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Precise thermodynamic calculations are essential for understanding the dynamics of cluster sys-
tems and new particle formation. However, the widely employed harmonic statistical mechanical
approach often falls short in terms of accuracy. In this study, we present an improved statisti-
cal model that incorporates vibrational anharmonicity via a novel partition function that requires
only one additional system-specific input parameter. In addition to considering vibrational aspects,
we also account for anharmonicity related to the configurational space. The role of anharmonici-
ties is thoroughly examined in the case of general clusters, where the complete sets of conformers,
mechanically stable spatial arrangements, are known up to clusters composed of 14 monomers.
By performing consistent Monte Carlo simulations on these systems, we benchmark the statistical
model’s efficacy in reproducing key thermodynamic properties (formation free energy and potential
energy) in the classical limit. The model exhibits exceptional alignment with simulations, accurately
reproducing free energies within a precision of 2kBT and reliably capturing cluster melting temper-
atures. Furthermore, we demonstrate the significance and applicability of the model by reproducing
thermodynamic barriers in homogeneous gas-phase nucleation of larger clusters. The transferabil-
ity of our developed approach extends to more complex molecular systems and bears relevance for
atmospheric multicomponent clusters, in particular.

I. INTRODUCTION

Undoubtedly, the key quantity in thermodynamic calculations is the partition function, serving as the foundational
basis for deriving virtually every thermodynamic function. When computing a system’s thermochemistry through
ab initio molecular methods, accurate direct approaches for obtaining partition functions are lacking. Consequently,
resorting to approximations based on basic statistical mechanical principles becomes necessary[1, 2]. In essence,
this “statistical approach” assumes the uncoupling of translational, rotational, vibrational motions, and electronic
excitation, facilitating the separability of the partition function into distinct factors. Importantly, the use of this
approach extends beyond quantum chemistry and single molecule computations, finding application in diverse domains
such as studies involving atomic and molecular clusters[3–5], colloidal microcrystals[6, 7], biomolecules[3, 8], and
supercooled liquids[9].

The possible shortcomings of the statistical approach can be addressed through computer simulations, including
methods like Monte Carlo or molecular dynamics, providing a convenient and accurate means to obtain thermodynamic
properties. Nevertheless, these methods come with their own set of limitations. Firstly, even with the computation
of interatomic forces through electronic structure calculations, the system’s dynamics are treated classically[10].
As a consequence, the simulated vibrational properties do not precisely reflect those of a system in the quantum
regime. Secondly, although simulations provide valuable quantitative data, they offer limited physical insight into
thermodynamic properties and dynamic processes[9, 11]. This underscores the continued relevance of the statistical
model for both quantum and classical systems, thereby warranting further development.

For calculations using this model, the initial step involves characterizing the multidimensional energy landscape,
which represents the energetic dependencies of the system based on the positions of the considered atoms. While
creating an accurate map of the entire topography of this landscape, complete with mountain ranges, valleys, and
passes, is often challenging for chemically complex species, available techniques allow for the identification of the most
crucial areas. This mapping primarily focuses on local minima and their adjacent saddle points, which serve as the
main sources of structural and thermodynamic information. Each minimum, usually referred to as a conformer or an
“inherent structure”[9], resides in a basin of attraction, confining the system’s thermally agitated vibrational motion
within this specific region. Assumed under the ergodicity principle, each basin must be connected to at least one other
basin via a finite-height saddle point. Leveraging information about the landscape, the statistical model evaluates
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the partition function for the system by summing up contributions from microstates related to individual minima and
the basins surrounding them.

For large systems, numerous conformers with distinct structures and energies exist, typically representing vari-
ous states and forms of matter (e.g., crystal, liquid, amorphous glass). Despite the multitude of conformers, it is
sometimes assumed that the global minimum energy conformer sufficiently represents all inherent structures. This
assumption becomes problematic at elevated temperatures, where close-packed crystal-like structures become entrop-
ically unfavorable. Another frequently employed approximation involves treating intrabasin vibrational motion as
harmonic oscillation. However, as temperature rises, vibrational excursions away from the minimum intensify, leading
to increasingly anharmonic motion. Together, these two assumptions constitute the “harmonic approximation”.

Following the terminology from gas-phase cluster chemistry[12–14], the limitations of the harmonic approximation
can be mitigated by incorporating global and local anharmonic corrections. The former involves properly accounting
for the presence of different conformers[13, 15–18], while the latter entails adjusting the conformer’s vibrational
frequencies[14, 19–21] or the applied partition function[11, 22–25].

In this study, our objective is to shed light on the anharmonic behavior within cluster systems. To achieve this,
we first develop a vibrational partition function using minimal amount of information, namely, the interconformer
transition state energies in addition to vibrational frequencies. We focus on simple clusters composed of point-like
particles due to their relatively weak intermolecular interactions and a high number of conformers. For instance,
considering a cluster of 14 sticky-hard spheres, there are 895,478 unique arrangements[26], implicating substantial
global anharmonicity at elevated temperatures within this size range of clusters. By confining our analysis to classical
systems, we can rigorously validate and benchmark the developed anharmonic statistical model against Monte Carlo
simulations.

Our arguments are related to nucleation phenomena and cluster free energies in particular, reminiscent of early
elementary cluster studies[4, 15–18], while also remaining relevant to present-day theoretical investigations into at-
mospheric new particle formation[5, 13, 20].

II. STATISTICAL CLUSTER THERMODYNAMICS

The standard statistical approach centers around individual cluster configurations which correspond to mechanical
equilibria on the energy landscape. These conformers are indexed by k = 0, 1, 2, . . ., with k = 0 representing the
conformer with the lowest known binding energy. In this study, we only consider clusters comprising N identical
monomers and their respective conformers, and thus, the relevant partition function is written as zN,k.
In the following, we introduce classical statistical models tailored for harmonic, globally anharmonic, and locally

anharmonic cluster formation free energies. It is worth noting that the presented models do not account for certain
potential factors, such as vibration-rotation coupling and cluster-cluster interactions. However, existing evidence
suggests that their impact is likely minor[15] or can be mitigated through careful analysis.

A. Harmonic Formation Free Energy of a Conformer

Pioneering work by McGinty [15] established a comprehensive expression for the formation free energy related to
the kth conformer of an N -cluster, WN,k, considering an ideal gas environment with a specific monomer density, N1.
The formulation is given by

WN,k

kBT
= N ln z1 − ln zN,k − (N − 1) lnN1, (1)

where T is temperature and kB the Boltzmann constant. While this expression can be extended to multicomponent
systems[27], our focus here remains on one-component systems.

