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Abstract

The rate constants of enzyme-catalyzed reactions (kcat) are often approximated from

the barrier height of the reactive step. We introduce an enhanced sampling QM/MM

approach that directly calculates the kinetics of enzymatic reactions, without introduc-

ing the transition state theory assumptions, and takes into account the dynamical equi-

librium between the reactive and non-reactive conformations of the enzyme:substrate

complex. Our computed kcat values are in order-of-magnitude agreement with the

experimental data for two representative enzymatic reactions.
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Enzymes play a crucial role in the complex interplay of biochemical processes due to their

high precision and selectivity in catalysis. Traditionally, enzymatic reactions are described

using the Michaelis–Menten model,1 which introduces the concept of enzyme:substrate com-

plex (ES) as an intermediate state connecting the reactants (enzyme E and substrate S) to

the products (P):

E + S
k1−�===�−
k−1

ES
kcat−−→ E + P (1)

The equilibrium between the reactants and the enzyme:substrate complex involves non-

covalent binding, while the catalytic step entails the formation of the product with a rate

constant kcat. The kcat is commonly measured in experiments, and it is often used as a metric

to quantify the catalytic efficiency of the enzyme along with the kcat/KM ratio, where KM

(KM = k−1+kcat
k1

) is the Michaelis-Menten constant.

However, at a molecular level, not all configurations of the enzyme:substrate complex can

lead to product formation. The substrate necessitates a precise arrangement in the active

site to initiate a reaction, and thus, only a fraction of conformations within the ES ensemble

are catalytically active.2,3 Therefore, characterizing the enzymatic activity requires not only

estimating the kinetics associated with potential reactive pathways but also considering the

dynamical equilibrium between reactive (RC) and non-reactive conformations (NRC) of the

enzyme:substrate complex.4 Reaching such a level of molecular resolution is extremely chal-

lenging from an experimental perspective. Nonetheless, it becomes more accessible through

atomistic simulations, which can aid in differentiating between reactive and non-reactive

configurations, predicting kcat and understanding the enzymatic mechanism.4–7

So far, most studies computed the free energy landscape of the reactive step and used the

effective barrier height between the enzyme:substrate complex and the product as a proxy for

the kcat.
7–9 The calculation of the energy barriers has been achieved either by optimizing the

structures of reactants and transition states or through enhanced sampling techniques such as

umbrella sampling8,10 and metadynamics.11,12 These latter methods use collective variables

(CVs) specifically designed to encode the slow modes of the system, thereby facilitating the
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occurrence of reactive events.

However, these approaches have some limitations. First, the rate constant is usually

estimated using the Arrhenius equation which has notable exceptions for enzymatic reac-

tions.13,14 Furthermore, the applicability of transition state theory for these reactions is

rather limited, since it does not take into account the recrossing probability and the dif-

fusion constant in the free energy surface.15–17 Second, the reactive QM/MM simulations

are often initiated from the reaction-ready conformation and not from the free energy min-

imum corresponding to the most stable conformation of the enzyme:substrate complex.6,12

Although this approach facilitates the sampling of the reactive events, it leads to an under-

estimation of the barrier height as the starting point is already near the transition state.

Finally, the estimation of the barrier height from the free energy landscape, as derived using

CV-based methods, is highly influenced by the choice of collective variables. As demon-

strated in several studies,18–20 projection of the free energy landscape along a suboptimal

CVs can lead to an underestimation of the barrier height. Therefore, the assumption of

a direct correlation between estimated barrier height and rate constant is not completely

justified. Despite these shortcomings, correlating kcat with the barrier height is a common

practice due to the simplicity of the overall approach and the availability of enhanced sam-

pling algorithms such as umbrella sampling and metadynamics for computing free energy

landscape.

Recently, it has been demonstrated that the kinetics of molecular rare events can be cal-

culated directly using adaptive-bias enhanced sampling algorithms without introducing any

assumption of the underlying kinetic model e.g. transition state theory.21–24 Examples of

such methods include infrequent metadynamics,23 Gaussian accelerated molecular dynam-

ics,25 variational flooding,26 Gaussian mixture based enhanced sampling (GAMBES),27 and

On-the-fly probability enhanced sampling (OPES) flooding.20 It is, therefore, appropriate

that such algorithms are used to directly measure the rate constant of the catalytic step

instead of the indirect estimation from the free energy landscape.
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Furthermore, the importance of distinguishing the lowest free energy minimum of the

enzyme:substrate complex from the reactive configuration is being highlighted in litera-

ture.4,8,28–30 Our recent work showed the existence of an equilibrium between the deep free

energy minimum of the non-reactive conformation (NRC) and the shallower minimum cor-

responding to the reactive conformation (RC).6 This effect is implicitly included in the

experimental kcat values and should be taken into account while modeling enzymatic reac-

tivity.

