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Abstract 
 
Deep learning is becoming increasingly relevant in drug discovery, from de novo design to protein structure prediction 
and synthesis planning. However, it is often challenged by the small data regimes typical of certain drug discovery tasks. 
In such scenarios, deep learning approaches – which are notoriously ‘data-hungry’ – might fail to live up to their promise. 
Developing novel approaches to leverage the power of deep learning in low-data scenarios is sparking great attention, 
and future developments are expected to propel the field further. This minireview provides an overview of recent low-
data-learning approaches in drug discovery, analyzing their hurdles and advantages. Finally, we venture to provide a 
forecast of future research directions in low-data learning for drug discovery. 

 

 
 
 
Introduction 

 
In recent years, artificial intelligence in the form of deep 
learning has permeated the molecular sciences. Deep 
learning – based on artificial neural networks with 
multiple processing layers [1] – has demonstrated 
remarkable potential in numerous applications, such as 
protein structure prediction [2] and organic reaction 
planning [3]. Deep learning has three main advantages: 
(a) it can learn complex and highly non-linear patterns 
from data [1], (b) it can be trained on a wide range of 
molecular representations (e.g., SMILES strings [4] and 
graphs, Fig. 1b), and (c) it can be adapted to various types 
of training regimes, facilitating the development of 
tailored models for diverse applications. These aspects 
open novel modeling avenues compared to using 
human-engineered features only [5]. Yet, its 
transformative potential has primarily been harnessed in 
data-rich settings where extensive datasets are readily 
available (e.g., [2], [3]). This relates to the fact that deep 
learning approaches optimize millions (or even billions) 
of neural-network parameters, which is made more 
robust by training on large datasets. Drug discovery, on 
the contrary, is often a low-data endeavor. 

Due to costs and time limitations, typical drug 
discovery datasets are comprised of only several 
hundreds of molecules – a number drastically smaller 
compared to other deep learning applications. 
Moreover, drug discovery datasets are often 
characterized by limited structural diversity, and 
insufficient ‘negative data’ (e.g., inactive molecules) [6], 
which restricts the information accessible for learning. 
Finally, the need to represent molecules as ‘computer-
readable’ formats inevitably leads to information loss 
(e.g., about molecular systems dynamics), which might 
hamper the performance, for instance, with highly non-
linear structure-activity landscapes [7], [8], [9], [10].  

Despite these limitations, neural networks shine for 
their ‘adaptable’ nature; e.g., to different types of inputs 
and modeling tasks [5], and to manipulation of internal 
model representations [11] – which unlocks novel 
avenues compared to traditional methods. Hence, deep 
learning for drug discovery bears incredible potential to 
extract relevant information from complex molecular 
systems and perform tasks that are not accessible via 
traditional computational approaches. Its application in 
low-data regimes faces unique challenges that demand 
innovative approaches. 

Stemming from these observations, this minireview 
delves into existing deep learning approaches for drug 
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discovery with limited data availability, with a focus on 
bioactivity prediction (i.e., how to predict if and how a 
ligand will interact with one or more macromolecular 
targets) and de novo design (i.e., how to design novel 
bioactive molecules from scratch, Fig. 1). While 
extensive reviews on how machine learning is employed 
for drug discovery exist [5], [12], this minireview 
provides a structured overview of deep learning for low-
data drug discovery, with special emphasis on recent 
approaches, their advantages and limitations, and the 
opportunities ahead. 
 

Strategies for deep learning in low-data 
scenarios 

 
Small data scenarios in drug discovery can affect the 
performance of deep learning and call for tailored 
methods. In what follows, we discuss some approaches 
that have been successful in alleviating limitations of the 
low-data regimes typical of drug discovery. The 
approaches have been grouped into the following 
categories: 

1. Data augmentation. The number of samples in the 
training data is artificially inflated by leveraging 
known properties of the chemical system investigated. 

2. Muti-stage training strategies. Instead of performing a 
given task in ‘one-go’, these strategies rely on several 

training phases to steer the model towards the desired 
performance.  

3. Context-enrichment. Extra information (context) is 
given to the model by providing different, additional 
inputs or by incorporating auxiliary prediction tasks. 

For each of these approaches, the main advantages and 
disadvantages are discussed, and summarized in Table 1. 