For point-like monomers, such as atoms, exhibiting only translational motion, the partition function z1 = ztr1 . And
consequently, the formation free energy of a single monomer, W1, is inherently zero. The total partition function of a
cluster, N ≥ 2, involves contributions from different modes of motion and the binding energy, Eb,k, of the equilibrium
configuration:

zN,k = exp

(
−Eb,k

kBT

)
ztrNzrotN,k

Ndof∏
i

zvibN,k,i, (2)

where the product is over all vibrational degrees of freedom (for linear and nonlinear systems Ndof = 3N − 5 and
3N − 6, respectively).
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Motion within a vibrational degree of freedom, denoted by index i, is characterized by its normal-mode frequency
ωi. This frequency is linked to a positive eigenvalue λi derived from the diagonalization of the Hessian matrix:
ωi =

√
λi/µ, where µ is the monomer mass. Since our analysis focuses solely on systems exhibiting classical behavior,

the system’s thermal energy significantly surpasses the energy associated with a single phonon, i.e., kBT ≫ h̄ωi (h̄
being the Planck constant). The classical partition function for a harmonically oscillating mode is

zvibk,i = zhrmk,i =
kBT

h̄ωk,i
. (3)

Utilizing also standard partition functions for translational and rotational motion[1, 28], the formation free energy of
a non-linear one-component conformer k within the harmonic model can be conveniently expressed as:

W hrm
N,k

kBT
=

Eb,k

kBT
− (N − 1) lnN1 −

3

2
lnN +

1

2

Ndof∑
i=1

ln

(
λk,i

2πkBT

)
− ln

(
8π2

sk

√
Ixx,kIyy,kIzz,k

µ3

)
. (4)

Notably, the Planck constant’s contribution cancels out in this formulation. Here Ixx, Iyy and Izz represent the three
principal moments of inertia, and sk is the symmetry number of the conformer. For a linear dimer (N = 2, s = 2),
the final term in Eq. 4 is − ln(πr2e ), where re signifies the equilibrium distance between the two monomers. The
parameters involved in Eq. 4 are routinely obtainable from optimization calculations.

It is essential to highlight that Eq. 4 is formulated for clusters in an ideal gas, thus disregarding potential interactions
with surrounding monomers or other clusters that could influence WN . In high-density systems, however, the work
imposed upon the cluster by neighboring particles can have an impact[29–31].

In the context of this study, the specific term harmonic cluster formation free energy, denoted as W hrm
N , is attributed

to the free energy of the global minimum energy conformer, k = 0, i.e., W hrm
N = W hrm

N,k=0. Consequently, when exploring
conformers k > 0, we delve into the realm of global anharmonicity.

B. Global Anharmonicity

Global anharmonicity stems from the comprehensive consideration of all conformers within a system. According to
the principles of statistical mechanics, the partition function of an N -cluster system, covering various distinct regions
of the energy landscape represented by different conformers, is zN =

∑
k zN,k[3, 11, 13, 32].

The collective influence of different conformers of the same cluster size manifests in an additive manner when
determining free energies. Despite their relatively low stability at T = 0 K, higher energy conformers can contribute
significantly to the overall entropy production of the system. And, the free energy consistently decreases with the
inclusion of more conformers. The globally anharmonic cluster formation free energy is expressed as

WGahrm
N

kBT
= − ln

[∑
k

exp

(
−∆WN,k

kBT

)]
. (5)

Importantly, this expression holds true irrespective of the barrier heights separating the conformers on the energy
landscape[13].

Given its theoretical unambiguousness, the recognition of the significance of Eq. 5 dates back to the early stages of
computational cluster studies[18, 32, 33]. However, as pointed out by Partanen et al. [13], a notable number of more
recent studies have overlooked proper considerations for global anharmonicity.

C. Local Anharmonicity in Classical Systems

Incorporating global anharmonicity into systems with multiple conformers is a straightforward task. However, due
to the nontrivial landscape features associated with vibrational degrees of freedom, estimating the true impact of local
anharmonicity is a more challenging endeavor. Particularly significant is the possible undercounting of the vibrational
density of states in the harmonic approximation, where the assumption that all energy levels are equally spaced leads
to insufficient entropy production. This becomes a concern for clusters at relatively high temperatures, posing a
substantial issue in accurately capturing their thermodynamic behavior.

In a straightforward statistical-mechanics model, incorporating an accurate local anharmonic correction for vibra-
tional motion is challenging due to the inherent difficulty in precisely mapping out the basin surrounding a local
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FIG. 1. Anharmonic correction on vibrational partition function, as described by Eq. 7, as a function of dissociation energy ∆k

(black solid line). The dashed black line represents the high-barrier estimate from prior studies[11, 35]. The red dash-dotted
line illustrates the predicted ratio between anharmonic and harmonic thermal energy, derived from Eqs. 11 and 10, respectively.
Dotted vertical lines mark the positions of maximum corrections within the anharmonic model. The effective corrections, as
determined by the maximum entropy scheme, Eq. 9, are visually emphasized through thick blue and red lines.

minimum using only basic knowledge about the sampled stationary points (minima and saddle points). In prac-
tice, such mapping is achievable for the simplest classical systems through direct phase-space sampling, provided the
computational cost is reasonable, and sufficient ergodicity is attained.

Thus a convenient and more realistic analytical alternative to the harmonic approximation is to model the potential
wells as the Morse oscillators (MOs)[11, 23–25]. In principle, MOs offer a more accurate representation of the flat,
high-energy regions of the energy landscape compared to harmonic oscillators. The energy of MO’s jth energy level
is given by

ϵi = h̄ωi

(
j +

1

2

)[
1−

(
j +

1

2

)
h̄ωi

4∆k

]
, (6)

where ∆k is the oscillator’s characteristic dissociation energy, assumed to be equal across all vibrational modes of a
k-conformer, a reasonable assumption for small clusters. Essentially this energy sets an upper limit for the vibrational
energy states. By taking the Laplace transform of the classical level density, ρ(ϵ) = dj/dϵ, the anharmonic correction
on the vibrational partition function can be expressed as

zMO
k

zhrmk

=

∫∆k

0
dϵi ρ(ϵi) exp

(
− ϵi

kBT

)
kBT/h̄ωi

= 2

√
∆k

kBT
D

(√
∆k

kBT

)
, (7)

with D(x) representing the Dawson integral[34]. Notably, contrary to the general convention[28], the integration in
Eq. 7 spans only up to ∆k rather than infinity to confine the energy levels within the well. The locally anharmonic
formation free energy of a conformer is thus given by

WLahrm
N,k

kBT
=

W hrm
N,k

kBT
−Ndof × ln

zMO
k

zhrmk

. (8)

As demonstrated in Fig. 1, the adjustment provided by Eq. 7 peaks at approximately 1.28 for ∆peak ≈ 2.26kBT . This
translates into a maximum additional entropy of about kB/4 per vibrational degree of freedom.
In a prior study, Doye and Wales [11] (and subsequently Ball and Berry [35]) employed a similar approach to analyze

the thermodynamics of various atomic and molecular clusters. They replaced harmonic oscillators with MOs in their
framework, focusing specifically on deriving the anharmonic partition function for cases where ∆k ≫ kBT . Similarily,
D(x) can be approximated as D(x) ≈ x−1/2+ x−3/4 in this high-barrier limit, and the introduced Eq. 7 simplifies to
zMO
k /zhrmk = 1 + kBT/2∆k used in refs. 11 and 35. As illustrated in Fig. 1, the high-barrier approximation exhibits
a monotonic decrease with ∆k, emphasizing the necessity for ∆k to be several times higher than kBT to achieve
satisfactory agreement with the exact expression provided by Eq. 7.

The crucial question then arises: what should be considered as the value for ∆k? Fundamentally, ∆k signifies a
point situated on the surfaces that separates a basin from its adjacent basins. The lower bound of ∆k is determined

by the smallest transition state barrier separating conformer k from its nearby conformers {l}: ∆k ≥ ∆E‡min
k =
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min(E‡
k,{l} − Eb,k). Given the assumed ergodicity of the system, nonstationary states above this minimum saddle

point are equally accessible and able to carry statistical weight. Consequently, while the minimum energy path follows
through the saddle point, the entropy-favored trajectory might intersect the dividing surface elsewhere.

