Supplementary Information for

Synthesis and Functions of Binaphthyl Derivatives with Comprehensive Introduction of Phenylethynyl Groups

Misato Sakai, ^[a] Ayumi Imayoshi, ^[a] Takahiro Sasamori, ^[b] Keita Okada, ^[c]

Yoshiane Imai, ^[c], Masashi Hasegawa ^[d] Kazunori Tsubaki * ^[a]

[a]	Graduate School of Life and Environmental Sciences, Kyoto Prefectural University 1-
	5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
[b]	Department of Chemistry, Institute of Pure and Applied Sciences,
	University of Tsukuba Tenodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan.
[c]	Department of Applied Chemistry, Faculty of Science and Engineering, Kindai
	University 3-4-1 Kowakae, Higashi-Osaka, Osaka 577–8502, Japan.
[d]	Graduate School of Science, Kitasato University

Sagamihara, Kanagawa 252-0373, Japan

*correspondence to: tsubaki@kpu.ac.jp

Table of contents

1. Crystal structures of of 8-PE-MOM and 8-PE	S 3
2. Crystal data of of 8-PE-MOM and 8-PE	S4
3. Experimental procedures	S 6
4. Computational data	S15
5. Optical resolution of 8-PE	S41
6. ¹ H and ¹³ C NMR spectra for all new compounds	S42

1. Crystal structures of of 8-PE-MOM and 8-PE

1.1. Crystal structure of of 8-PE-MOM (crystallised from CHCl₃/CH₃OH = 2/1).
(a) Side view
(b) Top view

1.2. Crystal structure of **8-PE** (crystallised from *n*-hexane/*i*-PrOH = 9/1).

2. Crystal data of of 8-PE-MOM and 8-PE

2.1. Table S1. Crystal data and structure refinement for 8-PE-MOM.

Identification code	MS1382fr1_a	S1382fr1_a	
Empirical formula	C40 H30 O4		
Formula weight	574.64		
Temperature	103(2) K		
Wavelength 0.71073 Å			
Crystal system	Monoclinic		
Space group	P21/c (#14)		
Unit cell dimensions	a = 14.0381(5) Å	<i>α</i> = 90°.	
	b = 21.0795(8) Å	β= 98.450(3)°.	
	c = 10.0691(3) Å	$\gamma = 90^{\circ}.$	
Volume	2947.26(18) Å ³		
Z	4		
Density (calculated)	1.295 Mg/m ³		
Absorption coefficient	0.083 mm ⁻¹		
F(000)	1208		
Crystal size	0.100 x 0.080 x 0.060 mm ³		
Theta range for data collection	2.262 to 29.185°.		
ndex ranges -19<=h<=19, -28<=k<=28, -13<=l<=13		<=l<=13	
Reflections collected 54774			
Independent reflections	7620 [R(int) = 0.1244]		
Completeness to theta = 25.242°	99.9 %		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	ata / restraints / parameters 7620 / 0 / 399		
Goodness-of-fit on F ²	1.049		
Final R indices [I>2sigma(I)]	I>2sigma(I)] $R1 = 0.0618, wR2 = 0.1432$		
R indices (all data) $R1 = 0.1011, wR2 = 0.1584$			
Extinction coefficient	n/a		
Largest diff. peak and hole	0.356 and -0.277 e.Å ⁻³		

2.2. Table S2. Crystal data and structure refinement for 8-PE.

Identification code	MS1533a	MS1533a	
Empirical formula	rmula C37 H22 O2		
Formula weight	498.54		
Temperature	103(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P21 (#4)		
Unit cell dimensions	a = 13.0329(10) Å	<i>α</i> = 90°.	
	b = 8.1371(4) Å	$\beta = 118.013(10)^{\circ}$.	
	c = 13.5899(10) Å	$\gamma = 90^{\circ}$.	
Volume	1272.36(18) Å ³		
Z	2		
Density (calculated)	1.301 Mg/m ³		
Absorption coefficient	0.079 mm ⁻¹	0.079 mm ⁻¹	
F(000)	520	520	
Crystal size	0.150 x 0.120 x 0.030 m	0.150 x 0.120 x 0.030 mm ³	
Theta range for data collection	2.973 to 29.177°.		
Index ranges	-17<=h<=17, -11<=k<=10, -18<=l<=18		
Reflections collected	23273		
Independent reflections $6333 [R(int) = 0.0733]$			
Completeness to theta = 25.242°	pleteness to theta = 25.242° 99.9 %		
Refinement method	Full-matrix least-square	s on F ²	
Data / restraints / parameters	6333 / 1 / 352		
Goodness-of-fit on F ²	1.028		
Final R indices [I>2sigma(I)]	R1 = 0.0579, wR2 = 0.1	006	
R indices (all data)	R1 = 0.0931, wR2 = 0.1	R1 = 0.0931, $wR2 = 0.1122$	
Absolute structure parameter	0.6(10)	0.6(10)	
Extinction coefficient n/a			
Largest diff. peak and hole 0.224 and -0.229 e.Å ⁻³			

3. Experimental procedures

3.1. General procedure for introduction of phenylethynyl groups using Sonogashira reaction.

The synthesis of **4,6-PE** is typical. An oven-dried 50-mL double-necked flask was charged with compound (*S*)-**7** (1.0 g, 1.6 mmol), CuI (8.6 mg, 0.045 mmol), PdCl₂(PPh₃)₂ (25 mg, 0.036 mmol), NEt₃ (2.3 mL, 16 mmol), Ethynylbenzene (894 μ L, 8.14 mmol) and DMF (10 mL). After the mixture was stirred at 80 °C in a oil bath for 12 h. The reaction mixture was filtered by Cerite and washed with AcOEt. Then, the filtrate was washed with water and brine, and dried over sodium sulfate and evaporated to give a residue. The residue was purified by GPC column chromatography to afford compound **4,6-PE** as a yellow powder (581 mg, 67%).

m.p.: 238~239 °C, ¹H-NMR (400 MHz, CHLOROFORM-D) δ 8.71 (s, 2H), 7.79 (s, 2H), 7.74 (d, *J* = 7.8 Hz, 4H), 7.61 (d, *J* = 4.6 Hz, 4H), 7.46 (m, *J* = 6.4 Hz, 10H), 7.38 (d, *J* = 5.9 Hz, 6H), 5.73 (s, 2H), ¹³C-NMR (101 MHz, CHLOROFORM-D) δ 151.5, 132.0, 131.9, 131.5, 130.2, 129.6, 129.0, 128.7, 128.6, 128.5, 127.2, 126.7, 125.8, 123.5, 123.2, 123.0, 121.0, 103.2, 96.5, 90.8, 89.7, 86.6, 1 peak overlapped, HRMS (ESI) m/z; [M+Na]⁺ calcd for C₅₃H₃₀O₂Na 721.21380; found: 721.21363, [α]²⁵_D; +279.0 (CHCl₃, c=0.096 g/dL)

12: 15% yield; yellow powder; m.p.: 267~269 °C, ¹H-NMR (400 MHz, CHLOROFORM-D) δ 8.68 (d, J = 1.8 Hz, 2H), 7.76 (s, 2H), 7.72-7.69 (m, 4H), 7.46-7.43 (m, 8H), 7.33 (d, J = 9.1 Hz, 2H), 5.70 (s, 2H) ¹³C-NMR (101 MHz, CHLOROFORM-D) δ 151.1, 133.0, 131.9, 130.6, 130.4, 129.1, 128.7, 126.6, 126.0, 122.9, 122.7, 120.7, 103.2, 96.6, 90.8, 89.7, 86.2, HRMS (FAB) m/z; [M]⁺: calcd for C₃₇H₂₀Br₂O₂ 653.98301; found: 653.9815, [α]²⁵_D; +14.7 (CHCl₃, c=0.0135 g/dL)

3-PE: 17% yield; yellow powder; m.p.: 108~110 °C, ¹H-NMR (400 MHz, CHLOROFORM-D) δ 8.68 (d, J = 1.8 Hz, 2H), 7.76 (s, 2H), 7.72-7.69 (m, 4H), 7.46-7.43 (m, 8H), 7.33 (d, J = 9.1 Hz, 2H), 5.70 (s, 2H) ¹³C-NMR (101 MHz, CHLOROFORM-D) δ 150.6, 134.0, 131.9, 131.3, 128.5, 128.4, 126.9, 126.6, 125.8, 123.3, 116.7, 103.0, 93.7, 85.1, 3 peaks overlapped, HRMS (FAB) m/z; [M]⁺ calcd for C₃₇H₂₂O₂ 498.16143; found: 498.1624, [α]²⁵_D; +492.5 (CHCl₃, c=0.0115 g/dL)

17: 98% yield; yellow amorphous; ¹H-NMR (400 MHz, CHLOROFORM-D) δ 8.10 (s, 2H), 7.94 (d, *J* = 8.7 Hz, 2H), 7.61 (d, *J* = 9.1 Hz, 2H), 7.55 (d, *J* = 6.4 Hz, 4H), 7.35 (d, *J* = 5.9 Hz, 8H), 7.12 (d, *J* = 8.7 Hz, 2H), 5.13 (d, *J* = 6.9 Hz, 2H), 5.00 (d, *J* = 6.4 Hz, 2H), 3.17 (s, 6H), ¹³C-NMR (101 MHz, CHLOROFORM-D) δ 153.5, 133.6, 131.8, 129.7, 129.5, 129.1, 128.5, 128.4, 125.7, 123.5, 120.8, 118.9, 117.6, 95.0, 90.1, 89.6, 56.1, 3 peaks overlapped, HRMS (ESI) m/z; [M+Na]⁺ calcd for $C_{40}H_{30}O_4Na$ 597.20363; found 597.20544, [α]²⁵_D; +87.9 (CHCl₃, c=0.025 g/dL)

3,6-PE: 45% yield; yellow powder; m.p: 139~140 °C ¹H-NMR (400 MHz, CHLOROFORM-D) δ 8.21 (s, 2H), 8.12 (s, 2H), 7.62-7.58 (m, 8H), 7.45-7.37 (m, 18H), 5.91 (s, 2H), ¹³C-NMR (101 MHz, CHLOROFORM-D) δ 151.3, 133.7, 131.9, 131.8, 131.6, 131.1, 131.0, 129.6, 128.8, 128.5, 126.8, 126.4, 123.1, 120.8, 117.6, 103.1, 94.3, 90.6, 89.2, 84.7, 3 peaks overlapped, HRMS (ESI) m/z: [M+Na]⁺ calcd for C₅₃H₃₀O₂Na 721.21380; found: 721.21546, [α]²⁵_D; +368.8 (CHCl₃, c=0.085 g/dL)