Figure 1: A schematic representation of our proposed enhanced sampling QM/MM protocol
for calculation of rate constant of enzymatic reactions. The blue region on the model free
energy surface depicts the transition between the reactive and non-reactive conformations of
the enzyme:substrate complex. This part is modeled at MM level using OPES simulation.
The reactive step (colored in green) is modeled at QM/MM level using unidirectional OPES-
flooding simulations.

Here, we propose a general workflow to overcome these limitations by using adaptive

bias enhanced sampling methods to explicitly sample the conformational space of the en-

zyme:substrate complex and to directly estimate the rate constant of the chemical transfor-

mation. We argue that the conversion from the enzyme:substrate complex to the product

can be better modeled as the following two-step process (Fig. 1):

NRC
kNRC→RC−�=======�−
kRC→NRC

RC
kRC→P−−−−→ P (2)
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An equilibrium is established between NRC and RC before the unidirectional reactive

step. Considering the free energy minimum of the enzyme:substrate complex corresponds to

the NRC, the rate constant for the overall reaction (NRC → P) kcat is:

kcat =
kNRC→RC kRC→P

kRC→NRC

=

(
pRC

pNRC

)
kRC→P =

exp(−β∆GNRC→RC)

τRC→P

(3)

where pRC/pNRC is the relative population of RC compared to NRC, and it is given by

pRC/pNRC = exp(−β∆GNRC→RC) where β is the inverse temperature. Considering the reac-

tion from RC to P as first order we can write the reaction time as the inverse of the rate

constant: kRC→P = τ−1
RC→P. We calculate the free energy difference between the reactive and

non-reactive conformations (∆GNRC→RC) at the molecular mechanics (MM) level of theory

as no chemical reaction takes place in this step. As the second step (RC → P) involves the

chemical transformation from the substrate to the product, we simulate it using the hybrid

QM/MM method where the QM region is treated at the DFT level. We use the OPES

algorithm19 for computing free energy landscapes and the OPES flooding algorithm20 to get

a direct estimate of reaction timescale τRC→P. A schematic of this protocol is provided in

Fig. 1.

The choice of the enhanced sampling algorithm is motivated by the fact that OPES leads

to a quicker convergence of the free energy landscape than its predecessor, metadynamics.11,31

In OPES, the bias potential V (s) is expressed as a function of the reduced dimensional

collective variable s space which encodes the slow modes of the system. V (s) is computed

from the instantaneous probability distribution P (s) constructed on-the-fly, and is given by:

V (s) = − 1

β
ln

ptg(s)

P (s)
. (4)

where ptg(s) is the target distribution sampled in the presence of bias. As the target dis-

tribution one usually uses the well-tempered distribution ptg(s) ∝ P (s)1/γ, where γ = β∆E

and ∆E is the barrier height that needs to be overcome. The bias potential in the n-th

6

https://doi.org/10.26434/chemrxiv-2024-np1kh ORCID: https://orcid.org/0000-0002-7103-0886 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-np1kh
https://orcid.org/0000-0002-7103-0886
https://creativecommons.org/licenses/by-nc/4.0/


iteration is expressed as

Vn(s) = (1− 1/γ)
1

β
ln

(
Pn(s)

Zn

+ ϵ

)
, (5)

where Pn(s) is the estimated unbiased marginal probability distribution along s at step n:

Pn(s) =
∑n

k wkGk(s, sk)/
∑n

k wk. Here Gk(s, sk) are Gaussian Kernels and wk is the weight

of k-th kernel computed as wk = exp(βVk−1(sk)). The normalization factor Z and the

regularization term ϵ are introduced for numerical stability. The accuracy and efficiency of

the OPES algorithm have been established for a variety of molecular rare events.32–37

OPES flooding (OPESf) is a variant of the OPES algorithm specifically introduced for

calculating the kinetics of molecular processes.20 It uses an extra parameter, the excluded

region χexc(s, sexc). A careful choice of the sexc parameter ensures that no bias is deposited

in the transition state making it possible to recover the unbiased kinetics. The bias is

only applied in the region, s < sexc, to reduce the effective barrier height and accelerate

transitions.