We conjecture that, among all accessible states, the considered dissociation state maximizes vibrational entropy
designated by Eq. 7. Thus, the chosen ∆k in our model is determined as follows:

∆k = max
(
∆peak,∆E‡min

k

)
. (9)

Effectively, this rule prevents zMO
k from being smaller than zhrmk . Conceptually, adopting the maximum entropy

scheme results in Eq. 3 when applied to harmonic potential. If the harmonic partition function is derived with an
energy-level limitation, the obtained function, integrated from 0 to ∆k, monotonically approaches kBT/h̄ω from below,
leading to ∆k = ∞.
Beyond free energies, the vibrational thermal energy can be directly derived from the partition function, and in a

relaxed system this energy is evenly divided to potential and kinetic energy. The thermal energy of a harmonically
oscillating mode of motion is given by

Ehrm
th,k = kBT

2

(
∂ ln zhrmk

∂T

)
= kBT. (10)

Similarly, for the energy related to MOs given by Eq. 7, it is expressed as

EMO
th,k = kBT

(
1

2
+

∆k

kBT
−

√
∆k/kBT

2D(
√

∆k/kBT )

)
. (11)

The maximum value of EMO
th,k is about 1.18kBT at ∆k ≈ 4.39kBT , and beyond this point, EMO

th,k correctly converges to

Ehrm
tn,k as ∆k increases. Additionally, at the limiting value of ∆peak, EMO

th,k = kBT . The ratio between anharmonic and
harmonic potential energy is further illustrated in Fig. 1. Thus, within the proposed scheme for local anharmonicity,
the internal thermal energy is also consistently determined.

III. SYSTEMS AND COMPUTATIONAL METHODS

A. Mie fluids

To examine the distinct and combined influences of global and local anharmonicities on cluster thermodynamics, our
focus is directed towards the investigation of monatomic complexes featuring diverse ranges of interatomic interactions.
The pairwise forces are characterized by the Mie potential, a generalized form of the Lennard-Jones potential:

U(r) = Cϵ
[(σ

r

)n
−
(σ
r

)m]
, (12)

where r is the interatomic distance. The prefactor, determined by

C =
n

n−m

( n

m

) m
n−m

, (13)

ensures that the pairwise minimum energy is −ϵ. For these potentials, the equilibrium distance, denoted as the location
of the minimum, is given by re/σ = (n/m)1/(n−m). The parameters m and n (> m > 3) correspond to the attractive
and repulsive ranges of the potential, respectively. The condition m > 3 is set to prevent nonextensive energies
near the continuum limit[9]. In this study, only potentials corresponding to systems with n = 2m are considered,
specifically for n = 8, 12, and 24. For such systems, the constants are C = 4 and re = 22/n. The respective shapes of
the analyzed potentials are illustrated in Fig. 2(a).

As we exclusively consider classical systems where the Planck constant is inconsequential, we adopt standard di-
mensionless units for Mie system parameters: ϵ = σ = µ = kB = 1. Despite the uniformity in length and energy
scales across various potentials, the thermodynamic properties are not directly comparable. However, following the
principle of corresponding states[37], the relationships between different thermodynamic properties remain consistent
among systems with apparent differences when normalized against their critical points. Therefore, for a more robust
physicochemical comparison, it is sometimes more preferable to examine different Mie systems in terms of the tem-
perature scale T/Tc, where Tc is the critical temperature (provided in Table I). In general, Tc exhibits a significant
decrease with an increase in n.
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FIG. 2. (a) Mie potentials depicted for various systems under consideration (colored lines). The black line corresponds to the
sticky hard-sphere (SHS) system. (b) Number of distinct local minima, M, determined through geometry optimization. The
black bars signify the results for the SHS clusters[26, 36].

TABLE I. Characteristics of studied Mie Systems (n = 2m) including critical temperature (Tc), equilibrium pairwise distance
(re), square-well equivalent range of attraction (L), and enumeration constants (α and β). All values are presented in standard
dimensionless units.

n m Tc re L α β

8 4 3.461a 1.189 2.178 0.49 1.33

12 6 1.316b 1.122 1.479 1.07 6.61

24 12 0.560b 1.059 1.150 1.66 12.05

a From ref. 38.
b From ref. 39.

As depicted in Fig. 2(a), the width of the potential narrows with n. This range of attraction, L, is a convenient
parameter to generalize the phase behavior of simple fluids[37]. It has been established[37] that the width of the
potential can be quantified by determining the square-well (SW) equivalent L (at Tc) for a Mie system using the
second virial coefficients BSW

2 and BMie
2 :

BMie
2 (Tc) ≡ BSW

2 (Tc) =
2π

3

[
exp

(
1

Tc

)
− L3

(
exp

(
1

Tc

)
− 1

)]
. (14)

While BMie
2 (Tc) ≈ −3.3 (in reduced units) remains consistent irrespective of the interaction parameters[39], we

precisely compute it using a closed-form expression[40]. The examined systems, along with their respective Tc, re,
and L, are detailed in Table I.

The Mie model offers a computational advantage due to its efficiency and capacity to simplify and generalize realistic
molecular systems[38, 41]. Particularly relevant to this study, it allows for the optimization of the complete set of
close-packed local minimum energy structures and facilitates thorough phase-space sampling for clusters comprising
more than a mere handful of monomers, tasks often deemed too demanding for models of higher chemical specificity.

In theoretical chemical physics, the Lennard-Jones (LJ) fluid with n = 12 and m = 6 stands out as perhaps the most
extensively studied model system. In practical chemical modeling, Eq. 12 has demonstrated its prowess as a potent
functional for parameterizing intermolecular interactions in various polyatomic compounds, relying on the tunable
parameters n and m[41]. While the range of obtained n values can be considerable, m ≈ 6 generally aligns with the
decay of the dispersion interaction in non-polar systems, corresponding to a r−6 decay pattern. For more cohesive
systems, lower m parameters are involved (e.g., for dipole-dipole interaction m = 3), prompting interest in exploring
systems at the limit of m = 4[38]. Furthermore, mesoscale particles with a notably short attractive range, such as
colloidal spheres, find representation through the Mie potential[6, 42, 43], albeit with a large m.

For conciseness, here we denote specific n = 2mMie-systems and clusters as (n = X) and (n = X)N=Y , respectively.
As an example, a cluster of 10 monomers with interaction parameters n = 12 andm = 6 is represented as (n = 12)N=10.
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B. Local minimum and transition state structures

In this study, the primary set of optimized structures for Mie clusters is sourced from a recent study by Trombach
et al. [36]. They successfully enumerated nearly every minimum for (12 ≤ n ≤ 96)8≤N≤14 systems by applying a
basin-hopping global optimization algorithm[3, 44].

Comprehensively enumerating local minima becomes practically infeasible for N > 14 due to the staggering num-
ber of distinct conformers, M, a challenge amplified, especially in the case of short-range potentials. Despite the
availability of the extensive database compiled by Trombach et al. [36], our calculations are constrained to systems
with n ≤ 24 due to the computational demands associated with transition state sampling and the subsequent evalu-

ation of ∆E‡min
k . This limitation arises from the observation that the number of distinct transition states is roughly

proportional to NM[3, 45]. As an alternative, we conducted complementary sampling, incorporating a long-range
system with n = 8 and cluster sizes ranging from N = 2 to 7 into the set of optimized structures.