5,6-PE; 42% yield; yellow powder; m.p: $158\sim160$ °C ¹H-NMR (400 MHz, CHLOROFORM-D) δ 8.67 (d, J = 9.6 Hz, 2H), 7.76-7.73 (m, 4H), 7.62 (m, 6H), 7.48-7.42 (m, 10H), 7.39-7.36 (m, 8H), 5.76 (s, 2H), ¹³C-NMR (101 MHz, CHLOROFORM-D) δ 152.4, 131.9, 131.8, 131.5, 131.4, 129.4, 128.84, 128.79, 128.6, 128.5, 126.8, 126.2, 124.4, 123.8, 123.43, 123.36, 122.4, 103.3, 99.6, 94.9, 89.2, 86.8, 1 peak overlapped, HRMS (ESI) m/z; [M+Na]⁺ calcd for C₅₃H₃₀O₂Na 721.21380; found: 721.21528, [α]²⁵_D; +158.9 (CHCl₃, c=0.0235 g/dL)

5-PE; 28% yield; yellow powder; m.p: 177~179 °C ¹H-NMR (400 MHz, CHLOROFORM-D) δ 8.66 (d, J = 8.7 Hz, 2H), 7.75 (d, J = 6.9 Hz, 2H), 7.71 (dd, J = 7.5, 1.6 Hz, 4H), 7.62 (d, J = 8.7 Hz, 2H), 7.50 (d, J = 8.7 Hz, 2H), 7.46-7.41 (m, 6H), 7.30 (dd, J = 8.5, 7.1 Hz, 2H), 5.74 (s, 2H), ¹³C-NMR (101 MHz, CHLOROFORM-D) δ 151.8, 132.2, 131.8, 131.7, 129.8, 129.1, 128.9, 128.6, 127.6, 126.4, 125.9, 125.7, 123.4, 121.9, 121.6, 103.3, 94.7, 87.6, 1 peak overlapped, HRMS (FAB) m/z; [M]⁺ calcd for C₃₇H₂₂O₂ 498.16143; found: 498.1624, [α]²⁵_D; +156.9 (CHCl₃, c=0.0405 g/dL)

6,7-PE; 38% yield; yellow powder; m.p: 209~211 °C ¹H-NMR (400 MHz, CHLOROFORM-D) δ 8.21 (s, 2H), 7.97 (d, J = 8.7 Hz, 2H), 7.72 (s, 2H), 7.60 (s, 4H), 7.49 (m, 6H), 7.34 (m, 6H), 7.25 (s, 2H), 5.69 (s, 2H), ¹³C-NMR (101 MHz, CHLOROFORM-D) δ 152.5, 132.4, 131.9, 131.8, 131.4, 131.0, 130.5, 129.7, 128.54, 128.48, 128.44, 128.3, 125.6, 123.5, 123.3, 123.2, 122.4, 122.2, 103.2, 93.9, 93.4, 88.5, 88.4, HRMS (ESI) m/z; [M+Na]⁺ calcd for C₅₃H₃₀O₂Na 721.21380; found: 721.21383, [α]²⁵_D; +934.1 (CHCl₃, c=0.011 g/dL)

3,4,6-PE; 43% yield; yellow powder; m.p: 184~186 °C ¹H-NMR (400 MHz, CHLOROFORM-D) δ 8.74 (s, 2H), 7.80-7.78 (m, 4H), 7.67-7.61 (m, 8H), 7.51-7.43 (m, 10H), 7.41-7.38 (m, 12H), 5.93 (s, 2H), ¹³C-NMR (101 MHz, CHLOROFORM-D) δ 151.1, 132.0, 132.0, 131.9, 131.2, 130.7, 130.4, 130.1, 129.1, 129.0, 128.7, 128.7, 128.6, 128.5, 127.2, 126.5, 126.1, 123.2, 123.1, 121.6, 120.9, 101.3, 99.1, 91.1, 89.5, 86.3, 84.5, 2 peaks overlapped, HRMS (ESI) m/z; [M+Na]⁺ calcd for C₆₉H₃₈O₂Na 921.27640, found: 921.27977, [α]²⁵_D; +126.6 (CHCl₃, c=0.0525 g/dL)

3.2. General procedure for removal of protecting groups of binaphthol.

The synthesis of Compound **10** is typical. To a mixture of compound (*S*)-**9** (93 mg, 0.13 mmol) in dichloromethane (1.0 mL) was added with ice-bath cooling. After 15 minutes, 1 M BBr₃ in dichloromethane (283 µL, 0.283 mmol) was added and the reaction mixture was stirred for 1.5 h at room temperature. The reaction mixture was poured into water. The organic layer was separated and washed with water and brine, and dried over sodium sulfate and evaporated to give a residue. The residue was washed with Hexane to afford compound (*S*)-**10** as a white powder (89 mg, quant.). m.p: 271~273 °C, ¹H-NMR (400 MHz, CHLOROFORM-D) δ 8.32 (d, *J* = 1.8 Hz, 2H), 8.03 (s, 2H), 7.39 (dd, *J* = 8.9, 2.1 Hz, 2H), 6.91 (d, *J* = 9.1 Hz, 2H), 5.09 (s, 2H), ¹³C-NMR (101 MHz, CHLOROFORM-D) δ 152.6, 135.1, 135.1, 131.9, 131.7, 130.4, 126.4, 120.4, 111.3, 101.4, HRMS (FAB) m/z; [M]⁺ calcd for C₂₀H₁₀Br₂I₂O₂ 693.71315, [α]²⁵_D; -10.7 (CHCl₃, c=0.0665 g/dL)

32; 76% yield; yellow powder; m.p: more over 300 °C ¹H-NMR (400 MHz, CHLOROFORM-D) δ 8.44 (s, 2H), 7.85 (d, J = 9.1 Hz, 2H), 7.39-7.36 (m, 2H), 7.32 (s, 2H), 5.17 (s, 2H), ¹³C-NMR (101 MHz, CHLOROFORM-D) δ 154.0, 140.1, 134.0, 130.8, 129.6, 128.9, 127.1, 119.4, 109.2, 96.2, HRMS (FAB) m/z; [M]⁺ calcd for C₂₀H₁₀Br₂I₂O₂ 693.71315, [α]²⁵_D; +103.5 (CHCl₃, c=0.0185 g/dL)

3.3. General procedure for one-carbon cross-linking of binaphthol hydroxyl groups.

The synthesis of Compound **7** is typical. To a mixture of compound (*S*)-**6** (200 mg, 0.332 mmol), K_2CO_3 (276 mg, 2.00 mmol), CH_2Br_2 (116 µL, 1.66 mmol) in DMF (2.0 mL) was added and the reaction mixture was stirred for 1.5 h at 80 °C. The reaction mixture was poured into water. The organic layer was separated and washed with water and brine, and dried over sodium sulfate and evaporated to give a residue. The residue was washed with Hexane to afford compound (*S*)-**7** as a white powder (129 mg, 63%).

m.p: 232~234 °C, ¹H-NMR (400 MHz, CHLOROFORM-D) δ 8.52 (s, 2H), 7.83 (s, 2H), 7.44 (dd, J=9.2 Hz, 2H), 7.27 (d, J=8.7 Hz, 2H), 5.68 (s, 2H), ¹³C-NMR (101 MHz, CHLOROFORM-D) δ 151.1, 131.7, 131.1, 130.8, 130.1, 128.6, 126.4, 125.3, 123.1, 121.3, 103.4, HRMS (FAB) m/z; [M]⁺ calcd for C₂₁H₁₀Br₄O₂ 609.74088; found: 609.7415, [α]²⁵_D; +71.0 (CHCl₃, c=0.024 g/dL)

11; 76% yield; yellow powder; m.p: 168~170 °C ¹H-NMR (400 MHz, CHLOROFORM-D) δ 8.39 (d, J = 1.8 Hz, 2H), 8.11 (s, 2H), 7.39 (dd, J = 9.1, 1.8 Hz, 2H), 7.21 (d, J = 8.7 Hz, 2H), 5.66 (s, 2H), ¹³C-NMR (101 MHz, CHLOROFORM-D) δ 151.2, 135.0, 134.1, 133.7, 130.7, 130.4, 128.8, 126.2, 121.7, 103.4, 99.2, HRMS (FAB) m/z; [M]⁺ calcd for C₂₁H₁₀Br₂I₂O₂ 705.71315; found:705.7139, [α]²⁵_D; The specific rotation could not be measured due to the compound's extreme insolubility.

20; 69% yield; yellow powder; m.p: 150~152 °C, ¹H-NMR (400 MHz, CHLOROFORM-D) δ 8.48 (s, 2H), 8.03 (d, *J* = 1.4 Hz, 2H), 7.58-7.55 (m, 4H), 7.43-7.35 (m, 10H), 5.70 (s, 2H), ¹³C-NMR (101 MHz, CHLOROFORM-D) δ 171.3, 150.3, 139.6, 132.8, 131.8, 131.1, 130.7, 129.5, 128.7, 128.5, 126.8, 126.3, 123.0, 121.1, 102.2, 90.9, 90.8, 89.0, HRMS (ESI) m/z; [M+Na]⁺ calcd for C₃₇H₂₀I₂O₂ 772.94450; found: 772.94713, [α]²⁵_D; +227.4 (CHCl₃, c=0.017 g/dL)

23; 65% yield; yellow powder; m.p: 239~241 °C, ¹H-NMR (400 MHz, CHLOROFORM-D) δ 8.52 (d, J = 9.1 Hz, 2H), 7.57 (d, J = 9.1 Hz, 2H), 7.46 (d, J = 9.1 Hz, 2H), 7.20 (d, J = 9.1 Hz, 2H), 5.68 (s, 2H), ¹³C-NMR (101 MHz, CHLOROFORM-D) δ 152.2, 136.7, 132.3, 132.2, 131.8, 130.6, 127.4, 125.9, 123.4, 103.1, 100.4, HRMS (ESI) m/z; [M+Na]⁺ calcd for C₂₁H₁₀Br₄O₂Na 772.94450; found: 772.94713, [α]²⁵_D; +167.4 (CHCl₃, c=0.0145 g/dL)

26; 60% yield; yellow powder; m.p: > 300 °C, ¹H-NMR (400 MHz, CHLOROFORM-D) δ 8.46 (d, *J* = 9.1 Hz, 2H), 7.75 (d, *J* = 7.3 Hz, 2H), 7.59 (d, *J* = 9.1 Hz, 2H), 7.40 (d, *J* = 8.7 Hz, 2H), 7.13 (t, *J* = 8.5 Hz, 2H), 5.70 (s, 2H), ¹³C-NMR (101 MHz, CHLOROFORM-D) The ¹³C-NMR of compound **26** did not yield meaningful signals even after accumulating data for 11,024 scans, HRMS (FAB) m/z; [M]⁺ calcd for C₂₁H₁₂Br₂O₂, 453.91986; found 453.9203, [α]²⁵_D; The specific rotation of **26** could not be measured due to the compound's extreme insolubility.