 
Data augmentation 
The term ‘data augmentation’ refers to approaches that 
artificially inflate the data available for training. This is 
usually done by generating multiple (and different) 
instances of the same molecule to be used as input for a 
deep learning model (Fig. 2). Data augmentation can be 
applied to the entire training set, or selectively to 
mitigate the presence of imbalanced classes, e.g., lack of 
negative data.  

The most common data augmentation strategy has 
been applied to Simplified Input Molecular Line System 
(SMILES [4]) strings. SMILES strings are one of the most 
common ways to represent a molecular structure for 
deep learning. They encode two-dimensional aspects of 
the molecular structure (i.e., atom connectivity and type, 
and bond type) and, optionally, stereochemistry in the 
form of a string, by traversing the molecular graph and 
annotating the encountered atoms and bonds with 
predefined characters (Fig. 2a). Any heavy (non-
hydrogen) atom can be used as a starting point, and, 
therefore, one molecule can have multiple valid and 
different SMILES strings.

 
Figure 1. Simplified overview of deep learning for drug discovery. a. Molecular data relevant to the prediction task at hand is often 
limited in size, quality, and diversity, especially compared to the vastness of the full explorable ‘chemical space’. b. Molecular 
representations are used to encode information on the molecular structure in a ‘machine-learnable’ format. Well-established examples 
are SMILES strings (where two-dimensional molecular information is converted into a string format) and molecular graphs (where 
nodes and edges represent atoms and bonds, respectively). c. Two key tasks in drug discovery are molecular property prediction 
(whereby a property like bioactivity is predicted from the molecular structure) and de novo design (whereby structures with desirable 
properties are generated from scratch). 
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Table 1. Summary of the discussed approaches, with definitions, selected references, benefits, and limitations. 

Strategy Application Definition Benefits Limitations 

Data 
augmentation 

Molecular string 
(e.g., SMILES) 
augmentation [13] 

Usage of multiple molecular strings 
for the same molecule, as input to 
the model.  

Improvement in the quality and 
diversity of de novo designs [13], 
[14], and in QSAR model 
performance [15]. 

Few text-based augmentation approaches [16] 
have been explored to date. Decreasing gains 
when increasing the augmentation level [14], 
[17]. 

Conformer 
augmentation [18] 

Usage of multiple 3D conformations 
of the same molecule, as model 
input.  

Potential to overcome the limitations 
of using a single, minimum-energy 
conformation [19]. 

Might perform worse than or on par with 
simpler methods [20], [21], and depend on the 
conformer generation method [20]. 

Multi-stage 
training 

Transfer learning Leveraging knowledge gained from 
one training task to improve the 
model performance on a different, 
but related, task with fewer data 
available.  

Allows leveraging large training sets 
before focusing on smaller and task-
specific datasets, often with increased 
performance. 

The efficacy depends on the chosen pretraining 
set, transfer learning strategy, and molecular 
representation [22]. Possible undesirable 
‘pretraining bias’ in the fine-tuning task, e.g., 
for de novo design [23].  

Reinforcement 
learning 

Steers the actions taken by a model 
towards promising solutions via a 
reward function.  

A well-designed reward function can 
steer designs towards desired 
molecular properties, while requiring 
no training data.  

Appropriate reward functions might be difficult 
to devise for complex problems, and models 
could exploit their weaknesses [24], [25].  

Active learning Iterative train-predict-test cycles 
aimed to improve the model using 
(fewer) experimental datapoints.  

Can overcome the lack of diversity 
and work in small-data regimes [26].  

Might be time-inefficient and requires 
sustained collaboration between experimental 
and computational groups. Performance 
depends on many factors to be tuned on a 
case-by-case basis. 

Context-enriched 
training 

Multi-modal 
learning 
[27] 

Leveraging multiple input types (e.g., 
different molecular representations, 
or textual descriptions) to enhance 
the model performance on a given 
task. 

Can be used to combine ‘partial’ 
molecular representations and their 
individual strengths.  

It is not straightforward to choose how to 
combine modalities. Modality competition 
might arise [28]. 

 Multi-task learning 
[29] 

Training a model to predict multiple 
outputs (e.g., molecular properties of 
a given molecular input) 
simultaneously.  

Can leverage information sharing 
between tasks and improve the 
performance with little labelled data 
[30]. 

