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Abstract 

This study evaluates the noise resilience of multi-objective Bayesian optimization 

(MOBO) algorithms in chemical synthesis, an aspect critical for processes like 

telescoped reactions and heterogeneous catalysis but seldom systematically assessed. 

Through simulation experiments on amidation, acylation, and SNAr reactions under 

varying noise levels, we identify the qNEHVI acquisition function as notably proficient 

in handling noise. Subsequently, qNEHVI is employed to optimize a two-step 

heterogeneous catalysis for the continuous-flow synthesis of hexafluoroisopropanol. 

Achieving considerable optimization within just 20 experimental runs, we report an E-

factor of 0.3744 and a conversion rate of 76.20%, with optimal conditions set at 5.00 

sccm and 35.00℃ for the first step, and 80.00 sccm and 170℃ for the second. This 

research highlights qNEHVI's potential in noisy multi-objective optimization and its 

practical utility in refining complex synthesis processes. 
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Introduction 

Chemists have long depended on their intuition and expertise to optimize chemical 

reactions, which is a complex task evaluating parameters including reactant 

concentration, residence time, and reaction temperature1. Bayesian optimization has 

become a popular and effective method in recent years2-4, which strikes a balance 

between exploration and exploitation and efficiently reaches global optimum4-6. 

Meanwhile, the capability of multi-objective Bayesian optimization (MOBO) 

facilitates the optimization of complex multidimensional problems that involve 

competing objectives (such as space-time yield and E-factor)7-10. MOBO applied to 

chemical reaction optimization can search large new parameter spaces more efficiently 

than humans. In addition, these algorithms use only the minimum number of 

experiments but gain the most experimental information, making their application in 

the pharmaceutical industry attractive11.  

 

The optimization of multistep chemical syntheses is critical for the rapid development 

of new pharmaceuticals, as they minimize the number of intermediate purification steps 

and the use of solvents12. However, the optimization of telescoping reactions is a very 

time-consuming and labor-intensive task. Concatenating multiple reaction steps must 

consider the negative impact of intermediates on the next step (e.g., by-products, 

catalyst toxicity). Therefore, multistep synthesis of all variables has to be optimized 

simultaneously. Simultaneous optimization of the entire reaction system can reduce the 

number of optimization variables and decrease the time and cost of separating 
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intermediate products13. Lapkin et al. applied MOBO to synthesize p-cymene 

hydrocarbons from crude sulfated turpentine to maximize conversion and selectivity14. 

Kappe et al. successfully optimized the application of a two-step synthesis (imine 

formation-cyclization) of edaravone using MOBO15. However, there is little literature 

on MOBO in multistep heterogeneous response optimization, which is an even more 

complex problem. 

 

Heterogeneous catalysis is one of the most valuable synthetic processes, and kinetic 

modeling is one of the traditional methods for optimizing this process16-18. However, 

the tedious process of eliminating internal and external mass transfer and determining 

residence time limits the efficiency and accuracy of kinetic modeling. In addition, 

experimental results of heterogeneous catalysis often come with noise introduced by 

temperature, barometric pressure, and other environmental factors, which may lead to 

lower search efficiency and convergence properties in the optimization19. Our 

previously developed MOBO platform20 used NEHVI, a MOBO acquisition function 

for hypervolume maximization in both noisy and noise-free environments21, but the 

comparison of different acquisition functions in terms of their ability to handle noise 

has not been systematically studied.  

 

In this work, we first compared the noise-handling ability of four MOBO acquisition 

functions in optimizing three reactions at different experimental noise levels. 

Previously developed kinetic models of these reactions were used to simulate noisy 
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experimental results. Then, the acquisition function that handles the noise best was 

applied to a wet-lab telescoped synthesis of HFIP (hexafluoroisopropanol), where the 

first step involves a gas-liquid two-phase catalysis and the second step involves a gas-

liquid-solid three-phase catalysis.  

Experimental  

Gaussian Processes. In Bayesian optimization, Gaussian Processes (GPs) are an 

effective surrogate model for guiding the search for the optimum of the expensive-to-

evaluate objective function. By utilizing GPs, Bayesian optimization strikes a balance 

between exploring the unknown region and exploiting the known region of high payoffs 

to efficiently explore the parameter space22. Using the Mat�́�rn class23 (Eq. 1) as a kernel 

in GP, the smoothness of the model can be adjusted to fit the characteristics of the 

objective function. 
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where 𝜎𝑓
2 is the output variance，𝑟 is a weighted Euclidean distance, 𝑣 is non-negative parameters,  

𝐾𝑣 is the modified Bessel function, 𝛤 is the gamma function. 