33; 79% yield; yellow powder; m.p: 266~267 °C, ¹H-NMR (400 MHz, CHLOROFORM-D) δ 8.50 (s, 2H), 7.86 (d, *J* = 8.7 Hz, 2H), 7.75 (s, 2H), 7.48 (d, *J* = 8.7 Hz, 2H), 5.67 (s, 2H), ¹³C-NMR (101 MHz, CHLOROFORM-D) δ 152.6, 140.2, 132.3, 131.9, 129.8, 129.3, 127.6, 124.5, 122.5, 103.4, 97.8, HRMS (ESI) m/z; [M+Na]⁺ calcd for C₂₁H₁₀Br₂I₂O₂Na 728.70292; found 728.70607, [α]²⁵_D; +318.5 (CHCl₃, c=0.096 g/dL)

37; 76% yield; yellow powder; m.p: 136~138 °C, ¹H-NMR (400 MHz, CHLOROFORM-D) δ 7.95 (d, J = 8.7 Hz, 2H), 7.87 (dd, J = 8.2, 1.4 Hz, 2H), 7.57 (dd, J = 7.3, 1.4 Hz, 2H), 7.45 (d, J = 8.7 Hz, 2H), 7.35 (dd, J = 8.2, 7.3 Hz, 2H), 5.68 (s, 2H), -0.15 (s, 18H), ¹³C-NMR (101 MHz, CHLOROFORM-D) δ 151.0, 136.3, 134.5, 131.6, 131.4, 130.1, 127.4, 124.2, 120.5, 119.4, 104.3, 102.7, 99.5, HRMS (ESI) m/z; [M+Na]⁺ calcd for C₃₁H₃₀O₂Si₂Na 513.16765; found 513.16688

40; 59% yield; yellow powder; m.p: > 300 °C, ¹H-NMR (400 MHz, CHLOROFORM-D) δ 8.62 (s, 2H), 7.43 (dd, J = 8.9, 2.1 Hz, 2H), 7.19 (d, J = 9.1 Hz, 2H), 5.71 (s, 2H), ¹³C-NMR (101 MHz, CHLOROFORM-D) δ 148.3, 132.6, 131.2, 131.0, 129.8, 128.5, 126.5, 126.2, 122.5, 122.3, 102.4, HRMS (FAB) m/z; [M]⁺ calcd for C₂₀H₈Br₆O₂ 753.56246; found 765.5626, [α]²⁵_D; +12.5 (CHCl₃, c=0.015 g/dL)

3.4. General procedure for iodination of aromatic rings.

The synthesis of Compound **9** is typical. To a mixture of compound (*S*)-**8** (4.53 g, 9.59 mmol), DIH (4.73 g, 12.5 mmol), TfOH (1.69 mL, 19.2 mmol) in 1,4-dioxane (36 mL) was added and the reaction mixture was stirred for 5 h at room temperature. The reaction mixture was poured into sat. Na₂SO₃ aq. The organic layer was separated and washed with water and brine, and dried over sodium sulfate and evaporated to give a residue. The residue was purified by column chromatography (SiO2, *n*-hexane : toluene = 6:1) to afford compound (*S*)-**9** as a white powder (4.84 g, 70%). m.p: 244~246 °C, ¹H-NMR (400 MHz, CHLOROFORM-D) δ 8.28 (d, *J* = 1.8 Hz, 2H), 8.01 (s, 2H), 7.28 (dd, *J* = 9.1, 1.8 Hz, 2H), 6.88 (d, *J* = 8.7 Hz, 2H), 3.75 (s, 6H), ¹³C-NMR (101 MHz, CHLOROFORM-D) δ 154.9, 134.4, 132.3, 131.5, 130.8, 127.4, 126.4, 119.8, 119.4, 99.1, 56.9, HRMS (FAB) m/z; [M]⁺ calcd for C₂₂H₁₄Br₂I₂O₂ 721.74445; found: 721.7446, [α]²⁵_D; -25.6 (CHCl₃,

31; 88% yield; yellow powder; m.p: 235~236 °C, ¹H-NMR (400 MHz, CHLOROFORM-D) δ 8.42 (s, 2H), 7.85 (d, J = 9.1 Hz, 2H), 7.45 (d, J = 9.1 Hz, 2H), 7.32 (s, 2H), 3.77 (s, 6H), ¹³C-NMR (101 MHz, CHLOROFORM-D) δ 155.9, 139.7, 134.4, 129.3, 129.0, 128.1, 127.5, 117.1, 114.8, 95.3, 56.6, HRMS (FAB) m/z; [M]⁺ calcd for C₂₂H₁₄Br₂I₂O₂ 721.74445, found 721.7459, [α]²⁵_D; +67.5 (CHCl₃, c=0.2155 g/dL)

3.5. Synthesis of 4-PE.

c=0.076 g/dL)

An oven-dried 10 mL double-necked flask was charged with compound (*S*)-**12** (11.3 mg, 0.0172 mmol) was added THF (0.7 mL) at -78 °C. After 15 minutes, *n*-BuLi (23.8 μ L, 0.0379 mmol) was added dropwise. After the mixture was stirred at -78 °C for 30 minutes. The reaction mixture was poured into excess 1 M HCl aq., and the organic layer was separated and washed with water and brine, and dried over sodium sulfate and evaporated to give a residue. The residue was purified by column chromatography (SiO₂, *n*-hexane : ethyl acetate = 5:1) to afford compound **4-PE** as a yellow powder (7.2 mg, 84%).

m.p: 100~102 °C, ¹H-NMR (400 MHz, CHLOROFORM-D) δ 8.56 (d, J = 7.8 Hz, 2H), 7.77 (s, 2H), 7.72-7.69 (m, 4H), 7.59-7.52 (m, 4H), 7.46-7.34 (m, 8H), 5.71 (s, 2H), ¹³C-NMR (101 MHz, CHLOROFORM-D) δ 150.8, 132.2, 131.9, 131.8, 128.8, 128.7, 128.6, 128.6, 127.3, 127.1, 126.9, 126.8, 126.1, 125.0, 123.4, 123.1, 95.8, 87.1, 1 peak overlapped, HRMS (FAB) m/z; [M]⁺ calcd for C₃₇H₂₂O₂ 498.16143; found 498.1606, [α]²⁵_D; +14.7 (CHCl₃, c=0.0135 g/dL)

3.6. Synthesis of 18.

An oven-dried 30 mL double-necked flask was charged with compound (S)-17 (393 mg, 0.683 mmol) was added THF (4.0 mL) at -78 °C. After 15 minutes, *n*-BuLi (1.29 mL, 2.05 mmol) was

added dropwise. After the mixture was stirred at room temperature for 2 h. The mixture was cooled at -78 °C for 10 minutes. I₂ in THF (3.0 mL) was added. After the mixture was stirred at room temperature for 2 h. The reaction mixture was poured into excess sat. Na₂SO₃ aq., and the organic layer was separated and washed with water and brine, and dried over sodium sulfate and evaporated to give a residue. The residue was purified by column chromatography (SiO₂, *n*-hexane : ethyl acetate : Chloroform = 24:2:1) to afford compound **18** as a yellow amorphous (476 mg, 84%).

¹H-NMR (400 MHz, CHLOROFORM-D) δ 8.56 (d, *J* = 7.8 Hz, 2H), 7.77 (s, 2H), 7.72-7.69 (m, 4H), 7.59-7.52 (m, 4H), 7.46-7.34 (m, 8H), 5.71 (s, 2H), ¹³C-NMR (101 MHz, CHLOROFORM-D) δ 153.1, 140.0, 133.2, 131.9, 131.8, 130.1, 129.9, 128.6, 128.5, 126.7, 126.2, 123.0, 120.9, 99.7, 93.5, 90.7, 89.1, 56.6, 2 peaks overlapped, HRMS (ESI) m/z; [M+Na]⁺ calcd for C₄₀H₂₈I₂O₄Na 848.99693; found 848.99882, [α]²⁵_D; +38.2 (CHCl₃, c=0.236 g/dL)

3.7. Synthesis of 19.

Compound (S)-18 (322 mg, 0.390 mmol) was solved in 4 M HCl in 1,4-dioxane (2.0 mL) and the reaction mixture was stirred for 3 h. The reaction mixture was poured into water. The organic layer was separated and washed with water and brine, and dried over sodium sulfate and evaporated to give a compound (S)-19 as a white amorphous (287 mg, quantum yield).

m.p: 146~148 °C, ¹H-NMR (400 MHz, CHLOROFORM-D) δ 8.48 (s, 2H), 7.99 (s, 2H), 7.57-7.54 (m, 4H), 7.43-7.35 (m, 8H), 7.03 (d, J = 8.7 Hz, 2H), 5.51 (s, 2H), ¹³C-NMR (101 MHz, CHLOROFORM-D) δ 150.8, 140.23, 140.16, 132.7, 131.8, 130.7, 130.3, 128.5, 124.7, 124.6, 123.1, 119.8, 112.8, 90.3, 89.2, 87.9, 2 peaks overlapped, HRMS (ESI) m/z; [M+Na]⁺ calcd for C₃₆H₂₀I₂O₂Na 760.94450; found; 760.94397, [α]²⁵_D; +19.0 (CHCl₃, c=0.005 g/dL)

3.8. Synthesis of 24

To a mixture of compound (*S*)-**1-Tf** (1.57 g, 2.85 mmol) in AcOH (10 mL), Br₂ (1.75 mL, 34.2 mmol) was added at room temperature and the reaction mixture was stirred for 14 h at 100 °C. The reaction mixture was poured into sat. Na₂SO₃ aq.. The organic layer was separated and washed with water and brine, and dried over sodium sulfate and evaporated to give a residue. The residue was purified by column chromatography (SiO₂, *n*-hexane : toluene = 5:1) to afford compound (*S*)-**24** as a yellow oil (877 mg, 43%).