It is complicated to tune the impact of each 
task. Requires the tasks to be related and does 
not necessarily outperform single-task models 
[30]. 
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This characteristic of SMILES strings can be used for 
data augmentation, by representing the same molecule 
in the training set with n different SMILES strings, usually 
generated at random. SMILES augmentation [13] has 
been shown beneficial to improve the performance of 
quantitative structure-activity relationship (QSAR) 
models [15], as well as to improve the quality of de novo 
design models [13], with the magnitude depending on 
the structural complexity of the training molecules [17]. 
The performance improvement of SMILES augmentation 
plateaus with increasing the number of SMILES per 
molecule [14], [17]  leading to progressively smaller 
performance gains with increasing computational cost.  

Other molecular representations often used for 
deep learning, like molecular graphs or molecular 
descriptors are less suited to data augmentation. 
Molecular graphs, for instance, encode molecular 
topology (atoms and bonds) and properties (atom 
properties and/or coordinates, and bond properties) in a 
permutation-invariant manner. In other words, every 
molecule (given a set of atom and bond properties to 
capture) maps to a unique molecular graph, rendering a 
‘SMILES-like’ augmentation impossible. Similarly, 
molecular descriptors map one-to-one with the 
molecular representation they are computed from, 
rendering permutation-based augmentation unfeasible. 
A useful, albeit less explored, approach to circumvent 
this limitation is by considering 3D conformations and 
performing ‘conformer-based augmentation’. Here, the 
same molecule is described by several, different 3D 
conformations, which enables data augmentation with 
molecular graphs and/or molecular descriptors that 
capture 3D information [5]. How to aggregate 

information on different conformations is, however, still 
far from trivial, and several approaches can be explored 
[31]. To date, the benefits of using multiple 
conformations are not fully evident [20], [21], and the 
performance might be affected by the chosen conformer 
generator [20]. Finally, 3D-based approaches do not 
necessarily outperform more well-established ones that 
consider only 2D molecular information (e.g., [10]). 

Other molecule augmentation strategies exist, e.g., 
by calculating molecular descriptors on molecular 
fragments obtained by pre-defined decomposition rules 
[32], or by adding noise (mask, swap, deletion, and 
fusion) to existing SMILES strings [33]. These strategies 
have, however, found limited application to date. 
Advances from the deep learning domain might help 
further boosting the performance in low data scenarios, 
e.g., for SMILES augmentation [16]. 
   
Multi-staged training 
While ‘conventional’ deep learning approaches rely on 
extensively labeled datasets to learn a given task in ‘one-
go’, other training paradigms have been developed to 
address the challenges posed by limited data scenarios. 
These strategies will herein be referred to as ‘multi-
stage’, since they iteratively adapt to the information 
contained in multiple datasets or tasks (usually utilized 
in a stepwise manner for training) to improve model 
performance. The three most common multi-staged 
strategies are (Fig. 3): 

• Transfer Learning, which leverages knowledge gained 
from one task to improve the model performance on 
a different, but related, task (e.g., [34], [35]) (Fig. 3a). 

 
Figure 2. Selected data augmentation strategies for molecules. a. SMILES augmentation. The number of molecules available for 
training can be artificially inflated by using multiple different SMILES strings representing the same molecule. SMILES strings encode 
atom types and their connectivity into a character string in a non-univocal manner. b. Conformer-based augmentation. Three-
dimensional (3D) molecular conformers can be augmented by using multiple conformations (e.g., with different favorable energies) 
for training, instead of just the minimum energy conformer. 
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In drug discovery, transfer learning is achieved by 
‘pre-training’ a model on a large dataset (e.g., 
ChEMBL [36] or ZINC [37]), and then ‘fine-tuning’ it 
(by additional training) on a smaller, and task-focused 
dataset (e.g., bioactivity on a given macromolecular 
target [22]). The pre-training approach depends on the 
task to be performed and on the chosen molecular 
representation [38]. Pre-training enables bypassing 
the need of numerous labeled training data and 
leveraging large corpora of unlabeled molecules; this 
is particularly suited for molecular properties with 
little experimental annotations available. Transfer 
learning can improve model performance in small-
data regimes, especially for de novo drug design (e.g., 
[39]).  However, undesired biases incurred during 
pre-training may persist after fine-tuning and affect the 
quality of the de novo designs [23]. Overall, the 
efficacy of transfer learning can depend on how 
related the pre-training and fine-tuning datasets are 
(e.g., [22], [40], [41]), and on the chosen molecular 
representation and related training strategies (e.g., 
[10]). 