 

Acquisition functions for MOBO. Expected Hypervolume Improvement (EHVI) (Eq. 

2) is used to select assessment points by estimating the expected increase in the 

hypervolume of a known Pareto front after incorporating the new point(s)24. The 

hypervolume is a measure of the space covered by the Pareto front in the objective 

space, and improving it means finding better a tradeoff between the objectives. Noisy 

expected hypervolume improvement (NEHVI) (Eq. 3) is a variation of EHVI designed 
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to deal with noise in the evaluation of objective functions21. It takes into account the 

uncertainty in the objective measurements and provides a more robust approach to 

optimization under noisy conditions. The “q” prefix in qEHVI and qNEHVI indicates 

that the acquisition function is intended to suggest a batch of points to be evaluated in 

each iteration. When q is set to 1, only a single point is suggested. 
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Where 𝒳𝑐𝑎𝑛𝑑  is the candidate sample, HVI  is the hypervolume improvement，𝑃𝑡  is the 

Pareto front, 𝑓 is the Black-box objective function, 𝑓 is the sampling function, N is the number of 

samples. 

 

TSEMO is an algorithm that approximates Pareto sets using a limited number of 

function-valued approximations (Eq. 4)25. It extends the Thompson Sampling (TS) 

method, traditionally used for multi-armed bandit problems, to the field of continuous 

multi-objective optimization. TSEMO allows for efficient exploration and utilization 

of the solution space in problems involving multiple conflicting objectives, taking 

advantage of the Thompson Sampling method to balance the trade-offs inherent in 

multi-objective optimization tasks. 

( ) ( ) ( ) ( )1 2minimize , ,...,d mx
G x g x g x g x

 
=                                              (4) 

where 𝒳 is the design space, 𝑥 is the decision vector, and G is a vector of m scalar objectives 

gi (x) to be minimized. 

 

ParEGO26 is an extension of Efficient Global Optimization (EGO) framework. It 

addresses complex multi-objective optimization problems by employing an initialized 
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weight vector k, in conjunction with the augmented Tchebycheff function for 

secularization. This methodology effectively aggregates the multiple objectives into a 

singular optimization challenge. By sequentially extracting individual objectives and 

utilizing the Expected Improvement (EI) as the selection criterion, ParEGO 

systematically identifies the subsequent candidate solution, thereby streamlining the 

process of navigating through expensive multi-objective optimization landscapes. 

The uniformly distributed weight vector k in ParEGO is defined as: 

( )  1 2 3 1
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                               (5)  

With   = (
𝑠 + 𝑘 − 1

𝑘 − 1
). s determines the total number of vectors, and the scalar cost of the 

solution is calculated using the Tchebycheff function. 
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where   is a constant set equal 0.05 and 𝜆 is the weight vector. 

 

In-silico generation of noisy experiment results. Our group has dedicated the past 

five years to the extensive development of kinetic models, focusing on flow chemistry 

reactions. Throughout this period, we have constructed and validated a comprehensive 

collection of kinetic models, drawing upon a vast array of experimental data. In the 

present study, we have selected two models27, 28 from our repository and incorporated 

an additional model developed by the Lapkin group29 to simulate experimental 

outcomes.  
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The predetermined pre-exponential factors (A) and activation energies (Ea) of each 

kinetic model were used to calculate rate constants via the Arrhenius equation (Eq. 7).  

Ea

RTk Ae
−

=                                                                                                         (7) 

where k is the rate constant, R is the molar gas constant, T is the thermodynamic temperature. 

 

Under the new reaction conditions recommended by the acquisition function, the 

concentration of each reaction component was obtained by solving the reaction rate 

equations (Eq. 8) using the ordinary differential equation solver of SciPy. 

2
1 2 2 3

dC
kC C kC C

dt

   = − −                                                                                (8) 

where C1 and C2 are the concentration of the reaction material, C3 is the main product 

concentration. α, β,  γ and δ stand for reaction orders 

 

Subsequently, Gaussian noise in the form of standard deviation was added into these 

concentrations (Eq. 9). 

( ') ( ) ( )f x f x f x = +                                                                              (9) 

where ( ')f x  is the objective function with noise,    is the experimental noise, which 

conforms to the Gaussian distribution4. The   was taken as 0.05, 0.10, 0.15, 0.20 in this work. 