In this study, sampling of minima and connecting transition states was carried out using the Pele package[46].

This software was also employed to generate conformer-specific values for Eb,k, E‡
k,l, Ixx,k, Iyy,k, Izz,k, and λk,i.

Throughout the transition state sampling process, additional minima were discovered and subsequently included in
the set of analyzed clusters

To address rare instances of mechanically stable yet physically unattached clusters, a lenient acceptance criterion
was introduced, stipulating that all 3N−6 eigenvalues λ must exceed 0.01. The total number of minima M for N ≥ 6
in each studied system is depicted in Fig. 2(b), along with the limiting values found for sticky hard-sphere (SHS)
clusters[26].

In our TS sampling protocol, we systematically explore pairs of minima, attempting to locate saddle points between
them using the Nudged Elastic Band (NEB) method implemented in the Pele package. This search is specifically
focused on interconfigurational connections. However, certain conformers exhibit transitions while maintaining their
inherent geometry, with notable examples being the defected icosahedral clusters N = 12 and 14, featuring a surface
vacancy and an adatom, respectively. These icosahedral structures represent the minimum energy conformers (k = 0)

for the studied systems. To identify intraconfigurational TS of these conformers and calculate ∆E‡min
ico , additional NEB

molecular dynamics (MD) simulations were conducted using the LAMMPS MD code[47]. While interconfigurational
transitions are assumed to involve all monomers (meaning all vibrational modes of a conformer are treated with
the same ∆k) the intraconfigurational transitions of these icosahedral structures are well-localized. Specifically, the
N = 14 adatom transition involves only one monomer (three vibrational modes), while the N = 12 vacancy transition
involves five monomers (15 modes). Consequently, in our locally anharmonic model, the remaining vibrational modes

of these specific conformers are computed based on the interconfigurational TS barriers instead of ∆E‡min
ico .

C. Monte Carlo phase-space sampling

To establish a representative benchmark for the discussed statistical models, we conducted a detailed exploration
of the classical phase space for each studied system through Metropolis Monte Carlo (MC) sampling. Specifically,
we employed a semi-grand canonical simulation scheme developed by Vehkamäki and collaborators[48–50]. In these
simulations, canonical ensemble averages of the grand canonical growth and decay probabilities, GN and DN for each
cluster size, were calculated at some reference vapor monomer density N ′

1. Based on these probabilities, the formation
cluster free energy can be determined recursively and scaled to any desired N1 according to the formula[50]

WMC
N (N1)

kBT
=

WMC
N−1(N1)

kBT
− ln

(
N1

N ′
1

GN−1

DN

)
. (15)

Despite the broad applicability of these MC simulations, two fundamental challenges persist:
Firstly, the Metropolis algorithm’s sufficiency diminishes at the lower end of the temperature range. In the presence

of exceedingly high barriers (relative to the thermal energy kBT ) between different adjacent basins, certain states
become inaccessible within a reasonable sampling time, rendering proper ergodicity unattainable. Consequently, flawed
sampling leads to overestimated free energies. Rather than employing specialized techniques or algorithm modifications
to enhance ergodicity[51], we opt for the standard Metropolis scheme, exercising caution when interpreting formation
free energies at very low temperatures.

The second notable issue in the simulations pertains to the definition of the phase boundary, specifically, what
criteria are used to identify a cluster. In the selected MC simulation protocol, the conventional Stillinger connectivity
distance rS is employed to determine whether a monomer is part of the cluster[52]. The selection of rS is crucial, as
its value needs to be tailored for each potential and simulated temperature to avoid a systematic misrepresentation of
the formation free energy. An excessively small rS results in an overestimation of WMC

N (as attractive interactions are
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FIG. 3. Temperature dependence of Stillinger connectivity distances employed in our Monte Carlo simulations, rS, illustrated
for various systems (full dots). Dotted lines show the linear interpolation from rS(T = 0.1) to the equilibrium distance re,
marked by open dots at T = 0. System-specific ranges of attraction, L, are indicated by horizontal dashed lines.

cut short), while an excessively large rS leads to the formation of loosely connected, fluffy complexes with an unclear
phase boundary, resulting in an underestimated WMC

N .
Following the approach proposed by Merikanto et al. [53], consistent values of rS are determined by comparing

the obtained WMC
N with those derived from virial coefficients and the Mayer cluster expansion[54]. Given the com-

putational simplicity of the second virial coefficients and the shared nature of rS among different cluster sizes (at
least for (n = 12)N≤6 [53]), we computed commensurate connectivity distances by conducting a series of MC simu-
lations for dimers with varying rS. For an appropriate rS, W

MC
2 (N1, rS) should align with −kBT ln(−N1B

Mie
2 ). The

Mayer-equivalent rS values obtained are presented in Fig. 3 for all systems as a function of temperature.
Crucially, the thermodynamic reach offered by the Mayer expansion surpasses that of the MC framework and Eq. 1.

Mayer clusters existing in an imperfect vapor interact with other clusters and unbound monomers. Consequently, the
determined connectivity distance is not a monotonic function of temperature: Overall, a system necessitates a larger
rS as thermal motion intensifies with increasing temperature. However, the vapor pressure around the cluster also
rises with T , counteracting this trend by imposing constraints on rS due to the destabilizing influence from nearby
particles.

As shown in Fig. 3, the interplay between thermal motion and the effects arising from vapor-cluster/cluster-cluster
interactions is manifested through the appearance of an inflection point on the (rS, T )-curve. Despite the possibility
of analytically estimating the contribution of surrounding particles to WN [31], we have made the deliberate choice
to exclusively incorporate the calculated rS in our free energy simulations below the inflection-point temperature.
Beyond this temperature threshold, we opt for the maximum value of rS. This decision is further substantiated by
the observation that these maxima align closely with the system-specific ranges of attraction L provided in Table I
(indicated by horizontal dashed lines in Fig. 3).

IV. RESULTS

A. Conformers and Transition States Analysis

1. Cluster Minima and Binding Energies

Firstly, we conduct a concise analysis of the general trends in the number of distinct minima identified for various
systems, depicted earlier in Fig. 2(b). While this aspect is not directly tied to free energy calculations, its findings
will be useful, as demonstrated subsequently. Additionally, we present the characteristics of cluster binding energy
distributions for the examined systems.

The analyzed conformer energies and their distributions are illustrated in Fig. 4. The energy data cover all three
Mie interaction types (n = 8, 12, and 24) within the range of N = 6 to 14 and are presented per vibrational degree
of freedom, i.e., Eb/(3N − 6). This is in accordance with Maxwell’s rule, which states that a rigid frame of N points
necessitates at least 3N − 6 connecting lines[26, 55]. Although the analyzed clusters systematically follows this rule,
systems with larger n (and consequently shorter L) may exhibit conformers with more contacts (evident in the SHS
system for N ≥ 10).
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FIG. 4. (Main figure) Normalized binding energy distributions presented for clusters exhibiting multiple conformers. The
respective number of conformers, M, is provided next to the corresponding distribution curve. A dashed horizontal line
represents the “Maxwell limit”. (Inset) lnM is plotted against the cluster size N . Linear fits are applied to points with
N ≥ 11, and the resulting slopes (α) are given in the inset legend. The black markers correspond to clusters within the sticky
hard-sphere system.

