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Abstract

The projected atomic orbitals (PAO) technique is presented for the construction

of virtual orbital spaces in projection-based embedding applications. The proposed

straightforward procedure produces a set of virtual orbitals, which is used in the final,

high-level calculation of the embedded active subsystem. The PAO scheme is demon-

strated on intermolecular potentials of bimolecular complexes, in ground and excited
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states, including Rydberg excitations. The results show the outstanding performance

of the PbE embedding method with PAO virtual orbitals compared to those produced

using common orbital localization techniques. The good agreement of the resulting

PbE potential curves with those from high-level ab initio dimer calculations, also in

diffuse basis sets, confirms that the PAO technique can be suggested for future appli-

cations of this type. The use of D3 dispersion corrections in such calculations is also

proposed, supported by a superior accuracy over dispersion terms sourced from the

effective fragment potential (EFP2) model.

Keywords: excited states, intermolecular interactions, embedding, PAOs
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Embedding techniques1 have emerged to be some of the most effective approaches to

overcome the serious limitations of the applicability of high-level quantum chemistry methods

due to the system size. This family of methods treat the relevant subsystem (reaction center,

chromophore, etc.) at a higher level of theory while including the effect of the other parts in

an approximate way, e.g., by using lower-level methods. Density Functional Theory (DFT)

methods are ideal for embedding applications provided that the density can be distributed

between the fragments and the functional form of the interactions allows a suitable definition

of the embedding potential. Wave-function-in-DFT (WF-in-DFT) embedding approaches

allow a treatment of the active fragment by advanced ab initio techniques, in particular by

various formulations of Coupled Cluster theory,2–4 also in excited electronic states5–10 where

the accuracy of these methods is often warranted even for a qualitatively correct description.

In this type of embedding, top-down projector-based embedding (PbE)2 strategies have

the advantage of avoiding certain problematic non-additive terms11 by using an orthogonal

representation for the subsystems. A low-level calculation (usually at the DFT level) is

performed first on the entire system, followed by a localization of the occupied orbitals

on a priori defined sets of atoms (subsystems). This latter step is usually accomplished

by using Pipek–Mezey localization,12 intrinsic bond orbitals,13 or the SPADE (Subsystem

Projected AO DEcomposition)14 technique and the orbital space belonging to the different

fragments, which is then used to set up the embedding potential from the fragments’ density,

is defined by the position of the resulting localized orbitals. Subsequently, the orbitals of

the active subsystem(s) are reoptimized under the influence of the embedding potential,

applying the orthogonality constrain between the subsystems by level shifting,2 solving the

Huzinaga equation,3 or by applying the projection scheme by Hoffmann et al.15 The high-

level correlated calculations on the active fragment are finally performed using the Fock

matrix that results from the above procedure. Since only the electrons defining the density

on the active fragment(s) are used in these calculations, a significant reduction of the cost

of the calculation is achieved.

Nevertheless, the original formulations of PbE2,3 leave the space of virtual orbitals intact,

i.e., that of the original supersystem, which poses serious limitations on the applicability of

the higher-level ab initio methods due to the unfavorable scaling of the computational cost
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with the size of the virtual space. In addition, the untruncated virtual space tendentially

leads to the appearance of artefactual low-lying charge transfer (CT) states,16 often ren-

dering the identification of local excited states impossible. Several approaches have been

investigated to deal with this problem by truncating the virtual space in a reasonable way,

including the absolutely localized embedding schemes of Chulhai and Goodpaster4,6 that

avoid the issue entirely by using monomer basis sets, or the basis set truncation method

for PbE by Bennie et al17 which relies on net Mulliken population criteria. Claudino and

Mayhall developed a concentric virtual orbital localization technique18 which has been used

by Parravicini and Jagau in embedded excited state calculations.8 Visscher and co-workers

generalized the intrinsic atomic orbital approach13 to molecular fragments,19 constructing

orthogonal localized orbitals by spanning the supersystem valence and virtual space20 using

reference fragment orbitals. Conventional MO-based localizations, such as Pipek-Mezey12

and SPADE14 can also be applied to the virtual space, and by assigning orbitals to the sub-

systems based on some selection criteria, those of the environment can be discarded.21 We

observed, however, that without any further adjustments, the resulting virtual space can be

severely distorted compared to that of an isolated monomer.16 The distortion can be reduced

by extending the space by some environment orbitals that show the largest overlap with the

atomic orbitals centered on the active subsystem. Nevertheless, the effective construction

of appropriate virtual orbitals, especially if diffuse basis functions are present, remains a

challenge in PbE applications. Improper virtual spaces can cause a drastic overestimation

of the energy and result in nonphysically repulsive intermolecular potentials,16 calling for a

compelling remedy for this issue. In this letter, the use of projected atomic orbitals (PAOs)

is suggested as an alternative for creating virtual orbitals localized on the active subsystem.