 

Chemicals. The reactant Hexafluoropropylene oxide (C3F6O) was purchased from 

Shanghai Qinba Chemical Co., Ltd. with 98% purity, and nitrogen (99.9%) was 

supplied by Zhejiang Ottesen Gas Co. Al2O3 (≥92%) was purchased from Shanghai 

Maclean Biochemical Technology Co. Hydrogen (H2, 99.999%) was purchased from 

Zhejiang Ottesen Gases Co., Ltd. The palladium/carbon powder catalyst (Pd/C, 10 wt %, 
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wetted with ca.55% water) was purchased from Anhui Zesheng Technology Co., Ltd. 

Continuous flow reactor. The first experimental step in the synthesis of HFIP was the 

preparation of Hexafluoroacetone (HFA) from Hexafluoropropylene oxide (HFPO). As 

shown in Figure 1, the flow rate of the feedstock HFPO gas was controlled by a mass 

flow controller (Beijing Seven Star Huachuang Flowmeter Co., Ltd.). The reaction was 

carried out in a micro-packed bed reactor (MPBR) embedded with the catalyst of 1 g, 

and the MPBR and two coils were immersed in an oil bath to control the reaction 

temperature.  

 

The second step of the experiment was the preparation of HFIP from HFA gas, again 

in an MPBR with catalyst (Pd/C, 10 wt.%, wetted with ca.55% water, filling volume of 

1g), which was heated in an oil bath. A three-way valve was installed at the beginning 

of the unit, with one end connected to the previous reaction and the other to hydrogen. 

A three-way valve was also installed at the end, connected to a gas absorption device 

at one end and a gas sampling unit at the other. All MPBRs were made of 316 L stainless 

steel and had an inner diameter of 4.6 mm and a length of 15 cm. 

 

The feedstock HFPO was delivered to the first reactor section at a predetermined flow 

rate. When the system reached a steady state (three times the residence time), the first 

three-way valve was opened and the gases from the first reactor step were delivered to 

the second reactor section along with the hydrogen gas at a predetermined flow rate. 

Sampling began once the system reached a steady state. Once sampling was complete, 
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the temperature control equipment was turned off and nitrogen was introduced into the 

reactor to remove residual feedstock and hydrogen and to ensure that the catalyst was 

in a nitrogen environment, thereby protecting its activity. 

  

Figure 1. Overview of the continuous flow system for the telescoped synthesis of HFIP. 

Sample preparation. Gases were collected from the outlet of the final reactor at a 

predetermined time using A gas sampling bag (Dalian Delin Gas Packaging Co., TD-

401-0.005) (Fig. 1). Before each GC analysis, the gas was extracted from the sampling 

bag and then injected into the GC using a gas-tight needle. The gas extraction and 

analysis were repeated three times for each sampling bag. 

Sample Analysis. The samples were measured by a Gas Chromatograph (GC) (Foley 

9790plus). Measurement conditions were as follows: column type: HP-INNOWAX 

(30m × 0.25 mm × 0.5μm), column temperature was maintained at 80 ℃ for 5 min and 

then ramped up to 200 ℃ at a rate of 10 ℃/min. The inlet temperature was 250 ℃. The 

FID detector temperature was 250 ℃. The airflow rate was 300 mL/min. The hydrogen 

flow rate was 30 mL/min, and the carrier gas (N2) flow rate was 0.8 mL/min. The 

normalized peak areas (NPA, %) obtained from the GC chromatograms were used to 

calculate the conversion (C) as shown in Eq. 1030.  
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where AHFPO0 and AHFPOt, represent the normalized peak areas of pre-reaction HFPO and post-

reaction HFPO. 

 

The E-factor is defined as the ratio of the mass of waste to product (Eq. 11)8. 

factor waste

product

m
E

m
− =                                                                                                      (11) 

where 𝑚𝑝𝑟𝑜𝑑𝑢𝑐𝑡, 𝑚𝑤𝑎𝑠𝑡𝑒 represent the mass of the product and the waste.  

 

Results and Discussion 

In-silico comparison of the noise-handling capability of different MOBO 

acquisition functions. The first part of this study is to investigate the noise-handling 

capability of four MOBO acquisition functions by comparing their performance in 

chemical reactions under different noise levels. Since it is difficult to control the noise 

level in wet lab experiments, kinetic models were used to simulate noisy experimental 

results. We chose three reactions with known kinetic models (Scheme 1), including the 

condensation amidation of piperazine with benzoic acid31 (Case 1), the nucleophilic 

aromatic substitution between 2,4-difluoronitrobenzene and morpholine29 (Case 2), and 

the monoacylation reaction of m-phenylenediamine and benzoic anhydride27 (Case 3).  
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Case 1. Condensation amidation of piperazine with benzoic acid. 