As observed from the distributions, despite the abundance of conformers, a significant portion of short-range systems
is concentrated on narrow high-energy bands, primarily at −Eb = 3N − 6 or 3N − 5. In contrast, the binding energy
distributions of (n = 8) and (n = 12) systems are more dispersed and extend to lower energies, reflecting contributions
from remote monomers. The shapes of the distributions from N = 6 to N = 14 roughly resembles types of cocktail
glasses: from old-fashioned tumblers to martini glasses and eventually to long-stem champagne flutes. The latter
referring to large clusters with a uniquely low-energy k = 0 conformer.
Apart from the smallest clusters, the number of minima M shows an exponential increase with size N [56]:

lnM ≈ αN − β, (16)

where α and β are interaction-specific constants. In the inset of Fig. 4, lnM is presented as a function of N for the
studied systems (and the SHS system as well) with corresponding linear fits (for N ≥ 11). The obtained α and β
are provided in Table I. Since each distinct equilibrium corresponds to a unique set of points in three-dimensional
space, M can be considered proportional to a volume associated with the width of the attraction (L3). For example,
a SHS system facilitates more minima (L = 1, α = αSHS = 2.10) than a system interacting through a long-range Mie
potential (n = 12, L = 1.479, α = 1.07). Based on this rationale and the results presented in the inset of Fig. 4, a
straightforward relationship emerges:

α ≈ αSHS − 3 lnL. (17)

This relation holds also well for the other (n = 2m > 24) systems studied by Trombach et al. [36]. Given that
α > 0, the rule expressed by Eq. 17 is applicable to systems with L < exp(αSHS/3) ≈ 2. Therefore, systems with an
exceptionally long range, such as (n = 8), do not conform to this relationship.

2. Minimum transition state barriers

While the number of unique minima becomes substantial as N surpasses a certain size and L decreases, the count
of transition states (TS) exhibits an even stronger dependence on N . Consequently, a comprehensive exploration of
transition states, crucial for determining ∆E‡min for each considered minimum, presents a challenge of its own right.
The search for interconfigurational connections is meticulously conducted for the following systems: Given the

relatively small M across the size range, the TS sampling is efficiently performed for the (n = 8) system without
substantial computational effort. For the (n = 12) system, we guide our sampling using previously obtained TS
networks by Doye et al. [45, 57]. An extensive sampling of TS is also carried out for (n = 24)N<12 and it has
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FIG. 5. Minimum transition state barrier height, ∆E‡min, as a function of cluster size N . Solid lines with square markers show
the averaged E‡min across various conformers of a given size. Dashed lines with open circles depict the barriers corresponding
to the global minimum energy conformer, k = 0. Additionally, open diamonds represent intraconfigurational transition state
energies obtained from NEB-MD simulations specifically conducted for the icosahedral N = 12 and 14 cluster structures.

been ensured that at least one connection is found for each minimum. For (n = 24)N≥12, the search focuses on TS
connecting the minimum energy conformer to other minima. Additionally, the search extends to some low-free-energy
conformers, selected based on W hrm

N,k . In the subsequent thermodynamic calculations, conformers without any assigned

TS are set to ∆E‡min = 1. This also applies to clusters with only one conformer (i.e., N < 6).

In Fig. 5, both the average ∆E‡min over all identified TS (squares, solid lines) and ∆E‡min
k=0 related to the minimum

energy conformer (circles, dashed lines) are presented for the systems with multiple conformers. Additionally, for

the defected icosahedra N = 12 and 14, the intraconfigurational ∆E‡min
ico obtained via the NEB-MD simulations are

indicated with large diamonds.

As shown in Fig. 4, the global minimum energy conformer typically has a uniquely low binding energy, and ∆E‡min
k=0 ≥

Eb,k=1 − Eb,k=0. It is thus expected that ∆E‡min
k=0 is higher than |∆E‡min|. We observe two main exceptions to this

pattern: (n = 12)N=8 and (n = 24)N=12. In both cases, the conformers k = 0 and k = 1 are energetically very close
to each other; for (n = 12)N=8, this is manifested as a wide brim of the “cocktail glass” in Fig. 4. Moreover, in
an SHS system, performing a transition between two conformers requires the breakage of at least one bond. Thus,
∆E‡min >∼ 1 when n is large, a behavior followed by the (n = 24) system. Also, generally, when approaching the

“champagne flute” systems, i.e., N >∼ 12, ∆E‡min
k=0 increases.

The transition state sampling uncovered some anomalies in the conformer data, where certain energetically adjacent

conformers were connected by an extremely shallow barrier, i.e., ∆E‡
k,l ≈ ∆E‡

l,k ≈ 0. A closer examination revealed
that these instances were mere duplicates of the same conformer but were erroneously identified as separate entities
due to limited numerical precision. Fortunately, after a thorough check of the data, we found only a few occurrences
of this issue: the original conformer sets of systems (n = 8)N=10, (n = 8)N=12, (n = 24)N=13, and (n = 24)N=14

contained only 1, 1, 3, and 100 duplicates, respectively. These false positives have been excluded from the conformer
data presented in Figs. 2(b) and 4.

In the context of statistical thermodynamics and our model for local anharmonicity, the relatively high ∆E‡min
k=0

holds significant implications. If the TS barriers are approximately equal throughout k, the adjustment for local
anharmonicity would not significantly influence the relative population of various conformers within a specific cluster
size. However, the presence of distinctively high barriers indicates diminished vibrational entropy, consequently
influencing the abundance of specific conformers. This aspect will be briefly elaborated upon in Sec. VB.

B. Effect of Local and Global Anharmonicities on Cluster Thermodynamics

1. Magnitude of the effect

Now that we have gathered the essential data on the minima, we can proceed to calculate the formation free
energies for each system. Our initial focus is on examining the relative impact of both global (Eq. 5) and local (Eq. 8)
anharmonicity on the thermodynamics of the systems across different temperatures.

The impact of global anharmonicity is shown in Fig. 6(a,c,e) through a comparison of WGahrm
N with the harmonic

cluster formation free energy W hrm
N . Also here, the resulting differences, ∆W , are presented per Ndof to enhance
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FIG. 6. (Left-hand side column; (a), (c), (e)) Temperature-dependent difference between globally anharmonic cluster formation
free energies, WGahrm

N , and the corresponding harmonic formation free energy, W hrm
N , for cluster sizes N ≥ 6. (Right-hand side

column; (b), (d), (f)) Differences between locally and globally anharmonic cluster formation free energies, WLGahrm
N , and W hrm

N .
the values are normalized with respect to the number of vibrational degrees of freedom and presented in units of thermal energy
(kBT ). Vertical dotted lines mark system-specific critical temperatures, while horizontal dashed lines highlight the zero level.

the clarity of the comparison. The temperature at which WGahrm
N begins to deviate from W hrm

N signifies the cluster’s
“melting point”, a temperature that varies with cluster size and among systems. Due to their high surface-to-volume
ratio, finite-size particles experience melting at lower temperatures than the bulk melting temperature.