PAOs were first suggested by Boughton and Pulay22 to define the virtual space in local

correlation calculations. We suggest the implementation of this concept in PbE, relying on

the use of the atomic orbitals centered on the active subsystem’s atoms as the basis for the

construction of a virtual space (the PAOs).

We define the projector of the occupied orbitals of the supersystem as

R = CoccC
T
occ, (1)
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where Cocc is the occupied orbital block of the MO coefficient matrix. The application of

this projector leads to the PAOs

CPAO = 1−RS, (2)

where S is the AO overlap matrix. Some of these PAOs can have negligible contribution to

the virtual space of the active subsystem, furthermore, linear dependencies are present at

this point. Truncations are therefore performed, first according to the norm of the PAOs

obtained as

Ni =
act.AOs∑

µ

(CPAO)iµ(SCPAO)iµ , (3)

where the indices µ and i label AOs of the active subsystem (act.AOs) and the PAOs,

respectively. PAOs with Ni below an appropriately chosen threshold are discarded, and the

rest are renormalized, producing a new set of PAOs, C′
PAO.

To eliminate linear dependencies from this set, a second truncation step is introduced by

screening the redundant PAOs via the diagonalization of their overlap matrix

SPAO = (C′
PAO)

T SC′
PAO, (4)

so that only PAOs with an absolute value of their eigenvalue |si| above a chosen truncation

parameter are retained. The resulting set of linearly independent PAOs are finally used as

the virtual orbital basis when solving the Huzinaga equation.3 Details are given in Section

S1.3 of the Supporting Information.

The generation of PAOs using the above scheme thus requires the definition of the atoms

used for the construction of the PAOs, as well as two truncation parameters, one for the

post-projection norm (Ni) and another for the tolerance of the overlap for redundant orbitals

(|si|). This scheme has been implemented in the MRCC program code.23,24

We evaluate the effect of the virtual space truncation on the quality of the interaction

potential energy curves, both in ground and excited states, for the stacked homodimers

of formaldehyde [(CH2O)2] and pyrrole [(Pyr)2], as well as for the cytosine-uracil complex

[Cyt-Ura]. These test systems have been studied in a recent work,16 and their structures are

available in the Supporting Information. As reference, we use Coupled Cluster with Singles
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and Doubles (CCSD)25 and Equation-of-Motion Coupled Cluster with Singles and Doubles

(EOM-CCSD)26,27 calculations for the ground and excited states, respectively, corrected for

the basis set superposition error (BSSE). For the excited states of the homodimers, a single

reference curve is obtained by averaging the energies of the two interacting states, that is, by

removing the excitonic coupling. The same wave function methods are employed in the WF-

in-DFT type PbE, with the low-level DFT calculations using the Perdew–Burke–Ernzerhof

(PBE) functional.28 To make meaningful comparisons to the reference, the interaction energy

has to be augmented by a dispersion correction,16,21 for which the D3 dispersion correction by

Grimme was chosen,29 as justified later. All calculations have been performed by the MRCC

suite of codes.23,24 Further details of the test calculations can be found in the Supporting

Information.

On panel A of Figure 1, the ground state potential energy curves for the [(CH2O)2]

dimer are shown, calculated with four different virtual spaces: the full virtual space, one

localized with the SPADE procedure, the latter extended by two additional virtual orbitals

(denoted as ”ext. SPADE”), as well as with the space produced with the PAO scheme.

It is clearly seen that while with the full valence space the interaction energy is slightly

overestimated, the SPADE localization results in a far too small interaction energy. Adding

the two environment orbitals with the largest overlap with the AOs of the active subsystem

improves the results considerably, while with PAO virtual orbitals an almost perfect curve

is obtained.
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Figure 1: CCSD ground-state interaction energies (in atomic units) of the [(CH2O)2] (Panel
A, N = 0.05, s = 10−3) and [(Pyr)2] (Panel B, N = 0.05, s = 9 ·10−5) homodimer complexes
as functions of the intermolecular separation d, evaluated in the aug-cc-pVDZ basis.

Similar conclusions can be drawn in the case of [(Pyr)2] (Panel B of Figure 1), where

again the PAO virtual space gives the best potential energy curves. (Note that for this

system ”ext. SPADE” includes seven additional orbitals.)

For the Rydberg type excited states obtained in the diffuse aug-cc-pVDZ basis (Figure 2),

the SPADE localization results in repulsive interaction curves. This is the consequence of, as

discussed in Ref. 16, the requirement that for the correct description of the Rydberg states

the virtual orbitals have to extend to the space where the other fragment resides. However,

the standard localization procedures cut off this part of the virtual basis, deteriorating the

wave function more and more with decreasing distance between the fragments. We have

called this effect the reverse BSSE in Ref. 16. As evident from Panel A of Figure 2, the

extension of the virtual space by the most overlapping orbitals of the environment does not

solve the problem, the respective potential curve is still repulsive. On the other hand, the

use of a PAO virtual space provides a solution here since the diffuse functions of the active

fragments are retained in the basis, irrespective of their overlap with the other fragment. In

the case of [(CH2O)2] (Panel A), we again get a nearly perfect curve with PAOs, while the

improvement is also apparent for the two investigated Rydberg states of [(Pyr)2] (Panels B

and C). Note that in the latter system, CT contributions become significant in the reference

wave function at short distances, thus a good agreement of PbE and the reference is only

expected at separations above 4 Å.16
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Figure 2: EOM-CCSD averaged interaction energies of different Rydberg excited state pairs
in the [(CH2O)2] (Panel A, N = 0.05, s = 10−3) and [(Pyr)2] (Panels B and C, N = 0.05,
s = 9 ·10−5) homodimer complexes as functions of the intermolecular separation d, evaluated
in the aug-cc-pVDZ basis.