 

Case 2. SNAr reaction. 

 

Case 3. Continuous flow monoacylation reaction  

Case 1 2 3 

Variables 

Temperature (-30-70 ℃) 

Residence time (30-120 s) 

Con. of 1 (10-200 mM) 

HAUT (10-200 mM) 

Con. of 2 (10-200 mM) 

Temperature (30-120 ℃) 

Residence time (30-120 s) 

Con. of 5 (0.1-0.5 M) 

equivalents of  6 (1.0–5.0) 

Temperature (30-120 ℃) 

Residence time (30-120 s) 

Con. of 11 (0.1-0.5 M) 

equivalents of  10 (1.0–3.0) 

Objectives Yield and E-factor 

Scheme 1.  Three cases and their optimization variables and goals 

 

The workflow for performing MOBO based on kinetic model simulators using the 

FlowBO platform is shown in Figure 2. FlowBO is a Bayesian Optimization platform 

for flow chemistry that was first developed in our previous work20. In this study, 

FlowBO was added with three different acquisition functions: qNEHVI, qEHVI, and 

qNParEGO. Also, the well-recognized open-source MOBO platform TSEMO8 was 

used as a benchmark (comparison with three acquisition functions based on Gaussian 
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processes). In this workflow, the user first identified the variables and objectives to be 

optimized (Scheme 1, lower part). The initial set of experimental variables was then 

sampled by Latin Hypercube Sampling  (LHS)29 and fed into the kinetic model 

simulator, and the corresponding results were used for the initial training of the 

surrogate model. Based on the trained surrogate model, the MOBO acquisition function 

proposed new experimental variable settings, and the kinetic model simulator generated 

the corresponding experimental results. After adding the newly generated results to the 

training dataset, the next iteration started with updating the surrogate model using the 

updated training dataset. This iteration continued until a predetermined maximum 

number of experiments was reached. This workflow was conducted independently for 

each MOBO acquisition function.  

 

 

Figure 2. The workflow of using FlowBO to perform multi-objective Bayesian optimization 

(MOBO) based on kinetic model simulators 
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The hypervolume was calculated after each Bayesian optimization iteration (Figure 3). 

A larger hypervolume means an improved Pareto front that leads to better multi-

objective optimization. The results show that qNEHVI significantly outperforms other 

MOBO acquisition functions in both the final hypervolume and the initial rate of 

hypervolume increase in the high-noise cases (15% and 20%) of Case 2 and Case 3. In 

contrast, the benchmark TSEMO did not perform well in both cases at a 10% noise 

level or higher, whose hypervolume growth was significantly hindered by increased 

noise. On the other hand, in Case 1, the final hypervolume of all the algorithms is 

comparable, implying that this reaction’s optimization was not significantly affected by 

noise, probably due to the relative simplicity of its reaction mechanism. As described 

in the original work on this algorithm, qNEHVI maintains one-step Bayesian optimality 

in noisy environments by integrating over the uncertainty of the function values at the 

observed points21, which allows it to identify well-distributed Pareto fronts under highly 

noisy observations. Furthermore, our observations show that qNEHVI and qEHVI 

perform similarly in all cases under lower noise (5%) conditions, which is consistent 

with the literature claim that both algorithms perform equally well in experiments when 

no noise is introduced21. 
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Figure 3. Plots showing the average change in hypervolume across 10 runs with 25 function 

evaluations each. The shaded area is the upper and lower limits 

 

 

In addition, the mean computational time required for each MOBO acquisition function 

was analyzed (Table 1). The results show that it required the longest time to compute 

TSEMO, which has a time-consuming multi-objective genetic algorithm (NSGA-II)25. 

Case 3Case 1 Case 2

20%

10% 10% 10%

15% 15% 15%

20% 20%

5% 5%5%
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In contrast, qNEHVI was the fastest to compute as the method has a second-order 

gradient algorithm (L-BFGS-B) with random restarts32. In addition, all three MOBO 

acquisition functions embedded in FlowBO, including qNEHVI, qEHVI, and 

qNParEGO, were implemented based on the BoTorch framework with GPU 

acceleration33. 