¹H-NMR (400 MHz, CHLOROFORM-D) δ 8.64 (d, *J* = 9.6 Hz, 2H), 7.90 (dd, *J* = 7.3, 0.9 Hz, 2H), 7.74 (d, *J* = 9.6 Hz, 2H), 7.28-7.24 (m, 2H), 7.20-7.18 (m, 2H), ¹³C-NMR (101 MHz, CHLOROFORM-D) δ 146.1, 134.3, 132.0, 131.7, 131.1, 128.6, 126.7, 123.6, 123.4, 120.7, 31.7, 22.8, 14.2, HRMS (FAB) m/z; [M]⁺ calcd for C₂₂H₁₀Br₂F₆O₆S₂ 705.81843, found: 705.8184. [α]²⁵_D; +9.8 (CHCl₃, c=0.151 g/dL)

3.9. Synthesis of 36

To a mixture of compound **35** (20.0 mg, 0.0832 mmol) in dichloromethane (1.0 mL), Cu-TMEDA (1.2 mg, 2.49×10^{-3} mmol) was added at room temperature and the reaction mixture was stirred for 1 h. The reaction mixture was poured into 1 M HCl aq. The organic layer was separated and washed with water and brine, and dried over sodium sulfate and evaporated to give a residue. The residue was purified by column chromatography (SiO₂, *n*-hexane : AcOEt = 6:1) to afford compound **36** as a yellow powder (19 mg, 96%).

m.p; 100~102 °C, ¹H-NMR (400 MHz, CHLOROFORM-D) δ 7.94 (d, J = 9.1 Hz, 2H), 7.82 (dd, J = 8.0, 1.1 Hz, 2H), 7.66 (dd, J = 7.3, 1.4 Hz, 2H), 7.30-7.25 (m, 4H), 4.99 (s, 2H), -0.27 (s, 18H), ¹³C-NMR (101 MHz, CHLOROFORM-D) δ 154.6, 137.2, 133.5, 132.7, 130.1, 129.7, 123.3, 119.1, 117.8, 112.6, 103.8, 99.3, -0.1, HRMS (ESI) m/z; [M+Na]⁺ calcd for C₃₀H₃₀O₂Si₂Na 501.16765; found: 501.16678.

3.10. Synthesis of 38

To a mixture of compound **37** (47.0 mg, 0.0958 mmol) in THF (1.0 mL), 1 M TBAF (383 μ L, 0.383 mmol) was added at room temperature and the reaction mixture was stirred for 30 minutes. The reaction mixture was poured into H₂O. The organic layer was separated and washed with water and brine, and dried over sodium sulfate and evaporated to give a compound **38** as a yellow powder (32.7 mg, quantum yield).

m.p; 176~178 °C, ¹H-NMR (400 MHz, CHLOROFORM-D) δ 7.95 (d, J = 8.7 Hz, 2H), 7.90 (dd, J = 8.2, 0.9 Hz, 2H), 7.55-7.53 (m, 2H), 7.45 (d, J = 8.7 Hz, 2H), 7.35 (dd, J = 8.2, 7.3 Hz, 2H), 5.69 (s, 2H), 2.12 (s, 2H), ¹³C-NMR (101 MHz, CHLOROFORM-D) δ 151.1, 135.6, 135.0, 131.7, 130.9, 130.0, 127.5, 124.3, 120.6, 118.1, 102.5, 82.6, 80.5, HRMS (ESI) m/z; [M+Na]⁺ calcd for C₂₅H₁₄O₂Na 369.08860; found: 369.08999.

3.11. Synthesis of 8-PE

An oven-dried 10-mL double-necked flask was charged with compound **38** (52.0 mg, 0.150 mmol), CuI (1.4 mg, 0.0075 mmol), Pd (PPh₃)₄ (8.7 mg, 0.0075 mmol), Iodobenzene (40.2 μ L, 0.360 mmol) and DMF:NEt₃ =2:1 (1.5 mL). After the mixture was stirred at 80 °C in a oil bath for 4 h. T The reaction mixture was poured into H₂O. The organic layer was separated and washed with water and brine, and dried over sodium sulfate and evaporated to give a residue. The residue was purified by GPC column chromatography to afford compound **8-PE** as a yellow powder (57.8 mg, 77%). A portion of the synthesized racemic **8-PE** was optically resolved using a chiral column chromatography. The stereo configuration was determined by CD measurements and theoretical calculations (see, Page S42).

m.p.: 180~181 °C, ¹H-NMR (400 MHz, CHLOROFORM-D) δ 7.61-7.59 (m, 4H), 7.57 (dd, J = 8.2, 1.4 Hz, 2H), 7.39 (d, J = 8.7 Hz, 2H), 7.29 (dd, J = 8.2, 7.3 Hz, 2H), 7.21-7.17 (m, 2H), 7.15-7.11 (m, 4H), 6.78 (m, 4H), 5.71 (s, 2H), ¹³C-NMR (101 MHz, CHLOROFORM-D) δ 151.0, 134.7, 134.0, 132.1, 131.8, 131.5, 130.0, 127.5, 127.4, 127.3, 124.2, 123.4, 120.3, 119.3, 102.7, 94.5, 89.5, 2 peaks overlapped, HRMS (ESI) m/z; [M+Na]⁺ calcd for C₃₇H₂₂O₂Na 521.15120, found: 521.15019. [α]²⁵_D; (*R*)-**8PE**; -422.0455 (CHCl₃, c=0.011 g/dL), (*S*)-**8PE**; +420.4 (CHCl₃, c=0.012 g/dL)

3.12. Synthesis of (*S*)-39;

To a mixture of compound (*S*)-**6** (184 mg, 0.264 mmol) in dichloromethane (1.5 mL), Br₂ (134 μ L, 2.64 mmol) was added at 0 °C and the reaction mixture was stirred for 14 h at room temperature. The reaction mixture was poured into sat. Na₂SO₃ aq.×. The organic layer was separated and washed with water and brine, and dried over sodium sulfate and evaporated to give a residue. The residue was purified by column chromatography (SiO2, *n*-hexane : AcOEt = 5:1) to afford compound (*S*)-**39** as a yellow solid (60.5 mg, 28%).

m.p.; 153~155 °C, ¹H-NMR (400 MHz, CHLOROFORM-D) δ 8.51 (s, 2H), 7.40 (d, J = 8.7 Hz, 2H), 6.95 (d, J = 9.1 Hz, 2H), 5.77 (s, 2H), ¹³C-NMR (101 MHz, CHLOROFORM-D) δ 152.8, 132.7, 131.7, 130.0, 129.3, 126.4, 124.5, 123.2, 119.7, 111.2, HRMS (FAB) m/z; [M]⁺ calcd for C₂₀H₈Br₆O₂ 753.56191; found: 753.5540. [α]²⁵_D; -8.0 (CHCl₃, c=0.0075 g/dL)

3.13. Synthesis of 8-PE-MOM

Scheme S1. Synthesis of 8-PE-MOM

To a mixture of compound **36** (105 mg, 0.219 mmol) was added DMF (1.5 mL) at 0 °C. After 15 minutes, NaH (38.6 mg, 0.965 mmol) MOMCl (39.6 mL, 0.526 mmol) was added. After the mixture was stirred at 0 °C for 1 h. The reaction mixture was poured into H₂O. The organic layer was separated and washed with water and brine, and dried over sodium sulfate and evaporated to give a residue as a yellow solid (98 mg, quantum yield). The residue was used the next reaction without purification. An oven-dried 10-mL double-necked flask was charged with the residue (98 mg, 0.219 mmol), CuI (4.1 mg, 0.0219 mmol), Pd(PPh₃)₄ (25.2 mg, 0.02189 mmol), Iodobenzene (53.4 μ L, 0.479 mmol) and DMF:NEt₃ =2:1 (1.5 mL). After the mixture was stirred at 70 °C in a oil bath for 10 h. The reaction mixture was poured into H₂O. The organic layer was separated and washed with water and brine, and dried over sodium sulfate and evaporated to give a residue of compared into H₂O. The organic layer was separated and washed with water and brine, and dried over sodium sulfate and evaporated to give a residue. The residue was purified by column chromatography (SiO₂, *n*-hexane : AcOEt = 3:1) to afford compound **8-PE-MOM** as a yellow powder (86.1 mg, 69%).

m.p.; $103\sim104$ °C, ¹H-NMR (400 MHz, CHLOROFORM-D) 1H-NMR (400 MHz, CHLOROFORM-D) δ 7.68-7.66 (m, 4H), 7.56 (d, J = 9.1 Hz, 2H), 7.37 (d, J = 9.1 Hz, 2H), 7.29 (dd, J = 7.8 Hz, J = 7.8 Hz, 2H), 7.11 (d, J = 7.8 Hz, 2H), 7.04 (dd, J = 7.8 Hz, J = 6.9 Hz, 4H), 6.56-6.54 (m, 4H), 5.01 (d, J = 6.4 Hz, 2H), 4.97 (d, J = 6.9 Hz, 2H), 3.15 (s, 6H), ¹³C-NMR (101 MHz, CHLOROFORM-D) δ 154.0, 134.8, 134.1, 131.2, 130.7, 130.5, 129.6, 127.4, 127.2, 123.8, 123.0, 123.0, 120.2, 117.0, 95.0, 94.4, 90.1, 55.8, HRMS (ESI) m/z; [M+Na]⁺ calcd for C₄₀H₃₀O₄Na 597.20363, found: 597.20184