In all systems, the hexamer (N = 6), characterized by two conformers, demonstrates the most notable melting
behavior. The impact of global anharmonicity on the hexamer is pronounced already at very low temperatures; the
transition is driven by differences in rotational symmetry (s = 24 for the octahedral k = 0 and 2 for the polytetrahedral
k = 1 conformer) and small binding energy gaps (∆Eb ≈ 0.6, 0.4, and 0.1 for (n = 8)N=6, (n = 12)N=6, and
(n = 24)N=6, respectively). Another notable cluster size is N = 8, where the effect of global anharmonicity is
relatively small. Unlike the hexamer, the k = 0 conformer’s symmetry number is only 2, while some high-energy
conformers are more symmetrical, leading to a less significant entropic gain from transitioning between high and low
symmetry. Generally, for other cluster sizes, based on WGahrm

N , melting occurs around T ≈ 0.3, irrespective of the
system. Although similar on the absolute temperature scale, the melting conditions vary significantly concerning the
systems’ Tc.

Overall, the impact of global anharmonicity per vibrational degree of freedom remains relatively uniform at very
high temperatures, approximately (−0.3± 0.1)kBT/Ndof . At high temperatures, where Ek>0 − Ek=0 ≪ kBT , global
anharmonicity is primarily associated with the conformer space size M. Equation 18 provides an approximation:

WGahrm
N

kBT
≈ W hrm

N

kBT
+Ndof ln

∣∣∣∣∣
√〈

λk

λk=0

〉∣∣∣∣∣− lnM− ln sk=0. (18)

Here, | . . . | and ⟨. . .⟩ denote the arithmetic mean over conformers and geometric mean over conformer’s degrees of
freedom, respectively. Equation 18 assumes that conformers k > 0 effectively lack notable rotational symmetry, i.e.,
sk ≈ 1. For most clusters studied here, the averaged eigenvalue ratio ⟨λk/λk=0⟩ is close to unity. Consequently, for
large N , ∆WN/kBT/Ndof ≈ −α/3. This behavior, requiring a small β, is rather evident in Fig. 6 for (n = 8) and
(n = 12), corresponding to α/3 = 0.16 and 0.36, respectively.

The results computed with both the global correction and the proposed correction for local anharmonicity are
presented in Fig. 6(b,d,f). We use notation WLGahrm for free energies calculated using Eq. 5 with anharmonic
conformer formation energies from Eq. 8. Firstly, the cluster-specific melting temperatures decrease due to anharmonic
vibrational motion, at T ≈ 0.15 − 0.2. As indicated in Sec. IVA2 and in Fig. 5, the k = 0 conformers are typically
separated from other minima by high barriers, resulting in non-minimum conformers generating more vibrational
entropy than the global minimum. Interestingly, the melting points of (n = 24)N>6 remain relatively constant, about
T = 0.18, while other systems exhibit more significant deviations. This consistency in (n = 24) is attributed to both
the uniform binding energy distributions and the consistent E‡min per size.

https://doi.org/10.26434/chemrxiv-2024-48m91 ORCID: https://orcid.org/0000-0002-8537-1921 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-48m91
https://orcid.org/0000-0002-8537-1921
https://creativecommons.org/licenses/by-nc/4.0/


12

0.0 0.1 0.2 0.3 0.4 0.5 0.6
T

5

0

5

10

15

20

25

W
(k

BT
)

(a) (n = 8) N = 2
N = 3
N = 4
N = 5
N = 6

N = 7
N = 8
N = 9
N = 10

N = 11
N = 12
N = 13
N = 14

0.0 0.1 0.2 0.3 0.4 0.5 0.6
T

(b) (n = 12) W = W Gahrm W MC

W = W LGahrm W MC

0.0 0.1 0.2 0.3 0.4 0.5
T

(c) (n = 24)

FIG. 7. Comparison between WGahrm
N (dashed lines) and WLGahrm

N (solid lines) against the Monte Carlo simulated formation
free energies, WMC

N , for the studied systems of (a) (n = 8), (b) (n = 12), and (c) (n = 24). The shaded gray area highlights
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Our locally harmonic model results in a maximum additional vibrational entropy of kB/4 per vibrational degree of
freedom at high temperatures. Therefore, the approximation given in Eq. 18 can be further expanded to

WLGahrm
N

kBT
≈ W hrm

N

kBT
− Ndof

4
− lnM− ln sk=0. (19)

While this relation is built on many assumptions and approximations, it holds significant potential. As mentioned, the
complete enumeration of conformers (not to mention the transition states) is only feasible for the smallest cluster sizes.
Therefore, meticulous anharmonic cluster thermodynamic calculations, as presented here, are beyond reach in most
circumstances related to e.g., nucleation. Thus, by only knowing the properties of the minimum energy conformer
and the system-specific function for lnM, Eq. 19 enables us to at least estimate the magnitude of anharmonicity at
high temperatures. This will be demonstrated later in Sec. VA.

2. Comparing Anharmonic Model Predictions with Monte Carlo Simulations

The introduced local anharmonicity correction in Sec. II C requires further scrutiny. The validity of the global
anharmonicity treatment in statistical thermodynamics much less ambiguous. Since we operate in the classical limit
where the effects arising from discrete states are absent, proper validation of the anharmonic correction can be
established by comparing the statistical model with direct phase space sampling, i.e., the Monte Carlo simulations
discussed in Sec. III C. Assuming that the setup of the simulations is adequate, i.e., ergodicity is achieved and the
applied cluster criterion is satisfactory, the obtained WMC should reflect the true thermodynamics of the studied
clusters in a perfect gas. In our simulations, we have probed a temperature range up to 0.6 or to Tc if Tc < 0.6.
Figures 7(a)–(c) show the comparison between the statistical models and the MC simulations for each studied

system, ranging from N = 2 to N = 14. The differences in free energies are displayed for both the model with the
local anharmonicity correction (∆W = WLGahrm −WMC, solid lines) and the model without the local anharmonicity
correction (WGahrm −WMC, dashed lines). To account for potential uncertainties, we have considered an arbitrary
margin of 2kBT for the free energies, which corresponds to Pople’s chemical accuracy[58] (approximately 1kcal/mol
at room temperature). This tolerance interval is represented by the gray area in Fig. 7.

Owing to the limitations of the standard Metropolis Monte Carlo approach at low temperatures and the recursive
nature of free energy computation (Eq. 15), Fig. 7 presents ∆W only from a certain temperature onwards, and this
cutoff temperature increases with N . Nevertheless, the data unmistakably reveals the temperatures at which the MC
simulations encounter challenges, leading to excessively elevated free energies. Despite these inherent simulation issues,
values from the simulations closely align with those predicted by the statistical models at the lowest temperatures
where ergodicity is maintained.

While the dimer (N = 2) and the trimer (N = 3) are represented fairly accurately in all systems, the statistical
models, on the whole, appear to overestimate the cluster formation free energy. Specifically, the divergence from the
MC simulated free energies begins at relatively low temperatures, around T ≈ 0.15, when only global anharmonicity
is considered, and this discrepancy amplifies with increasing N . Some deviation from WMC persists even when
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both local and global anharmonicities are taken into account, albeit occurring at higher temperatures. Notably, the
local anharmonicity correction rectifies the size-dependency issue by bringing together the curves shown in Fig. 7,
particularly when T/Tc is low and N is large. This consolidation is a significant outcome: the systematic errors
associated with Ndof in the statistical model can be alleviated, and the obtained WLGahrm

N exhibit consistency across
different cluster sizes.