Table 1.  Mean computational time of the MOBO models in each case 

Case 
Computational time (min) 

qNEHVI qEHVI qNParEGO TSEMO 

1 1.14 1.24 0.84 3.02 

2 0.98 0.81 1.20 3.24 

3 1.21 1.40 0.90 3.05 

 

Our previous work has successfully used qNEHVI as a MOBO acquisition function 

algorithm for the multi-objective optimization of a one-step heterogeneous catalysis 

reaction30. Near the end of this study, we noticed that the Lapkin group reported a better 

optimization of qNEHVI than TSEMO for the MOBO of the Schotten-Baumann 

reaction, both in terms of hypervolume improvement and computational time32, which 

is also consistent with our findings in this study.  

 

Performing MOBO for a two-step heterogeneous catalysis in continuous flow. 

Based on the results of Part 1, we decided to use qNEHVI as the MOBO acquisition 

function for telescoped flow synthesis of hexafluoroisopropanol (Figure 4). The aim of 

the optimization was to maximize the conversion while minimizing the E-factor (total 

waste produced by the process/total products)34.  

https://doi.org/10.26434/chemrxiv-2024-9257k ORCID: https://orcid.org/0000-0002-6544-3959 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-9257k
https://orcid.org/0000-0002-6544-3959
https://creativecommons.org/licenses/by-nc/4.0/


 

Figure 4. Multi-step synthesis of HFIP from HFPO 

The ranges of decision variables are shown in Table 2. The ranges of gas flow rates of 

HFPO and hydrogen were determined by the limits of the mass flow controller. In 

addition, the upper limit for T1 (the temperature for the first step reaction) was set to 

120℃ because HFPO tends to decompose at temperatures above 150 ℃35. The upper 

limit for T2 (the temperature for the second step reaction) was set to 170 ℃ for the 

safety of the tubular reactor. 

Table 2.  Lower and upper bounds for decision variables in optimization 

Range a FHFPO (ml/min) T1 (℃) Fhydrogen (ml/min) T2 (℃) 

Lower 5 35 5 35 

Upper 45 120 100 170 

a. The temperature of the first reaction step (T1), the flow rate of hydrogen (Fhydrogen), the temperature of the 

second reaction step (T2), and the flow rate of hexafluoropropylene oxide (FHFPO) . 

 

The main difference between the MOBO in Part 1 and Part 2 was that the experiment 

results in Part 2 were derived from wet lab experiments instead of the simulator (Figure 

5). During the sampling phase, the LHS sampled ten sets of experimental conditions, 

and their corresponding experimental results were used as the initial training dataset. 

The surrogate model (Gaussian Process) was then trained on this dataset, after which 

the qNEHVI recommended a new set of experimental conditions (temperature, flow 

rate, etc.). Experimental data from the new experiments were added to the training 

dataset for a new round of surrogate model training and qNEHVI recommendation. The 

optimization stopped after ten rounds of iterations. 
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Figure 5. Multi-objective Bayesian optimization (MOBO) with wet lab experiments. The 

iterative process was repeated until the conversion rate and environmental factors reached a 

satisfactory compromise. 

 

The optimization results are shown in Figure 6a. The black symbol x represents the ten 

data points in the initial sampling phase, and the color represents the number of 

iterations in the optimization phase. A maximum conversion rate of 76.20% and a 

minimum E-factor of 0.3744 were found in Iteration 9 of the optimization phase. Figure 

6b shows the effect of each variable on the two objectives. As the ratio of Fhydrogen and 

FHFPO decreased, the conversion rate increased significantly. On the contrary, when this 

ratio was too large, the conversion rate decreased slightly and the E-factor increased, 

possibly due to the insufficient contact between the reactants and the catalysts. In 

addition, the increase in T2 significantly increased the conversion rate.  
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Figure 6. Experimental results of multi-objective optimization a) E-factor and Conversion. b) 

Exploration of four decision variables. The symbol X represents the 10 initial samples of LHS 

and the color represents the number of iterations in the acquisition function suggestions. 

 

Table 3 lists the corresponding experimental conditions in Figure 6. We noted that the 

optimization searched for experimental conditions close to the optimal result, such as 

Iterations 6 and 10 suggested in the optimization phase. On the other hand, the 

algorithm also searched in relatively unfamiliar sampling space (e.g., Iterations 2 and 4 

in the optimization phase), significantly different from the variable combinations in the 

sampling phase. These phenomena suggest that the qNEHVI algorithm maintains a 

good balance between exploitation and exploration - while exploitation tries to improve 

the current optimum, exploration is essential to avoid falling into local optima. 
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Table 3. Combination of variables explored by Bayesian optimization with data sampled by 

LHS and acquisition function.  