4. Computational data

4.1. Compound 6-PE

Method: B3LYP/6-31+G (d,p) level of theory, Key word: opt freq b3lyp/6-31g(d,p) geom=connectivity imaginary frequencies: 0, Sum of electronic and zero-point Energies: -1573.158893 A.U

С	0.959	2.85211	1.99077
С	0.2084	1.62899	1.9226
С	0.33944	0.66316	2.97695
С	1.09108	1.01261	4.0926
С	1.83205	2.21205	4.16578
С	1.7842	3.10467	3.12118
С	0.84798	3.80329	0.94547
С	0	3.59911	-0.13575
С	-0.78022	2.4023	-0.1736
С	-0.67541	1.45687	0.81788
С	-0.33944	-0.66316	2.97695
С	-0.2084	-1.62899	1.9226
С	-0.959	-2.85211	1.99077
С	-1.7842	-3.10467	3.12118
С	-1.83205	-2.21205	4.16578
С	-1.09108	-1.01261	4.0926
С	0.67541	-1.45687	0.81788
С	0.78022	-2.4023	-0.1736
С	0	-3.59911	-0.13575
С	-0.84798	-3.80329	0.94547
0	1.17766	0.13016	5.1569
0	-1.17766	-0.13016	5.1569
С	0	0	5.93558
С	-0.11053	4.56069	-1.18161
С	0.11053	-4.56069	-1.18161
С	-0.21387	5.37204	-2.08434
С	-0.33275	6.3249	-3.13886
С	0.4325	7.50998	-3.12594

С	0.31227 8.43813 -4.15868
С	-0.56901 8.20463 -5.21938
С	-1.33226 7.03279 -5.24162
С	-1.2185 6.09892 -4.21339
С	0.21387 -5.37204 -2.08434
С	0.33275 -6.3249 -3.13886
С	1.2185 -6.09892 -4.21339
С	1.33226 -7.03279 -5.24162
С	0.56901 -8.20463 -5.21938
С	-0.31227 -8.43813 -4.15868
С	-0.4325 -7.50998 -3.12594
Н	2.43324 2.39839 5.04975
Н	2.35825 4.02626 3.15916
Н	1.43179 4.71713 1.00398
Н	-1.4666 2.25113 -1.00031
Н	-1.28937 0.56568 0.76473
Н	-2.35825 -4.02626 3.15916
Н	-2.43324 -2.39839 5.04975
Н	1.28937 -0.56568 0.76473
Н	1.4666 -2.25113 -1.00031
Н	-1.43179 -4.71713 1.00398
Н	-0.17166 0.88882 6.55238
Н	0.17166 -0.88882 6.55238
Н	1.11562 7.68965 -2.30197
Н	0.90767 9.34629 -4.13587
Н	-0.66026 8.93015 -6.0223
Н	-2.0183 6.84583 -6.06269
Η	-1.81008 5.18919 -4.22917
Н	1.81008 -5.18919 -4.22917
Н	2.0183 -6.84583 -6.06269
Н	0.66026 -8.93015 -6.0223
Н	-0.90767 -9.34629 -4.13587
Н	-1.11562 -7.68965 -2.30197

4.2. Compound **4,6-PE**

Method: B3LYP/6-31+G (d,p) level of theory, Key word: opt freq b3lyp/6-31g(d,p) geom=connectivity imaginary frequencies: 0, Sum of electronic and zero-point Energies: -2187.437091 A.U

С	-1.1418	3.3918	-1.13945
С	-1.49587	2.01029	-1.17126
С	-1.09548	1.15962	-0.17274
С	-0.31651	1.61369	0.93023
С	0	3.01276	0.99103
С	-0.40866	3.86578	-0.05889
С	0.10728	0.73571	1.98305
С	0.7047	1.30685	3.1025
С	1.02042	2.67115	3.18018
С	0.70751	3.53033	2.13504
С	-0.10728	-0.73571	1.98305
С	0.31651	-1.61369	0.93023
С	0	-3.01276	0.99103
С	-0.70751	-3.53033	2.13504
С	-1.02042	-2.67115	3.18018
С	-0.7047	-1.30685	3.1025
С	1.09548	-1.15962	-0.17274
С	1.49587	-2.01029	-1.17126
С	1.1418	-3.3918	-1.13945
С	0.40866	-3.86578	-0.05889
С	-1.55108	4.26089	-2.18932
С	1.55108	-4.26089	-2.18932
С	1.06409	4.9031	2.22235
С	-1.06409	-4.9031	2.22235
0	1.07261	0.49951	4.16425
0	-1.07261	-0.49951	4.16425
С	1.38015	6.07503	2.3172
С	-1.90724	4.99102	-3.09525
С	1.90724	-4.99102	-3.09525
С	-1.38015	-6.07503	2.3172

С	-2.32253	5.84916	-4.15371
С	2.32253	-5.84916	-4.15371
С	1.75662	7.443	2.43988
С	-1.75662	-7.443	2.43988
С	-3.06979	5.34242	-5.23626
С	-3.47341	6.18456	-6.26809
С	-3.14208	7.5414	-6.24175
С	-2.40184	8.05399	-5.17366
С	-1.99367	7.21978	-4.1372
С	1.99367	-7.21978	-4.1372
С	2.40184	-8.05399	-5.17366
С	3.14208	-7.5414	-6.24175
С	3.47341	-6.18456	-6.26809
С	3.06979	-5.34242	-5.23626
С	2.44737	7.89347	3.58342
С	2.81453	9.23042	3.70172
С	2.50228	10.13974	2.68818
С	1.81819	9.70375	1.55089
С	1.44653	8.36883	1.42313
С	-2.44737	-7.89347	3.58342
С	-2.81453	-9.23042	3.70172
С	-2.50228	-10.13974	4 2.68818
С	-1.81819	-9.70375	1.55089
С	-1.44653	-8.36883	1.42313
С	0	0	4.93989
Н	-2.0953	1.64106	-1.99662
Η	-1.38885	0.11797	-0.21344
Н	-0.1507	4.91702	-0.00493
Н	1.52658	3.03909	4.06519
Н	-1.52658	-3.03909	4.06519
Н	1.38885	-0.11797	-0.21344
Н	2.0953	-1.64106	-1.99662
Н	0.1507	-4.91702	-0.00493
Н	-3.32553	4.28809	-5.25359
Н	-4.04877	5.78117	-7.09617
Н	-3.45885	8.19537	-7.04866

Н	-2.14182	9.10816	-5.14856
Н	-1.41875	7.61443	-3.30592
Н	1.41875	-7.61443	-3.30592
Н	2.14182	-9.10816	-5.14856
Н	3.45885	-8.19537	-7.04866
Н	4.04877	-5.78117	-7.09617
Н	3.32553	-4.28809	-5.25359
Н	2.6885	7.18422	4.36834
Н	3.34638	9.56469	4.58757
Н	2.79052	11.18223	2.78405
Н	1.57344	10.40706	0.76047
Н	0.91516	8.02762	0.54077
Н	-2.6885	-7.18422	4.36834
Н	-3.34638	-9.56469	4.58757
Н	-2.79052	-11.18223	3 2.78405
Н	-1.57344	-10.40706	5 0.76047
Н	-0.91516	-8.02762	0.54077
Н	0.44763	-0.7847	5.56058
Н	-0.44763	0.7847	5.56058

4.3. Compound 4-PE

Method: B3LYP/6-31+G (d,p) level of theory, Key word: opt freq b3lyp/6-31g(d,p) geom=connectivity imaginary frequencies: 0, Sum of electronic and zero-point Energies: -1573.157423 A.U

С	-1.61955	3.18357	-3.01295
С	-1.7747	1.78014	-3.05811
С	-1.25333	0.98882	-2.05999
С	-0.54808	1.55293	-0.95996
С	-0.43509	2.98237	-0.89635
С	-0.96829	3.76722	-1.95073
С	0	0.74346	0.09439
С	0.5088	1.39355	1.21291
С	0.6246	2.78941	1.29192

С	0.19043	3.59418	0.24702
С	0	-0.74346	0.09439
С	0.54808	-1.55293	-0.95996
С	0.43509	-2.98237	-0.89635
С	-0.19043	-3.59418	0.24702
С	-0.6246	-2.78941	1.29192
С	-0.5088	-1.39355	1.21291
С	1.25333	-0.98882	-2.05999
С	1.7747	-1.78014	-3.05811
С	1.61955	-3.18357	-3.01295
С	0.96829	-3.76722	-1.95073
0	0.99024	0.64729	2.2751
0	-0.99024	-0.64729	2.2751
С	0	0	3.0505
С	0.34574	5.00481	0.33599
С	-0.34574	-5.00481	0.33599
С	0.48978	6.20988	0.43246
С	-0.48978	-6.20988	0.43246
С	0.66618	7.61756	0.55894
С	-0.66618	-7.61756	0.55894
С	-0.22613	-8.49282	-0.45466
С	-0.40245	-9.86693	-0.3231
С	-1.01754	-10.39334	0.81532
С	-1.45747	-9.53498	1.82589
С	-1.28579	-8.15949	1.70358
С	0.22613	8.49282	-0.45466
С	0.40245	9.86693	-0.3231
С	1.01754	10.39334	0.81532
С	1.45747	9.53498	1.82589
С	1.28579	8.15949	1.70358
Н	-2.02758	3.80074	-3.80774
Н	-2.31487	1.32198	-3.88133
Н	-1.3902	-0.08476	-2.09915
Н	-0.86251	4.84517	-1.89188
Н	1.07288	3.22582	2.17706
Н	-1.07288	-3.22582	2.17706

Н	1.3902	0.08476	-2.09915
Н	2.31487	-1.32198	-3.88133
Н	2.02758	-3.80074	-3.80774
Н	0.86251	-4.84517	-1.89188
Н	-0.55507	0.71274	3.6715
Н	0.55507	-0.71274	3.6715
Н	0.25137	-8.0819	-1.33814
Н	-0.05878	-10.53005	5 -1.11149
Н	-1.15331	-11.46611	0.91431
Н	-1.93641	-9.93928	2.71276
Н	-1.6266	-7.48989	2.48638
Н	-0.25137	8.0819	-1.33814
Н	0.05878	10.53005	-1.11149
Н	1.15331	11.46611	0.91431
Н	1.93641	9.93928	2.71276
Н	1.6266	7.48989	2.48638