This also applies to the σ−π∗ and π−π∗ valence excited states of [(CH2O)2] calculated in

the aug-cc-pVDZ basis, shown on panels A and B of Figure 3. Nevertheless, only the curves

obtained with PAO virtual orbitals are attractive, fixing the qualitatively wrong repulsive

behavior of the ones based on the SPADE localization. Since here the reference states are

more strongly affected by the problem of crossing CT states,16 their agreement with PbE is

less good than in the examples above.
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Figure 3: EOM-CCSD averaged interaction energies of different valence excited state pairs:
σ − π∗ and π − π∗ states of the [(CH2O)2] complex (Panels A and B, aug-cc-pVDZ basis,
N = 0.05, s = 10−3) and π − π∗ excited states of the [(Pyr)2] homodimer complex (Panel
C, cc-pVDZ basis, N = 0.05, s = 10−3), and the π − π∗ excited states of the [Cyt-Ura]
complex (Panel D, no averaging, cc-pVDZ basis, N = 0.05, s = 10−3) as functions of the
intermolecular separation d.

The effect of disturbing CT contributions can be eliminated with the use of basis sets that

do not include diffuse functions, with the disadvantage of less accurate interaction energies.

On panel C of Figure 3, the curves obtained for the π-π∗ state of [(Pyr)2] with the cc-pVDZ

basis set are shown, and the PAO technique is indeed found to perform excellently in this

non-diffuse basis. Note, however, that the truncation based on the SPADE localization also

gives an attractive, although less accurate potential curve for this state. This proper behavior

can be explained by the small overlap of the active fragment orbitals with the environment,

even at short distances.

Also for the pair of π − π∗ excited states of the [Cyt-Ura] complex shown on Panel
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D of Figure 3, this truncation method predicts bound configurations, but the interaction

energy and the equilibrium distance are significantly under- and overestimated, respectively.

Compared to these curves, the PAO approach brings a clear improvement yet again and

a satisfactory agreement with the reference calculations. Note that in this example the

interaction of the two states via excitonic couplings is also included in the embedding models

using the scheme described in Ref. 16 (see the Supporting Information for more details).

Finally, a note on the dispersion correction used to correct the PbE potential curves in

order to allow a comparison with the reference. In our previous study16 on the ground state

interaction curves, the use of dispersion sourced from the EFP2 model30 was suggested,

based on its better agreement with the respective term in Symmetry-Adapted Perturbation

Theory (SAPT).31,32 The D3 correction showed, in contrast, a considerable underestimation

of this quantity. However, for the present results calculated with PbE and PAO virtual

orbitals, the use of the D3 dispersion correction — with parameters chosen for the employed

DFT functional — is found to be more appropriate. With the EFP2 dispersion term, the

interaction energy is, as seen in Figure 4, severely overestimated. This is line with the finding

of Szalewicz et al.33 that in the case of DFT, the overall quality of the interaction energy curve

is improved if the smaller D3 correction is used instead of the theoretically more accurate

dispersion calculated by SAPT. On the other hand, in the case of a purely electrostatic

embedding such as QM/MM, the electrostatic interaction needs to be augmented with the

complete/entire dispersion, e.g., by EFP2 as suggested earlier in Ref. 16.

In summary, the results presented here show the superior performance of the PbE em-

bedding method using PAOs for virtual orbitals. Not only are the calculations cheap (the

same as the calculation on the bare fragment), but the potential curves follow the reference

curves obtained for the supersystem nicely. This is true for both ground and excited states,

including both valence and Rydberg type excitations. We have also confirmed the finding of

Szalewicz33 that the D3 is the appropriate dispersion correction to be used with DFT and

we suggest its use also in WF-in-DFT embedding calculations.
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Figure 4: Comparison of the D3 and EFP2 dispersion corrections. Ground state CCSD
interaction energy curves of the [(CH2O)2] (Panel A, N = 0.05, s = 10−3) and [(Pyr)2]-
(Panel B, N = 0.05, s = 9 · 10−5) complexes as functions of the intermolecular separation
d, calculated by different methods with aug-cc-pVDZ basis. QM/MM and EFP2 data from
Ref.16
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24. Kállay, M.; Nagy, P. R.; Mester, D.; Rolik, Z.; Samu, G.; Csontos, J.; Csóka, J.;
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