Sampled By Entries/Iterations 
FHFPO 

(ml/min) 
T1 (℃) 

Fhydrogen 

(ml/min) 
T2 (℃) Conversion E-factor 

LHS  

(sampling 

phase) 

1 25.25 47 19.40 32 15.52 5.742 

2 16.25 82 66.80 75 32.36 2.234 

3 41.75 116 75.30 90 22.16 3.722 

4 38.75 90 47.80 47 10.39 9.071 

5 29.75 99 28.80 61 18.62 4.620 

6 34.25 56 9.80 105 3.560 28.39 

7 20.75 73 38.30 119 16.47 5.354 

8 11.75 64 57.30 134 59.91 0.7470 

9 7.25 107 85.80 148 40.31 1.597 

10 43.25 39 95.30 163 23.15 3.520 

Acquisition-

function 

(optimization 

phase) 

1 21.70 61 64.60 150 18.83 4.558 

2 26.20 117 8.60 35.0 0.925 112.1 

3 22.10 53 24.40 46.0 0.426 244.6 

4 9.10 105 32.00 142 29.92 2.4978 

5 46.80 73 76.00 167 3.712 27.19 

6 9.00 48 94.00 155 74.32 0.4087 

7 5.00 45 89.00 108 54.5 0.9218 

8 5.00 72 100.00 170 69.82 0.5003 

9 5.00 35 80.00 170 76.20 0.3744 

10 5.00 35 100.00 170 74.97 0.3972 

 

Conclusion 

In this work, we first developed an in-silico platform to rapidly screen MOBO methods 

and then performed wet-lab experiments to validate the selected MOBO method. In the 

in-silico platform FlowBO, we generate noisy experimental results using a reaction 

simulator based on kinetic modeling and compared the noise-handling ability of four 

MOBO acquisition functions in the MOBO of three different reactions. qNEHVI 

performed the best in high-noise environments and had the shortest time to find the 

optimal solution. In wet-lab experiments, we applied qNEHVI to the MOBO of the 

telescoped heterogeneous synthesis of HFIP. Experimental results show that qNEHVI 
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can quickly find a compromise for the conversion and E-factor within an acceptable 

number of trials. In future work, we will aim to embed telescoped reaction simulators 

on the FlowBO platform for MOBO method screening in more difficult tasks. In 

addition, we will test telescoped catalysis involving more than two steps or in 

combination with separation processes to further demonstrate and improve MOBO 

methods. 

Supplementary Material 

The Supplementary Material provides the following content: 

1. Kinetic equations for Scheme 1; 

2. Numerical values for Figure 3;  

3. NMR spectra and HRMS data. 

Acknowledgments 

This research was supported by Zhejiang Province Science and Technology Plan 

Project under Grant No. 2022C01179 and the Joint Funds of the Zhejiang Provincial 

Natural Science Foundation of China under Grant No. LHDMZ23B060001. 

References 

1. Taylor CJ, Pomberger A, Felton KC, Grainger R, Barecka M, Chamberlain TW, 

Bourne RA, Johnson CN, Lapkin AA. A Brief Introduction to Chemical Reaction 

Optimization. Chem Rev. 2023;123(6):3089-3126. 

2. Häse F, Roch LM, Kreisbeck C, Aspuru-Guzik A. Phoenics: A Bayesian Optimizer 

for Chemistry. ACS Cent Sci. 2018;4(9):1134-1145. 

https://doi.org/10.26434/chemrxiv-2024-9257k ORCID: https://orcid.org/0000-0002-6544-3959 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-9257k
https://orcid.org/0000-0002-6544-3959
https://creativecommons.org/licenses/by-nc/4.0/


3. Tachibana R, Zhang K, Zou Z, Burgener S, Ward TR. A Customized Bayesian 

Algorithm to Optimize Enzyme-Catalyzed Reactions. ACS Sustain Chem Eng. 

2023;11(33):12336-12344. 

4. Ruan Y, Lin S, Mo Y. AROPS: A Framework of Automated Reaction Optimization 

with Parallelized Scheduling. J Chem Inf Model. 2023;63(3):770-781. 

5. Liang R, Duan X, Zhang J, Yuan Z. Bayesian based reaction optimization for 

complex continuous gas–liquid–solid reactions. React Chem Eng. 2022;7(3):590-

598. 

6. Shields BJ, Stevens J, Li J, Parasram M, Damani F, Alvarado JIM, Janey JM, 

Adams RP, Doyle AG. Bayesian reaction optimization as a tool for chemical 

synthesis. Nature. 2021;590(7844):89-96. 