4.4. Compound 3-PE

Method: B3LYP/6-31+G (d,p) level of theory, Key word: opt freq b3lyp/6-31g(d,p) geom=connectivity imaginary frequencies: 0, Sum of electronic and zero-point Energies: -1573.155243 A.U

С	-2.65518	2.41783	-4.83143
С	-2.30121	1.04924	-4.88752
С	-1.52811	0.4816	-3.89868
С	-1.06455	1.24958	-2.79594
С	-1.46427	2.62659	-2.7182
С	-2.24775	3.18492	-3.76607
С	-0.26011	0.69956	-1.73929
С	0	1.48081	-0.62551
С	-0.40201	2.84855	-0.52983
С	-1.10236	3.40106	-1.59213
С	0.26011	-0.69956	-1.73929
С	1.06455	-1.24958	-2.79594

С	1.46427	-2.62659	-2.7182
С	1.10236	-3.40106	-1.59213
С	0.40201	-2.84855	-0.52983
С	0	-1.48081	-0.62551
С	1.52811	-0.4816	-3.89868
С	2.30121	-1.04924	-4.88752
С	2.65518	-2.41783	-4.83143
С	2.24775	-3.18492	-3.76607
0	0.71342	0.94121	0.42505
0	-0.71342	-0.94121	0.42505
С	0	0	1.20658
С	-0.08282	3.61118	0.62729
С	0.08282	-3.61118	0.62729
С	0.17883	4.27461	1.61248
С	-0.17883	-4.27461	1.61248
С	0.49625	5.04285	2.76929
С	-0.49625	-5.04285	2.76929
С	1.31595	4.50354	3.78142
С	1.62458	5.25534	4.91115
С	1.1252	6.55232	5.0534
С	0.31249	7.09631	4.0559
С	-0.00201	6.35231	2.9225
С	0.00201	-6.35231	2.9225
С	-0.31249	-7.09631	4.0559
С	-1.1252	-6.55232	5.0534
С	-1.62458	-5.25534	4.91115
С	-1.31595	-4.50354	3.78142
Н	-3.25899	2.85395	-5.62148
Н	-2.64783	0.4378	-5.71536
Н	-1.27615	-0.57051	-3.9514
Н	-2.53076	4.23194	-3.6985
Н	-1.40571	4.44211	-1.54344
Н	1.40571	-4.44211	-1.54344
Н	1.27615	0.57051	-3.9514
Н	2.64783	-0.4378	-5.71536
Н	3.25899	-2.85395	-5.62148

Н	2.53076	-4.23194	-3.6985
Н	0.76163	-0.48684	1.82502
Н	-0.76163	0.48684	1.82502
Н	1.7037	3.49693	3.66466
Н	2.25788	4.82868	5.6834
Н	1.36846	7.13592	5.93624
Н	-0.07773	8.10428	4.16187
Н	-0.63326	6.77155	2.14585
Н	0.63326	-6.77155	2.14585
Н	0.07773	-8.10428	4.16187
Н	-1.36846	-7.13592	5.93624
Н	-2.25788	-4.82868	5.6834
Н	-1.7037	-3.49693	3.66466

4.5. Compound 3,6-PE

Method: B3LYP/6-31+G (d,p) level of theory, Key word: opt freq b3lyp/6-31g(d,p) geom=connectivity imaginary frequencies: 0, Sum of electronic and zero-point Energies: -2187.434208 A.U

С	2.44836	3.45303	-1.01083
С	2.4914	2.0846	-1.41824
С	1.50191	1.20555	-1.05365
С	0.39638	1.61873	-0.25904
С	0.3213	3.00356	0.1132
С	1.3649	3.8872	-0.26019
С	-0.65918	0.73286	0.141
С	-1.77384	1.26643	0.76892
С	-1.86825	2.64415	1.13567
С	-0.80554	3.47936	0.82475
С	-0.65901	-0.73296	-0.1409
С	0.39674	-1.61858	0.25918
С	0.32201	-3.00343	-0.11307
С	-0.80468	-3.47949	-0.82467
С	-1.86759	-2.64453	-1.13562

С	-1.77352	-1.26679	-0.76886
С	1.50215	-1.20514	1.05385
С	2.49182	-2.08396	1.41848
С	2.44912	-3.4524	1.01106
С	1.3658	-3.88682	0.26036
0	-2.82396	0.43554	1.09779
0	-2.82382	-0.43615	-1.09777
С	-3.60575	-0.00037	-0.00001
С	-3.02539	3.13055	1.80402
С	-3.02458	-3.1312	-1.80402
С	-4.01051	3.5619	2.3719
С	-4.00958	-3.56278	-2.37194
С	-5.16728	4.05439	3.04168
С	-5.16619	-4.05554	-3.0418
С	-6.17545	3.16734	3.47029
С	-7.30505	3.65048	4.12396
С	-7.45072	5.0194	4.36182
С	-6.45703	5.90677	3.94155
С	-5.32373	5.4334	3.28693
С	-5.32234	-5.43459	-3.28701
С	-6.45549	-5.90821	-3.94169
С	-7.44933	-5.02107	-4.36206
С	-7.30396	-3.65211	-4.12426
С	-6.17451	-3.16871	-3.47052
С	3.49157	4.34555	-1.3866
С	3.49253	-4.34468	1.38687
С	4.39065	5.09724	-1.71355
С	4.39177	-5.09618	1.71383
С	5.44051	5.98197	-2.09405
С	5.44181	-5.98078	2.09413
С	5.41519	-7.33499	1.70391
С	6.44323	-8.19523	2.07804
С	7.51242	-7.72519	2.84442
С	7.54859	-6.38486	3.23645
С	6.52529	-5.51689	2.86725
С	6.52432	5.51802	-2.86668

Н	4.5811	7.6981	-1.10973
Н	6.4082	9.23803	-1.77211
Н	8.31093	8.40093	-3.13491
Н	8.37673	6.01584	-3.8316
Н	6.54959	4.47626	-3.16906
Н	6.55018	-4.47527	3.17015
Н	8.37761	-6.01464	3.83237
Н	8.31269	-8.3994	3.13448
Н	6.41054	-9.23639	1.77081
Н	4.58314	-7.69668	1.10875
Н	-6.05514	-2.10619	-3.28604
Н	-8.07344	-2.95868	-4.45059
Н	-8.33195	-5.3944	-4.8727
Н	-6.56412	-6.97315	-4.12481
Н	-4.54841	-6.12064	-2.95875
Н	-4.54992	6.11963	2.95875
Н	-6.56589	6.97167	4.12471
Н	-8.33345	5.39253	4.8724
Н	-8.07441	2.95688	4.45021
Н	-6.05585	2.10485	3.28577
Н	-4.22397	0.81053	-0.39938
Н	-4.22385	-0.81139	0.39931
Н	1.30364	-4.92834	-0.03927
Н	3.32178	-1.7477	2.03076
Н	1.55622	-0.17631	1.38812
Н	-0.85193	-4.52662	-1.10582
Н	-0.85304	4.52648	1.10589
Н	1.30248	4.9287	0.03943
Н	1.55625	0.17673	-1.38791
Н	3.32146	1.74853	-2.03048
С	5.4134	7.33636	-1.70451
С	6.44127	8.19672	-2.07881
С	7.51079	7.72662	-2.84471
С	7.54745	6.38611	-3.23607

4.6. Compound 5,6-PE

Method: B3LYP/6-31+G (d,p) level of theory, Key word: opt freq b3lyp/6-31g(d,p) geom=connectivity imaginary frequencies: 0, Sum of electronic and zero-point Energies: -2187.435098 A.U

С	-1.13558	3.38215	-0.40055
С	-1.4933	2.00477	-0.41273
С	-1.0987	1.15315	0.58647
С	-0.31543	1.6115	1.68395
С	0.00731	3.00753	1.75008
С	-0.39591	3.88734	0.68445
С	0.11092	0.73692	2.73916
С	0.71245	1.30317	3.8561
С	1.02527	2.6744	3.92804
С	0.70035	3.50535	2.88269
С	-0.11092	-0.73692	2.73916
С	0.31543	-1.6115	1.68395
С	-0.00731	-3.00753	1.75008
С	-0.70035	-3.50535	2.88269
С	-1.02527	-2.6744	3.92804
С	-0.71245	-1.30317	3.8561
С	1.0987	-1.15315	0.58647
С	1.4933	-2.00477	-0.41273
С	1.13558	-3.38215	-0.40055
С	0.39591	-3.88734	0.68445
С	-0.06811	5.26793	0.73343
С	0.06811	-5.26793	0.73343
0	1.07564	0.49481	4.91853
0	-1.07564	-0.49481	4.91853
С	0	0	5.69317
С	0.19841	6.45537	0.76409
С	-0.19841	-6.45537	0.76409
С	0.48156	7.8511	0.77322
С	-0.48156	-7.8511	0.77322
С	0.27538	-8.73396	-0.0246

С	0	-10.0981	-0.01861
С	-1.02873	-10.6067	0.77823
С	-1.78332	-9.74085	1.57334
С	-1.51568	-8.375	1.57464
С	1.51568	8.375	1.57464
С	1.78332	9.74085	1.57334
С	1.02873	10.60671	0.77823
С	0	10.0981	-0.01861
С	-0.27538	8.73396	-0.0246
С	-1.53359	4.21579	-1.4789
С	1.53359	-4.21579	-1.4789
С	-1.87746	4.89949	-2.42504
С	1.87746	-4.89949	-2.42504
С	-2.26058	5.72045	-3.52372
С	2.26058	-5.72045	-3.52372
С	-1.65821	6.98066	-3.71736
С	-2.03398	7.7816	-4.79166
С	-3.01176	7.34512	-5.68907
С	-3.6134	6.09756	-5.50712
С	-3.24402	5.28873	-4.43643
С	3.24402	-5.28873	-4.43643
С	3.6134	-6.09756	-5.50712
С	3.01176	-7.34512	-5.68907
С	2.03398	-7.7816	-4.79166
С	1.65821	-6.98066	-3.71736
Н	-2.09245	1.63713	-1.23881
Η	-1.3988	0.11342	0.5491
Η	1.52932	3.04561	4.81415
Н	0.94478	4.56077	2.92186
Н	-0.94478	-4.56077	2.92186
Н	-1.52932	-3.04561	4.81415
Н	1.3988	-0.11342	0.5491
Н	2.09245	-1.63713	-1.23881
Н	-0.44378	0.78674	6.31424
Н	0.44378	-0.78674	6.31424
Н	1.07837	-8.33502	-0.63576