We tested our approach on two prototypical enzymatic reactions: (i) the chorismate-

to-prephenate conversion catalyzed by the Bacillus subtilis chorismate mutase enzyme38

and (ii) the hydrolysis of maltopentaose sugar by human pancreatic α-amylase. Our choice

is motivated by the fact that these two reactions have very different mechanisms. The

chorismate mutase enzyme exerts its catalytic effect only via electrostatic interactions as

the enzyme does not directly participate in the reaction; whereas, amylase directly takes

part in the reaction by forming a covalently bound enzyme:substrate intermediate and by

participating in a proton transfer event. In addition, the kcat values of these two systems are

about one order of magnitude apart which helps us to measure the ability of our method to

distinguish their kinetics.

The conversion from chorismate to prephenate is a pericyclic rearrangement reaction

responsible for the biosynthesis of several aromatic amino acids39 (Fig. 2a). Chorismate
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mutase catalyzes this reaction by stabilizing its chair-like transition state40 via the electro-

static effect of an Arginine residue in the active site.41 Before reaching the transition state

the chorismate molecule has to undergo a conformational transition from its thermodynam-

ically stable axial form to a relatively unstable equatorial form that better resembles the

TS structure.38,42 This step is what we refer to as the conformational transition from the

non-reactive to reactive state as it is known to have a key impact on the catalytic rate con-

stant.42 Several studies have established that the electrostatic stabilization of the transition

state is the primary determinant of the catalytic efficiency.41,43 Nevertheless, the role of the

conformational dynamics of the enzyme:substrate complex is not negligible. Using OPES

simulations along a 2D CV space comprising of the distance (d1) between the bond forming

atoms and a torsion angle (θ), we obtain the free energy landscape of this conformational

transition (Fig. 3). We compute the free energy cost of reaching the RC to be 19.9 kJ/mol

whereas the timescale of the pericyclic rearrangement reaction, estimated from OPESf sim-

ulations is 124 µs (Fig. 3). The predicted kcat, from Eq. 3, is 2.66 s−1 which is in order

magnitude agreement with the experimental value of 46±3 s−1 38 (Table 1). It is noteworthy

that the significantly better estimate of kcat compared to only considering kRC→P indicates

the important role of substrate conformational dynamics in determining the reaction kinetics.

The other enzyme, human pancreatic α-amylase, cleaves the α(1–4) glycosidic bonds in

the amylose component of starch, and hence, is a primary partner in glucose production

for energy acquisition.28,44 Furthermore, α-amylase is also considered a major target for the

development of new inhibitors to treat type II diabetes.45,46 In the catalytic decomposition

of starch by α-amylase,8,28,29,44,47 the rate-limiting first step of the catalytic reaction occurs

through the nucleophilic attack by the carboxylate group of Asp197 on the anomeric C1

carbon and the cleavage of the sugar glycosidic bond C1–Ogly (Fig. 2b), leading to the

formation of the covalently bound enzyme:substrate complex. This substitution reaction is

coupled to a proton transfer (PT) event between the acidic Glu233 and the glycosidic oxygen

Ogly. Previous studies6,8,28,29,47 have found that the transient RCs of the enzyme:substrate
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Figure 2: The two prototypical enzymatic reactions studied in this work. (a) Chorismate
to prephenate conversion by the B. subtilis chorismate mutase and (b) the hydrolysis of
maltopentaose sugar by human pancreatic α-amylase. The atoms and residues taking part
in the reaction have been highlighted.

complex satisfy the reactive contacts between enzyme active site residues and the substrate.

These contacts include (Fig. 2b): (1) proximity of the nucleophilic residue Asp197 to the

electrophilic anomeric carbon of the substrate for a facile nucleophilic attack; (2) strong

hydrogen bonds among the glycosidic oxygen (Ogly), acidic Glu233 residues, and a coor-

dinated water molecule (W1) to facilitate the proton transfer event; and finally, (3) short

hydrogen bonds between Asp300 and the substrate which helps to place the electrophilic

anomeric carbon in a proper position for the nucleophilic attack. On the other hand, the

stable NRCs of the enzyme:substrate complex lack these important contacts.6 In addition,

our recent study6 has found the active site water environment to play a crucial role in distin-

guishing these two states of the Michaelis complex. In the same study, we employed OPES
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simulation with deep-targeted discriminant analysis (Deep-TDA) CVs48 to compute the free

energy landscape of the transition between RC and NRC. The free energy cost of reaching

the RC has been found to be 6.5 kJ/mol (Table 1).