The results presented in Fig. 7 reveal certain peculiarities, although the overall data appears to be quite consistent.
The statistical free energies of the icosahedral conformers (N = 12, 13, 14) seem to be slightly elevated. However,
beyond T ≈ 0.25, this erratic behavior dissipates, and the values align with other sizes. Additionally, while WLGahrm−
WMC ≈ 0 for all cluster sizes in systems (n = 8) and (n = 12) at the lowest temperatures, the values corresponding to
system (n = 24) show a shift of approximately 1kBT or 2kBT . These peculiarities may stem from the applied statistical
methods, input parameters (e.g., E‡), Monte Carlo simulations, or a combination of these factors. Nonetheless, given
that the size- or system-specific discrepancies are relatively small, within the range of ±2kBT , our focus will be on
investigating the general temperature-related disagreement evident in Fig. 7.

The observation that WMC < WLGahrm at high temperatures suggests that the phase boundary set in the MC
simulations might be too loose. Previous investigations on Lennard-Jones clusters also support this notion[59, 60].
An elementary analysis of the studied conformers indicates that each monomer has at least 3 neighbors (2 for N = 3,
1 for N = 2) within the connectivity distance, while the Stillinger criterion in the MC simulation protocol is satisfied
with a single neighbor. Rather than modifying the MC algorithm and conducting new simulations with an alternative
cluster criterion, we opted to reevaluate the simulated cluster configurations using the ten Wolde-Frenkel cluster
definition[61]. This involves selecting configurations that meet the ten Wolde-Frenkel criterion (all monomers have 3 or
more neighbors within rs). The categorization into Stillinger (S-) and ten Wolde-Frenkel (tWF-) cluster configurations,
where all S-clusters are also tWF-clusters, across various temperatures enables us to estimate the relative free energies
through thermal integration from a given temperature T0 to T1:

WN (T1)

kBT1
− WN (T0)

kBT0
= −

∫ T1

T0

dT
UN (T )

kBT 2
. (20)

The cluster’s internal energy UN , comprising Eb,N and Eth,N , is not directly comparable with the potential energy
calculated from a simulated configuration. However, assuming that the binding energies of both S and tWF-clusters are

equal (i.e., the difference between these clusters lies only in thermal motion) and that W
MC/tWF
N (T0) = W

MC/S
N (T0),

the criterion-adjusted formation free energy can be computed at T1 as follows

W
MC/tWF
N (T1)

kBT1
=

W
MC/S
N (T1)

kBT1
− 2

∫ T1

T0

dT
E

MC/tWF
pot,N − E

MC/S
pot,N

kBT 2
. (21)

The potential energy difference between the two cluster types, E
MC/tWF
pot,N −E

MC/S
pot,N , is shown in Fig. 8(a). Given the

extensive nature of the original MC data, even after excluding all non-tWF configurations, the statistical uncertainties

of E
MC/tWF
pot,N are deemed insignificant. The difference between WLGahrm

N and W
MC/tWF
N for the (n = 12) system

is presented in Fig. 8(b). The reference temperature, T0, is set to 0.25. Following the criterion adjustment, the
temperature-related deviation diminished and fell within the assigned error margin. This coarse analysis already
elucidates that the ambiguity related to the cluster criterion induces most of the discrepancy between the statistical
model and the simulations explicitly probing the phase space.

C. Potential energy

Finally, we compare the statistical model predictions with the simulated potential energies of the tWF-clusters.
For the harmonic approximation, Ehrm

pot = Eb,k=0 +
Ndof

2 kBT . The globally anharmonic potential energies (with or
without the local anharmonicity) are obtained through Boltzmann averaging:

E
(L)Gahrm
pot,N =

∑
k

(
Eb,k + Ndof

2 E
(MO)
th,k

)
exp

(
−W

(La)hrm
N,k /kBT

)
exp

(
−W

(L)Gahrm
N /kBT

) . (22)

In Fig. 9, we illustrate the impact of anharmonicity on potential energy in comparison to the harmonic approximation
for the (n = 12) system. Since M = 1 and E‡min = 1 for N < 6, global anharmonicity has no effect on potential
energies, and the thermal energy elevation due to local anharmonicity is size-independent with respect to Ndof . We
have presented these results separately in the inset of Fig. 9(a). While the statistical model may not precisely capture
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FIG. 9. (a)–(i) Deviation from the harmonic potential energy presented as a function of temperature for N ≥ 6 within the
(n = 12) system. Dashed lines represent the potential energy differences calculated for locally and globally anharmonic systems,
ELGahrm

pot − Ehrm
pot . Dotted lines depict those without local anharmonicity, EGahrm

pot − Ehrm
pot . The thick colored lines correspond

to Monte Carlo simulated energies for the analyzed ten Wolde-Frenkel clusters. The inset in panel (a) shows the comparison
for clusters with only one conformer, where our locally anharmonic model yields a uniform deviation for 2 ≥ N ≤ 5.
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FIG. 10. Illustration of nucleation barriers for (n = 12) clusters in a supersaturated vapor at N1 = 7 × 10−4 and T = 0.35,
derived from both harmonic and anharmonic statistical models, as well as Monte Carlo (MC) simulations. Critical cluster sizes,
i.e., the peaks of the barriers, are highlighted with white dots. The black dashed line corresponds to the MC values recalculated
for ten Wolde-Frenkel (tWF) clusters.

the magnitude of the simulated anharmonic potential energy, it effectively identifies the temperature at which the
effect is maximized. According to Eq. 11, the peak at ∼ 0.09kBT corresponds to T = ∆k/4.39 ≈ 0.23.
For clusters with multiple conformers, the departure from harmonic potential energies becomes more pronounced, as

both thermal energy and binding energy are influenced by anharmonic corrections. The outset of the energy deviation
in Fig. 9 coincides with the melting phenomenon in Fig. 6. Overall, the simulated onset of anharmonicity aligns well
with the locally anharmonic model. In some cases, the effect is slightly overestimated at very low temperatures, but
the onset temperature is surprisingly accurately predicted by the anharmonic model. At high temperatures, however,

E
MC/tWF
pot is notably higher than the values provided by the models. When approaching low-density systems with

extreme thermal agitation, statistical approaches based on equilibrium configurations are not expected to be very
accurate methods[9].

V. DISCUSSION

In summarizing the comparisons drawn between potential and free energies, our presented results underscore the
adequacy and predictive power of the proposed anharmonic model. By exploring interaction-wise diverse systems and
different properties, we aimed to mitigate the possibility of the observed agreement between the statistical model and
direct phase-space sampling being merely coincidental. Although such an exhaustive benchmarking is challenging
and often implausible for more complex systems, particularly those involving quantum aspects, our detailed analysis
provides valuable insights for these systems as well. In the following, we will briefly discuss the implications that this
model brings to the fields of cluster and nucleation science.

A. Free energy barrier in homogeneous nucleation

Formation free energy is the crucial parameter that dictate the nucleation process, governing cluster growth from
a supersaturated vapor or solution[4, 62]. Due to supersaturation, WN has a shape of a downward parabola: the
transition of the unstable system to the respective stable phase is thereby hindered by a nucleation barrier. Overcom-
ing this barrier marks the initiation of nucleation: the position of the barrier’s peak determines the critical cluster
size, and the free energy corresponding to this size enters the exponent in the nucleation rate expression. As phe-
nomenological theories are destined to fail at nanoscale[5, 62], it is preferable to employ atomistic modeling for cluster
thermodynamics without reference to macroscopically defined quantities.

