
These preliminary analyses show that integration of biophysical measurements, gene expression data, 272 
and estimates of consumption and release rates of metabolites can be integrated in a unifying Bayesian 273 
framework to obtain unbiased predictions about metabolic states of cells.  274 
 275 
Outlook 276 
 277 
Exploiting the changes in the metabolic network is an attractive therapeutic avenue in treating 278 
autoimmune disorders like SLE that is orthogonal to current immunosuppressant-based treatments or 279 
even more novel biologics targeting specific immunological cells or pathways. However, our current 280 
understanding of metabolic differences in SLE and healthy T cells is limited to study pathways in isolation. 281 
While it remains experimentally challenging to directly probe the entire metabolic network, 282 
computational methods can integrate several pieces of omics information and biophysical constraint to 283 
predict network activity. We believe that these approaches will be an important tool in a global 284 
understanding of T cell metabolism in health and disease.  285 
 286 
 287 
Methods 288 
 289 
Naïve CD4+ T cells purified with by negative selection with antibody-coated magnetic beads (Miltenyi 290 
Bioetch.) from the spleen of B6 and B6.Sle1.Sle2.Sle3 (TC) mice were stimulated with plate-bound anti-291 
CD3 and soluble anti-CD28 antibodies in serum-free RPMI medium as previously described10 with the 292 
addition of 25 mM glucose and 10 mM glutamine . Consumption and release (exchange) rates of amino 293 
acids, glucose, and lactate were measured using mass spectrometric analysis of cell culture supernatant 294 
as described previously45. Cell numbers were measured in stimulated cells on day 2 and day 3 of growth 295 
to fit an exponential growth parameter. 296 
 297 
Exchange fluxes and growth rates were used in a flux balance model of the human metabolic network. 298 
The metabolic model comprises the union of all reactions that enzymes coded in the human genome can 299 
support. To obtain a tissue specific pruned model, we used the measured exchange rates and proliferation 300 
rates as described before40. The constraints imposed by steady state metabolite concentrations, exchange 301 
rates, and proliferation rates described a convex polytope of plausible intracellular fluxes. We sampled 302 
intracellular fluxes from this polytope using rejection sampling that rejected flux distributions that 303 
violated the second law of thermodynamics37. Additionally, we biased the flux distribution using gene 304 
expression that was converted into reaction activity scores42, 48 - aggregate expression levels of genes that 305 
correspond to a given metabolic reaction. The data and the scripts used for this preliminary analysis can 306 
be found at https://github.com/adgoetz186/Flux_Code. 307 
 308 
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