7. Wang Y, Chen TY, Vlachos DG. NEXTorch: A Design and Bayesian Optimization 

Toolkit for Chemical Sciences and Engineering. J Chem Inf Model. 

2021;61(11):5312-5319. 

8. Schweidtmann AM, Clayton AD, Holmes N, Bradford E, Bourne RA, Lapkin AA. 

Machine learning meets continuous flow chemistry: Automated optimization 

towards the Pareto front of multiple objectives. Chem Eng J. 2018;352:277-282. 

9. Torres JAG, Lau SH, Anchuri P, Stevens JM, Tabora JE, Li J, Borovika A, Adams 

RP, Doyle AG. A Multi-Objective Active Learning Platform and Web App for 

Reaction Optimization. J Am Chem Soc. 2022;144(43):19999-20007. 

10. Kershaw OJ, Clayton AD, Manson JA, Barthelme A, Pavey J, Peach P, Mustakis 

J, Howard RM, Chamberlain TW, Warren NJ, Bourne RA. Machine learning 

https://doi.org/10.26434/chemrxiv-2024-9257k ORCID: https://orcid.org/0000-0002-6544-3959 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-9257k
https://orcid.org/0000-0002-6544-3959
https://creativecommons.org/licenses/by-nc/4.0/


directed multi-objective optimization of mixed variable chemical systems. Chem 

Eng J. 2023;451. 

11. Dunlap JH, Ethier JG, Putnam-Neeb AA, Iyer S, Luo S-XL, Feng H, Garrido 

Torres JA, Doyle AG, Swager TM, Vaia RA, Mirau P, Crouse CA, Baldwin LA. 

Continuous flow synthesis of pyridinium salts accelerated by multi-objective 

Bayesian optimization with active learning. Chem Sci. 2023;14(30):8061-8069. 

12. Nambiar AMK, Breen CP, Hart T, Kulesza T, Jamison TF, Jensen KF. Bayesian 

Optimization of Computer-Proposed Multistep Synthetic Routes on an Automated 

Robotic Flow Platform. ACS Cent Sci. 2022;8(6):825-836. 

13. Clayton AD, Pyzer-Knapp EO, Purdie M, Jones MF, Barthelme A, Pavey J, Kapur 

N, Chamberlain TW, Blacker AJ, Bourne RA. Bayesian Self-Optimization for 

Telescoped Continuous Flow Synthesis. Angew Chem Int Ed Engl. 

2023;62(3):e202214511. 

14. Jorayev P, Russo D, Tibbetts JD, Schweidtmann AM, Deutsch P, Bull SD, Lapkin 

AA. Multi-objective Bayesian optimisation of a two-step synthesis of p-cymene 

from crude sulphate turpentine. Chem Eng Sci. 2022;247. 

15. Sagmeister P, Ort FF, Jusner CE, Hebrault D, Tampone T, Buono FG, Williams JD, 

Kappe CO. Autonomous Multi-Step and Multi-Objective Optimization Facilitated 

by Real-Time Process Analytics. Adv Sci. 2022;9(10):2105547. 

16. Zhokh OO, Trypolskyi AI, Strizhak PE. Discrimination of a chemical kinetic 

mechanism for heterogeneously catalyzed reactions using intraparticle diffusion. 

Chem Eng J. 2023;474. 

https://doi.org/10.26434/chemrxiv-2024-9257k ORCID: https://orcid.org/0000-0002-6544-3959 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-9257k
https://orcid.org/0000-0002-6544-3959
https://creativecommons.org/licenses/by-nc/4.0/


17. Xue HT, Qi TT, Su WK, Wu KJ, Su A. Heterogeneous Continuous Flow 

Hydrogenation of Hexafluoroacetone Trihydrate and Its Kinetic Modeling. Ind 

Eng Chem Res. 2023;62(15):6121-6129. 

18. Chen JL, Lin XY, Xu F, Chai KJ, Ren MN, Yu ZQ, Su WK, Liu FF. An Efficient 

Continuous Flow Synthesis for the Preparation of N-Arylhydroxylamines: Via a 

DMAP-Mediated Hydrogenation Process. Molecules. 2023;28(7). 

19. Diwale S, Eisner MK, Carpenter C, Sun W, Rutledge GC, Braatz RD. Bayesian 

optimization for material discovery processes with noise. Mol Syst Des Eng. 

2022;7(6):622-636. 

20. Luo GH, Yang XL, Qi TT, Xu QL, Su WK, Su A. FlowBO: A Flow Chemistry 

Bayesian Optimization Framework Benchmarked by Kinetic Models. ChemRxiv. 