Н	0.5916	-10.76778	3 -0.63587	
Н	-1.24056	-11.67171	0.78025	
Н	-2.58381	-10.13158	3 2.19461	
Н	-2.10255	-7.70022	2.18928	
Н	2.10255	7.70022	2.18928	
Н	2.58381	10.13158	2.19461	
Н	1.24056	11.67171	0.78025	
Н	-0.5916	10.76778	-0.63587	
Н	-1.07837	8.33502	-0.63576	
Н	-0.89425	7.31263	-3.02185	
Н	-1.5611	8.74933	-4.93105	
Н	-3.3024	7.97308	-6.52594	
Н	-4.37325	5.75359	-6.20265	
Н	-3.70957	4.31935	-4.29187	
Н	3.70957	-4.31935	-4.29187	
Н	4.37325	-5.75359	-6.20265	
Н	3.3024	-7.97308	-6.52594	
Н	1.5611	-8.74933	-4.93105	
Н	0.89425	-7.31263	-3.02185	

4.7. Compound 5-PE

Method: B3LYP/6-31+G (d,p) level of theory, Key word: opt freq b3lyp/6-31g(d,p) geom=connectivity imaginary frequencies: 0, Sum of electronic and zero-point Energies: -1573.157478 A.U

С	-0.46929	3.5333	-1.97971
С	-1.08258	2.26762	-2.01543
С	-0.85641	1.34544	-1.01757
С	0	1.6448	0.07789
С	0.5896	2.95163	0.14922
С	0.3543	3.89053	-0.91839
С	0.2514	0.70152	1.13381
С	0.95164	1.13946	2.24942
С	1.52675	2.42367	2.32331

С	1.36926	3.30313	1.27924
С	-0.2514	-0.70152	1.13381
С	0	-1.6448	0.07789
С	-0.5896	-2.95163	0.14922
С	-1.36926	-3.30313	1.27924
С	-1.52675	-2.42367	2.32331
С	-0.95164	-1.13946	2.24942
С	0.85641	-1.34544	-1.01757
С	1.08258	-2.26762	-2.01543
С	0.46929	-3.5333	-1.97971
С	-0.3543	-3.89053	-0.91839
0	1.15153	0.27511	3.31202
0	-1.15153	-0.27511	3.31202
С	0	0	4.0864
С	0.94555	5.18536	-0.89286
С	-0.94555	-5.18536	-0.89286
С	1.44277	6.29656	-0.89485
С	-1.44277	-6.29656	-0.89485
С	2.01602	7.60072	-0.9121
С	-2.01602	-7.60072	-0.9121
С	1.72287	8.49567	-1.96129
С	2.28329	9.76934	-1.97736
С	3.14265	10.17498	-0.95342
С	3.43996	9.29627	0.09098
С	2.88456	8.02043	0.11569
С	-2.88456	-8.02043	0.11569
С	-3.43996	-9.29627	0.09098
С	-3.14265	-10.17498	3 -0.95342
С	-2.28329	-9.76934	-1.97736
С	-1.72287	-8.49567	-1.96129
Н	-0.64616	4.24872	-2.77566
Н	-1.74605	2.01993	-2.83846
Н	-1.34737	0.381	-1.05483
Н	2.09499	2.68679	3.20931
Н	1.81613	4.29037	1.31755
Н	-1.81613	-4.29037	1.31755

Н	-2.09499	-2.68679	3.20931
Н	1.34737	-0.381	-1.05483
Н	1.74605	-2.01993	-2.83846
Н	0.64616	-4.24872	-2.77566
Н	0.28165	-0.85822	4.70772
Н	-0.28165	0.85822	4.70772
Н	1.05475	8.17777	-2.75494
Н	2.04879	10.44856	-2.79169
Н	3.57798	11.16961	-0.9693
Н	4.10759	9.60646	0.88941
Н	3.11512	7.33645	0.92594
Н	-3.11512	-7.33645	0.92594
Н	-4.10759	-9.60646	0.88941
Н	-3.57798	-11.16961	-0.9693
Н	-2.04879	-10.44856	5 -2.79169
Н	-1.05475	-8.17777	-2.75494

4.8. Compound 7-PE

Method: B3LYP/6-31+G (d,p) level of theory, Key word: opt freq b3lyp/6-31g(d,p) geom=connectivity imaginary frequencies: 0, Sum of electronic and zero-point Energies: -1573.158666 A.U

С	0	3.59767	-0.04695
С	0.7844	2.40617	-0.11652
С	0.66905	1.45328	0.88931
С	-0.20772	1.63297	1.98927
С	-0.95432	2.85765	2.06831
С	-0.83586	3.80917	1.01796
С	-0.33692	0.66416	3.04523
С	-1.08571	1.01317	4.16146
С	-1.81745	2.2164	4.24193
С	-1.77024	3.11066	3.1995
С	0.33692	-0.66416	3.04523
С	0.20772	-1.63297	1.98927

С	0.95432	-2.85765	2.06831
С	1.77024	-3.11066	3.1995
С	1.81745	-2.2164	4.24193
С	1.08571	-1.01317	4.16146
С	-0.66905	-1.45328	0.88931
С	-0.7844	-2.40617	-0.11652
С	0	-3.59767	-0.04695
С	0.83586	-3.80917	1.01796
С	1.68037	2.20878	-1.20502
С	-1.68037	-2.20878	-1.20502
С	2.44216	2.05147	-2.14054
С	-2.44216	-2.05147	-2.14054
С	3.33872	1.85453	-3.2298
С	-3.33872	-1.85453	-3.2298
С	-4.1029	-0.67361	-3.32231
С	-4.97901	-0.48431	-4.3868
С	-5.10989	-1.46275	-5.37531
С	-4.35684	-2.6365	-5.29349
С	-3.47815	-2.83513	-4.23268
С	4.1029	0.67361	-3.32231
С	4.97901	0.48431	-4.3868
С	5.10989	1.46275	-5.37531
С	4.35684	2.6365	-5.29349
С	3.47815	2.83513	-4.23268
0	-1.17642	0.12953	5.22346
0	1.17642	-0.12953	5.22346
С	0	0	5.99807
Н	0.08899	4.33252	-0.83981
Н	1.27688	0.55962	0.83195
Н	-1.41669	4.72545	1.08209
Н	-2.4122	2.40181	5.13007
Н	-2.33738	4.03626	3.24268
Н	2.33738	-4.03626	3.24268
Н	2.4122	-2.40181	5.13007
Н	-1.27688	-0.55962	0.83195
Н	-0.08899	-4.33252	-0.83981

Н	1.41669	-4.72545	1.08209
Н	-3.99749	0.0844	-2.5532
Н	-5.56183	0.4302	-4.44618
Н	-5.79435	-1.3114	-6.20465
Н	-4.45477	-3.40004	-6.05965
Н	-2.89163	-3.74561	-4.16603
Н	3.99749	-0.0844	-2.5532
Н	5.56183	-0.4302	-4.44618
Н	5.79435	1.3114	-6.20465
Н	4.45477	3.40004	-6.05965
Н	2.89163	3.74561	-4.16603
Н	-0.17281	-0.88651	6.61955
Н	0.17281	0.88651	6.61955

4.9. Compound **7,6-PE**

Method: B3LYP/6-31+G (d,p) level of theory, Key word: opt freq b3lyp/6-31g(d,p) geom=connectivity imaginary frequencies: 0, Sum of electronic and zero-point Energies: -2187.434996 A.U

С	0.06123	3.60283	0.95779
С	-0.74683	2.40587	0.90212
С	-0.64182	1.46234	1.91393
С	0.23181	1.62765	3.01821
С	0.99096	2.84441	3.09626
С	0.89382	3.79125	2.04864
С	0.34523	0.65984	4.07456
С	1.09689	1.00143	5.19214
С	1.8429	2.19654	5.27216
С	1.80849	3.09055	4.22999
С	-0.34523	-0.65984	4.07456
С	-0.23181	-1.62765	3.01821
С	-0.99096	-2.84441	3.09626
С	-1.80849	-3.09055	4.22999
С	-1.8429	-2.19654	5.27216

C	-1.09689	-1.00143	5.19214
С	0.64182	-1.46234	1.91393
С	0.74683	-2.40587	0.90212
С	-0.06123	-3.60283	0.95779
С	-0.89382	-3.79125	2.04864
0	1.17745	0.11826	6.25413
0	-1.17745	-0.11826	6.25413
С	0	0	7.02928
С	0	4.56742	-0.08433
С	-1.65489	2.20339	-0.17268
С	1.65489	-2.20339	-0.17268
С	0	-4.56742	-0.08433
С	-0.0424	5.38694	-0.98213
С	-2.43764	2.03166	-1.08755
С	2.43764	-2.03166	-1.08755
С	0.0424	-5.38694	-0.98213
С	-0.10163	6.3304	-2.04766
С	-3.35307	1.84649	-2.16306
С	3.35307	-1.84649	-2.16306
С	0.10163	-6.3304	-2.04766
С	0.42231	7.62921	-1.89078
С	0.35846	8.54456	-2.93736
С	-0.22458	8.18449	-4.15465
С	-0.74505	6.89874	-4.32131
С	-0.68658	5.9763	-3.28077
С	-3.77533	2.94642	-2.93745
С	-4.66832	2.76367	-3.98927
С	-5.1548	1.4885	-4.28768
С	-4.74339	0.39253	-3.52541
С	-3.85132	0.56475	-2.47096
С	3.85132	-0.56475	-2.47096
С	4.74339	-0.39253	-3.52541
С	5.1548	-1.4885	-4.28768
С	4.66832	-2.76367	-3.98927
С	3.77533	-2.94642	-2.93745
С	0.68658	-5.9763	-3.28077