The rate-limiting chemical transformation of these RCs to the covalently bound en-

zyme:substrate complex follows two different mechanisms (as identified by our previous

work6), depending on whether the proton transfer from the enzyme to the substrate takes

place via a coordinating water molecule (W1) (Fig. 2b). Using OPESf simulations, we

computed the reaction time corresponding to both the direct and water-mediated proton

transfer. The direct PT reaction is faster compared to the water-mediated one although the

difference is less than a factor of two indicating that the likelihood of these two mechanisms

is almost identical (Table 1). The estimated kcat, from Eq. 3, including both the mechanisms

is 40.2 s−1 which is in order of magnitude agreement with the experimental value of 408±17

s−1.44

We observe that only considering the reactive part of the process (i.e. approximating

kcat = kRC→P) leads to a significant over-estimation of kcat as the free energy cost to reach

the reactive conformation is not taken into account. It also leads to an incorrect ordering

of the kcat values of the two reactions studied in this work. For example, the OPESf simu-

lations, initiated at the reactive conformation, produce a higher reaction timescale (τRC→P)

for the amylase system compared to the chorismate mutase enzyme. This observation is

consistent with QM/MM umbrella sampling calculations which showed the activation bar-

rier of reactions catalyzed by chorismate mutase and α-amylase to be 11.8 kcal/mol49 and

13.9 kcal/mol8 respectively, using the same DFT functional used in the current work. It

is, however, inconsistent with the experimental results which show a higher kcat i.e. faster

reaction for the amylase compared to chorismate mutase. Only when the free energy differ-

ence between the reactive and non-reactive conformations is taken into consideration, we can

recover the correct ordering of the estimated kcat values. This demonstrates the necessity

of including the conformational dynamics of the enzyme:substrate complex in the descrip-
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tion of the enzymatic reaction mechanism. For both systems, the computed kcat values are

one order of magnitude different from the corresponding experimental values. Considering

the approximate nature of both the classical force field model and the DFT functional, this

discrepancy is within the acceptable range for complex biological systems.24

Table 1: Summary of the thermodynamic and kinetic results for both the enzy-
matic reactions

System
∆GNRC→RC

(kJ/mol)
τRC→P

(µs)
kRC→P

(s−1)
kcat
(s−1)

kexp
cat

(s−1)
Chorismate mutase 19.9 124 8064 2.66 46±3 a

α-Amylase 6.5 1847 541 40.2 408±17 b

a Ref. 38 b Ref. 44

Figure 3: (a) The free energy landscape of the conformational transition between the reac-
tive and the non-reactive states of chorismate in the chorismate mutase enzyme:substrate
complex. (b) Depiction of the conformational transition and the reactive step in a single
qualitative free energy landscape. Representative structures of the different states are shown
along with the two CVs (Θ and d1) biased for calculating the free energy landscape in sub-
figure (a). The free energy surface for the α-amylase system has been reported in Ref. 6.

In conclusion, we demonstrated the application of adaptive bias enhanced sampling meth-

ods to directly estimate the rate constants of enzyme-catalyzed reactions. Enhanced sam-

pling methods like infrequent metadynamics, variational flooding, and OPES flooding have

so far been successfully applied to a variety of chemical, material, and biological systems for

calculating kinetics.24 However, to the best of our knowledge, this work first demonstrates a

11

https://doi.org/10.26434/chemrxiv-2024-np1kh ORCID: https://orcid.org/0000-0002-7103-0886 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-np1kh
https://orcid.org/0000-0002-7103-0886
https://creativecommons.org/licenses/by-nc/4.0/


successful application of such a method to compute the timescales of an enzymatic reaction

at the QM/MM level. Our approach takes into consideration the equilibrium populations of

the reactive and non-reactive conformations of the enzyme:substrate complex using enhanced

sampling simulations based on molecular mechanics force fields, leading to a significant in-

crease in computational efficiency. We also show that the relative free energy of the reactive

conformation can be included via a simple kinetic model, leading to an improved estimate

of the kcat values.

One key advantage of our protocol is that we are not required to adhere to the transition

state theory approximation to estimate kinetics. So we can directly compare computational

kcat values with experimental ones, without calculating the barrier height, a quantity that

can be severely impacted by the choice of collective variables. Furthermore, the OPES

flooding algorithm only needs to sample one-way transitions from reactant to product. As

a result, our approach is computationally more efficient than traditional enhanced sampling

methods that try to calculate the free energy landscape of the reactive step, which ideally

requires one to sample multiple back-and-forth transitions. Therefore, when integrated with

either massively parallel50,51 or GPU-accelerated52,53 electronic structure codes, it can be

highly efficient in studying systems requiring large QM regions, such as ion channels.54,55

We could demonstrate the successful application of this protocol for two enzymatic reactions

with completely different reaction mechanisms, which is an indication of the transferability

of our approach to different enzymes, substrates, and reaction types. Our study also paves

the way to modifying enzyme efficiency not only by tuning the transition state stabilization

but also by perturbing the conformational dynamics of the enzyme:substrate complex.
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