As discussed in Sec. IVB2, without assessing local anharmonicity, the statistical model suffers from size-dependent
overestimation of WN . We have demonstrated this failure in a heavily supersaturated (n = 12) system: T = 0.35
and N1 = 7 × 10−4. As shown in Fig. 10, the critical cluster sizes according to W hrm and WGahrm is 10, whereas
both WLGahrm and WMC/S render the critical size at N = 8. Moreover, if the MC-values are reestimated for the
tWF-clusters, WLGahrm and WMC/tWF align almost perfectly, the difference at N = 8 is only 1.2kBT . The peaks of
W hrm and WGahrm are 8.3kBT and 6.4kBT above WMC/tWF, translating into about three orders of magnitude lower
nucleation rate.
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FIG. 11. Comparison between molecular dynamics (MD) nucleation data[63, 64] for (n = 12) and the statistical model. Open
symbols represent the difference between MD-simulated critical cluster formation free energy, WMD

N , and the harmonic free
energy, W hrm

N . Filled symbols show the comparison against locally and globally anharmonic values, WLGahrm
N , estimated using

Eq. 19 with parameters α = 1.07 and β = 6.61. The adjustment provided by Eq. 19 is further depicted by the dashed line.

Under typical nucleation conditions, especially at high temperatures, the anticipated critical cluster is composed of
more than 8 monomers. Since global minimum energy structures for (n = 12)N≤1000 are readily available[36], W hrm

N
can be easily computed for all relevant cluster sizes. We thus test the validity of both the harmonic approximation
and the approximation given in Eq. 19 against recent molecular dynamics (MD) simulation results by Ayuba et al.
[63] and Halonen [64] carried out at T ≈ 0.7 and T = 0.6, respectively. In these direct nucleation simulation the
cluster growth take place unrestricted by following the time evolution of a large gaseous system. Once a number of
post-critical clusters have emerged, the formation free energies can be retrieved from the cluster distribution data. In
Fig. 11, the MD simulated critical cluster formation free energies are compared against the corresponding W hrm

N and
WGLahrm

N . Throughout the critical cluster range, from N = 21 up to 72, the huge discrepancy between the harmonic
approximation and the simulations is almost completely amended by the introduced high temperature expression,
Eq. 19, using the system parameters α and β. The anharmonic approximation, of course, is coarse compared to the
model employing explicit k > 0 conformers and their properties, but statistically the estimated values deviate only
by ±4kBT from WMD.

B. Colloidal cluster populations

A very different class of clusters is colloidal clusters made of equal-size micrometer-scale particles[7]. Even here, at
mesoscale, the globally anharmonic statistical model can be used to interpret observed abundance spectra of colloidal
conformers. Due to their characteristically narrow range of attraction[6, 7], the binding energies of colloidal clusters
are rather close to the number of close contacts with particles and the TS barriers are roughly equal to multiples of
the potential well depth (i.e., ∆E‡min = 1ϵ, 2ϵ, . . .). While vibrational anharmonicity has relatively small effect on
overall free energy of a colloidal cluster, due to the differences in conformer-specific ∆E‡min one can expect that the
local anharmonicity affects the conformer populations and their distributions.

So, another possible classical-regime test for the theory is to reproduce experimentally observed populations for
colloidal clusters between sizes N = 6 and 10[6].

C. Atmospheric and molecular clusters

In Earth’s atmosphere, certain vapor molecules have the ability to forge sufficiently stable intermolecular bonds,
forming clusters that grow into larger particles and impact the planet’s climate in various ways[65]. Unlike the systems
discussed in this paper, atmospheric clusters comprise multiple distinct molecules and exhibit quantum mechanical
properties. Nevertheless, the thermochemical quantities for these clusters are derived using an approach outlined
in Sec. II A[5], using conformer data obtained from quantum chemical calculations. Ensuring the accuracy of free
energy calculations is crucial, particularly given the high sensitivity of climate models to the predicted stability of
nanometer-sized particles[66]. Moreover, atmospheric clustering rates, also, are exponentially dependent on the free
energy of a critical cluster composition[27].
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If computational resources allow for high-level electronic structure calculations for multiple conformers, global an-
harmonicity in atmospheric clusters can be and has been assessed[13]. However, due to their inherent complexity,
atmospheric systems are likely dominated by the global minimum energy conformer, resulting in a global anharmonic
effect of about 1 kcal/mol[13]. The significance of local anharmonicity, on the other hand, is even more pronounced
for molecular clusters, given that the number of intermolecular degrees of freedom is 6N − 6. It is worth cautioning
that some of these degrees of freedom might be better treated as free rotors[67]. While the model for local anhar-
monicity in this work is limited to classical systems, the approach given in Sec. II C is equally applicable to discrete
energy states (allowing determination of partition functions, e.g, through direct counting). However, intermolecular
interactions in atmospheric clusters are not as strong as chemical bonds, and their frequencies are relatively low
(ω <∼ 1000 cm−1). Consequently, vibrational motion can be considered within the classical limit (kBT/h̄ ≈ 1300 cm−1

at room temperature), and Eq. 7 most likely provides a good estimate for the anharmonic adjustment.
Obtaining precise conformer-wise transition state information for atmospheric clusters requires specific calculations

that may not always be readily available. Nevertheless, even in the absence of such detailed data, our suggested ap-
proach provides an upper limit for the potential overestimation of cluster free energies. This knowledge is particularly
relevant for making predictions in environments with low partial vapor pressures, where critical clusters are composed
of multiple molecules (∼ 10). Moreover, as quantum chemical calculations extend to even larger and more complex
cluster sizes – demonstrated by recent studies, such as those by Engsvang et al.[68] examining clusters up to 30 or 60
molecules – the question of the level of local anharmonicity becomes increasingly pertinent.

VI. CONCLUSIONS

The influence of anharmonicity becomes particularly pronounced in large cluster systems, where the exponential
growth in the number of unique molecular arrangements amplifies global anharmonicity. Additionally, the weak
intermolecular bonds within these systems may display notable local anharmonicity. While one approach to address
the anharmonicity of individual vibrations involves adjusting frequencies using scaling factors[14, 19–21], it is crucial to
recognize that, in the presence of significant thermal agitation on relatively low-frequency modes, the thermodynamic
contribution of vibrations must be accurately assessed through the corresponding partition function.

In this study, we systematically characterize the global and local anharmonicity of small clusters interacting via
varying ranges of attraction. With our findings, we introduce and validate a novel statistical mechanical approach for
calculating the partition function, allowing us to accurately assess anharmonicities in the modes of vibrational motion.
Our tests reveal that our model outperforms, both qualitatively and quantitatively, the harmonic approximation in
predicting cluster free energies and potential energy. Two gratifying results underscore the efficacy of our approach:
The improvement is achieved with the addition of only one input parameter, the interconfigurational transition state
barrier height, ∆E‡min. And, for systems with ∆E‡min/kBT <∼ 2, our model predicts a maximum entropy enhancement
of approximately kB/4 per vibrational mode.

To achieve even closer agreement with experiments, incorporating local anharmonicity, as outlined here, is antici-
pated. Work in progress is investigating the impact of anharmonicity on the modeling of both simple systems, such
as homogeneous argon and water nucleation, which have abundant controlled experimental data, and atmospheric
systems with broader scientific significance.
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