C	0.74505	-6.89874	-4.32131
С	0.22458	-8.18449	-4.15465
С	-0.35846	-8.54456	-2.93736
С	-0.42231	-7.62921	-1.89078
Н	-1.26544	0.57962	1.85684
Н	1.48713	4.69851	2.10759
Н	2.43865	2.37537	6.16092
Н	2.38622	4.00937	4.27268
Н	-2.38622	-4.00937	4.27268
Н	-2.43865	-2.37537	6.16092
Н	1.26544	-0.57962	1.85684
Н	-1.48713	-4.69851	2.10759
Н	0.16419	-0.8882	7.65046
Н	-0.16419	0.8882	7.65046
Н	0.87361	7.9059	-0.94357
Н	0.76496	9.54271	-2.80323
Н	-0.27226	8.90137	-4.96889
Н	-1.19666	6.6132	-5.26687
Н	-1.08382	4.97449	-3.40769
Н	-3.39995	3.93586	-2.69711
Н	-4.98783	3.61911	-4.57728
Н	-5.85124	1.34974	-5.10925
Η	-5.1187	-0.60063	-3.75385
Η	-3.52751	-0.28439	-1.87825
Н	3.52751	0.28439	-1.87825
Н	5.1187	0.60063	-3.75385
Н	5.85124	-1.34974	-5.10925
Н	4.98783	-3.61911	-4.57728
Н	3.39995	-3.93586	-2.69711
Н	1.08382	-4.97449	-3.40769
Н	1.19666	-6.6132	-5.26687
Н	0.27226	-8.90137	-4.96889
Н	-0.76496	-9.54271	-2.80323
Н	-0.87361	-7.9059	-0.94357

4.10. Compound 8-PE

Method: B3LYP/6-31+G (d,p) level of theory, Key word: opt freq b3lyp/6-31g(d,p) geom=connectivity imaginary frequencies: 0, Sum of electronic and zero-point Energies: -1573.137762 A.U

С	-3.4496	-1.19491	-1.68209
С	-2.67994	-0.02106	-1.70659
С	-1.75742	0.28403	-0.70418
С	-1.53965	-0.65275	0.37296
С	-2.41117	-1.79698	0.42969
С	-3.33584	-2.0534	-0.61465
С	-0.54824	-0.50622	1.40381
С	-0.62242	-1.34234	2.51229
С	-1.51509	-2.42779	2.59633
С	-2.36376	-2.67225	1.54689
С	0.54824	0.50622	1.40381
С	0.62242	1.34234	2.51229
С	1.51509	2.42779	2.59633
С	2.36376	2.67225	1.54689
С	2.41117	1.79698	0.42969
С	1.53965	0.65275	0.37296
С	3.33584	2.0534	-0.61465
С	3.4496	1.19491	-1.68209
С	2.67994	0.02106	-1.70659
С	1.75742	-0.28403	-0.70418
С	-1.17724	1.58515	-0.78524
С	1.17724	-1.58515	-0.78524
С	-0.85596	2.74274	-0.98433
С	0.85596	-2.74274	-0.98433
С	-0.48235	4.09743	-1.2188
С	0.48235	-4.09743	-1.2188
С	0	4.91189	-0.17422
С	0.34678	6.23764	-0.41894
С	0.22214	6.77695	-1.70151
С	-0.25555	5.97901	-2.74385

С	-0.6069	4.65303	-2.50897
С	0	-4.91189	-0.17422
С	-0.34678	-6.23764	-0.41894
С	-0.22214	-6.77695	-1.70151
С	0.25555	-5.97901	-2.74385
С	0.6069	-4.65303	-2.50897
0	-0.25727	1.15358	3.56508
0	0.25727	-1.15358	3.56508
С	0	0	4.34216
Н	-4.15368	-1.39509	-2.48367
Н	-2.82105	0.69932	-2.50518
Н	-3.95781	-2.94156	-0.54711
Н	-1.48987	-3.05739	3.47952
Н	-3.03588	-3.52527	1.56701
Н	1.48987	3.05739	3.47952
Н	3.03588	3.52527	1.56701
Н	3.95781	2.94156	-0.54711
Н	4.15368	1.39509	-2.48367
Н	2.82105	-0.69932	-2.50518
Н	0.09898	4.48882	0.81901
Н	0.71512	6.85444	0.39591
Н	0.49411	7.81179	-1.8873
Н	-0.35564	6.39185	-3.74351
Н	-0.97877	4.03133	-3.31691
Н	-0.09898	-4.48882	0.81901
Н	-0.71512	-6.85444	0.39591
Н	-0.49411	-7.81179	-1.8873
Н	0.35564	-6.39185	-3.74351
Н	0.97877	-4.03133	-3.31691
Н	-0.89496	-0.12357	4.96342
Н	0.89496	0.12357	4.96342

4.11. Compound 3,4,6-PE

Method: B3LYP/6-31+G (d,p) level of theory, Key word: opt freq b3lyp/6-31g(d,p) geom=connectivity imaginary frequencies: 0,
С	-1.14865	3.38253	-2.71144
С	-1.5103	2.00337	-2.73724
С	-1.10717	1.15439	-1.73734
С	-0.32143	1.61034	-0.64245
С	0	3.00662	-0.5827
С	-0.40806	3.85734	-1.63625
С	0.11198	0.73657	0.40992
С	0.71789	1.29594	1.52376
С	1.03413	2.67988	1.62481
С	0.71071	3.53157	0.55279
С	-0.11198	-0.73657	0.40992
С	0.32143	-1.61034	-0.64245
С	0	-3.00662	-0.5827
С	-0.71071	-3.53157	0.55279
С	-1.03413	-2.67988	1.62481
С	-0.71789	-1.29594	1.52376
С	1.10717	-1.15439	-1.73734
С	1.5103	-2.00337	-2.73724
С	1.14865	-3.38253	-2.71144
С	0.40806	-3.85734	-1.63625
С	-1.5565	4.25004	-3.7633
С	1.5565	-4.25004	-3.7633
С	1.06469	4.90266	0.614
С	-1.06469	-4.90266	0.614
0	1.07953	0.47749	2.57288
0	-1.07953	-0.47749	2.57288
С	1.38569	6.0756	0.67415
С	-1.91059	4.9788	-4.67106
С	1.91059	-4.9788	-4.67106
С	-1.38569	-6.0756	0.67415
С	-2.32292	5.83543	-5.73194
С	2.32292	-5.83543	-5.73194
С	1.78418	7.43871	0.77211
С	-1.78418	-7.43871	0.77211

Sum of electronic and zero-point Energies: -2801.710889 A.U

С	-3.11385	5.33918	-6.78795
С	-3.51426	6.17984	-7.82224
С	-3.13619	7.52466	-7.82467
С	-2.35224	8.0267	-6.78309
С	-1.94702	7.19393	-5.74433
С	1.94702	-7.19393	-5.74433
С	2.35224	-8.0267	-6.78309
С	3.13619	-7.52466	-7.82467
С	3.51426	-6.17984	-7.82224
С	3.11385	-5.33918	-6.78795
С	2.75779	7.82727	1.71567
С	3.14803	9.15936	1.81381
С	2.57921	10.12437	0.97877
С	1.61504	9.74934	0.04003
С	1.21823	8.41971	-0.06687
С	-1.21823	-8.41971	-0.06687
С	-1.61504	-9.74934	0.04003
С	-2.57921	-10.12437	7 0.97877
С	-3.14803	-9.15936	1.81381
С	-2.75779	-7.82727	1.71567
С	0	0	3.3558
С	1.66536	3.16701	2.79827
С	2.18961	3.58819	3.81176
С	2.80453	4.08504	4.99608
С	3.45237	3.20729	5.88863
С	4.05245	3.69787	7.04456
С	4.01698	5.06457	7.3321
С	3.37556	5.94263	6.45495
С	2.77301	5.46232	5.29589
С	-1.66536	-3.16701	2.79827
С	-2.18961	-3.58819	3.81176
С	-2.80453	-4.08504	4.99608
С	-2.77301	-5.46232	5.29589
С	-3.37556	-5.94263	6.45495
С	-4.01698	-5.06457	7.3321
С	-4.05245	-3.69787	7.04456

C	-3.45237	-3.20729	5.88863
Н	-2.11486	1.63374	-3.55857
Н	-1.4027	0.11315	-1.77305
Н	-0.14385	4.90703	-1.58919
Н	1.4027	-0.11315	-1.77305
Н	2.11486	-1.63374	-3.55857
Н	0.14385	-4.90703	-1.58919
Н	-3.40583	4.29417	-6.78291
Н	-4.12364	5.78471	-8.6297
Н	-3.45049	8.17748	-8.63348
Н	-2.05545	9.07142	-6.78069
Н	-1.33755	7.58017	-4.93396
Н	1.33755	-7.58017	-4.93396
Н	2.05545	-9.07142	-6.78069
Н	3.45049	-8.17748	-8.63348
Н	4.12364	-5.78471	-8.6297
Н	3.40583	-4.29417	-6.78291
Н	3.2013	7.07278	2.35712
Н	3.90038	9.44602	2.54265
Н	2.88632	11.16284	1.0585
Н	1.17066	10.49621	-0.61116
Н	0.46813	8.12585	-0.79379
Н	-0.46813	-8.12585	-0.79379
Н	-1.17066	-10.4962	-0.61116
Н	-2.88632	-11.16284	4 1.0585
Н	-3.90038	-9.44602	2.54265
Н	-3.2013	-7.07278	2.35712
Н	-0.42998	0.79517	3.97358
Н	0.42998	-0.79517	3.97358
Н	3.47892	2.14716	5.65916
Н	4.55016	3.01201	7.72375
Н	4.48619	5.44322	8.23523
Н	3.34317	7.00539	6.67629
Н	2.26792	6.13956	4.61483
Н	-2.26792	-6.13956	4.61483
Н	-3.34317	-7.00539	6.67629

- Н -4.48619 -5.44322 8.23523
- Н -4.55016 -3.01201 7.72375
- Н -3.47892 -2.14716 5.65916

5. Optical resolution of 8-PE

Conditions; CHIRALPAK IB (*n*-hexane/*iso*-propanol =90/10, flow rate = 1.0 mL/min, λ = 254 nm, pressure = 3.4 MPa, temp.= 303 K), (*S*)-8-PE (fraction 1, tR=5.8 min.), and (*R*)-8-PE (fraction 2, tR=8.3 min.), 100%ee.

6. ¹H and ¹³C NMR spectra for all new compounds

Conditions: ¹H (400 MHz) and ¹³C NMR (100 MHz), CDCl₃.

42