2023. 

21. Daulton S, Balandat M, Bakshy E. Parallel bayesian optimization of multiple noisy 

objectives with expected hypervolume improvement. NIPS. 2021;34:2187-2200. 

22. Snoek J, Larochelle H, Adams RP. Practical Bayesian Optimization of Machine 

Learning Algorithms. NIPS. 2012;4:2951-2959. 

23. Leonenko N, Malyarenko A. Matérn Class Tensor-Valued Random Fields and 

Beyond. J Stat Phys. 2017;168(6):1276-1301. 

24. Emmerich MTM, Giannakoglou KC, Naujoks B. Single- and multiobjective 

evolutionary optimization assisted by Gaussian random field metamodels. IEEE 

Trans Evol Comput. 2006;10(4):421-439. 

25. Bradford E, Schweidtmann AM, Lapkin A. Efficient multiobjective optimization 

https://doi.org/10.26434/chemrxiv-2024-9257k ORCID: https://orcid.org/0000-0002-6544-3959 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-9257k
https://orcid.org/0000-0002-6544-3959
https://creativecommons.org/licenses/by-nc/4.0/


employing Gaussian processes, spectral sampling and a genetic algorithm. J 

Global Optim. 2018;71(2):407-438. 

26. Knowles J. ParEGO: a hybrid algorithm with on-line landscape approximation for 

expensive multiobjective optimization problems. IEEE Trans Evol Comput. 

2006;10(1):50-66. 

27. Xu QL, Fan HC, Yao HM, Wang DH, Yu HW, Chen BB, Yu ZQ, Su WK. 

Understanding monoacylation of symmetrical diamines: A kinetic study of 

acylation reaction of m-phenylenediamine and benzoic anhydride in microreactor. 

Chem Eng J. 2020;398. 

28. Xu QL, Liu JM, Yao HM, Zhao JY, Wang ZK, Liu JL, Zhou JD, Yu ZQ, Su WK. 

Insight into Fundamental Rules of Phenylenediamines Selective Monoacylation 

by the Comparisons of Kinetic Characteristics in Microreactor. Bull Korean Chem 

Soc. 2021;42(10):1336-1344. 

29. Felton KC, Rittig JG, Lapkin AA. Summit: Benchmarking Machine Learning 

Methods for Reaction Optimisation. Chemistry–Methods. 2021;1(2):116-122. 

30. Qi TT, Luo GH, Xue HT, Su F, Chen JL, Su WK, Wu K-J, Su A. Continuous 

heterogeneous synthesis of hexafluoroacetone and its machine learning-assisted 

optimization. J Flow Chem. 2023;13(3):337-346. 

31. Xu QL, Zhang SQ, Zhao JY, Wang ZK, Liu LC, Zhou PC, Yu ZQ, Su WK. 

Improving the reaction efficiency of condensation amidation of piperazine with 

benzoic acid based on kinetics study in microreactors. J Flow Chem. 

2021;11(4):855-866. 

https://doi.org/10.26434/chemrxiv-2024-9257k ORCID: https://orcid.org/0000-0002-6544-3959 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-9257k
https://orcid.org/0000-0002-6544-3959
https://creativecommons.org/licenses/by-nc/4.0/


32. Zhang J, Sugisawa N, Felton KC, Fuse S, Lapkin AA. Multi-objective Bayesian 

optimisation using q-noisy expected hypervolume improvement (qNEHVI) for the 

Schotten–Baumann reaction. React Chem Eng. 2024. 

33. Balandat M, Karrer B, Jiang DR, Daulton S, Letham B, Wilson AG, Bakshy E. 

BOTORCH: A Framework for Efficient Monte-Carlo Bayesian Optimization. 

NIPS. 2020;33:21524-21538. 

34. Tieves F, Tonin F, Fernández-Fueyo E, Robbins JM, Bommarius B, Bommarius 

AS, Alcalde M, Hollmann F. Energising the E-factor: The E+-factor. Tetrahedron. 

2019;75(10):1311-1314. 

35. Millauer H, Schwertfeger W, Siegemund G. Hexafluorpropenoxid – eine 

Schlüsselverbindung der organischen Fluorchemie. Angew Chem. 

1985;97(3):164-182. 

 

https://doi.org/10.26434/chemrxiv-2024-9257k ORCID: https://orcid.org/0000-0002-6544-3959 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-9257k
https://orcid.org/0000-0002-6544-3959
https://creativecommons.org/licenses/by-nc/4.0/