• Reinforcement Learning, whereby the actions taken 
by a model are steered towards promising solutions 
via a reward function (Fig. 3b). Reinforcement 
learning waives the need for a labeled starting dataset 
entirely, at the cost of requiring an ‘oracle’ (e.g., a 
machine learning model predicting a specific 
property) that can accurately reward specific choices. 
In drug discovery, reinforcement learning has been 

used mostly for de novo design [42], where it consists 
of the following phases: (1) de novo molecule design 
using a molecule generator (e.g., trained on ChEMBL 
[36] or ZINC [37]), (2) ranking of the designs via a 
scoring function (e.g., docking [43], and structural 
similarity [44]), and (3) use of the top designs as new 
input to the model, to bias future generations towards 
desirable properties. However, reinforcement 
learning is faced with several challenges [24], [25], 
e.g., related to (a) the difficulty of condensing 
(multiple) complex chemical properties into single 
scoring functions, or, (b) possible model shortcuts, 
where a ‘loophole’ in the scoring function is 
exploitatively capitalized upon (e.g., learning to 
append a single carbon atom to trivially fulfill a 
novelty criterion). To avoid these failure modes, 
caution with the used data and reward functions 
becomes essential [24].  

• Active learning, which selects molecules for screening 
over multiple iterations to expand the current dataset 
and, correspondingly, improves the model for the next 
screening round [45]. While many factors can be 
tuned when performing active learning, how 
molecules are selected for screening is a key aspect in 
hit discovery [26]. In low-data bioactivity prediction, 
active learning can remarkably outperform traditional 
machine learning approaches, leading to several fold 
improvement in hit retrieval [26]. In de novo design, 
active learning has (to the best of our knowledge) not 
been extensively explored yet. Nevertheless, active 

 
Figure 3. Adaptive training in low-data regimes. a. In transfer learning, a large dataset is used to pre-train a model, which is later 
fine-tuned (by additional training) on a focused training set for a different, but related, prediction task. b. In reinforcement learning, 
a (pretrained) de novo design model is rewarded for favorable designs through an external scoring function, e.g., similarity of the 
designs to known molecules, or docking scores. c. In active learning, a model is trained on a small initial set of molecules and 
chooses which new molecules from a screening library should be tested and added to the training set over iterations, with the 
goal of improving the model and reach one’s goal faster. 
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learning requires both experimental and 
computational resources and expertise, which might 
increase the barriers for its adoption. 

 
Context-enriched training 
In this minireview, we define context-enriched training 
as an umbrella term encompassing approaches that 
provide additional knowledge to the model (‘context’) to 
improve its performance on a given task. Unlike multi-
stage learning, in context-enriched training all available 
information is provided to the model simultaneously. 
Context-enrichment can be performed in several 
different ways, such as: 

• Multimodal training. Multimodal training leverages 
multiple input types (e.g., different molecular 
representations) to enhance the model performance 
on a given task [27]. Combining molecular 
information from different modalities might allow the 
model to learn more informative representations for 
the task at hand, potentially improving performance 
compared to models that rely on a single 
representation. In several application domains (e.g., 
medical image analysis [46] and computer vision 
[47]) multimodal learning has shown promise to 
alleviate the limitations of scarce data. In the 
molecular sciences, it has been applied to several 
tasks (for instance, to combine molecular graphs and 
textual data [48], and ligand and proteins graphs [49]), 
showing promise for zero- and few-shot prediction 
[50]. Since each molecular representation captures 
only part of the underlying ‘molecular reality’, 
multimodal deep learning is particularly relevant in 
the molecular sciences. However, it also carries 
several limitations, e.g., choosing how to effectively 
combine modalities, and ‘modality competition’ [28], 
whereby only a subset of the input modalities is 
leveraged by the model to make a prediction. 

• Multi-task learning. In multi-task learning, a model is 
trained to predict multiple outputs in parallel (e.g., 
multiple molecular properties [29]). The underlying 
idea is that the model error is optimized across all 
tasks (with the possibility to include missing values, if 
necessary), encouraging learning a shared 
representation that is beneficial for all tasks [51]. 
Although multi-task learning does not seem to 
systematically outperform single-task approaches for 
bioactivity prediction, it seems beneficial on tasks that 
have fewer labelled molecules [30]. Multi-task 
learning also comes with some caveats, for instance: 
(a) Its effectiveness relies on the assumption that the 
tasks are related, leading to failure when tasks that are 
too different from each other [51]; (b) the 
unavailability of all labels for each datapoint might 

affect the overall performance; and (c) an ‘easy’ tasks 
to model may become dominant during the training 
process, to the detriment of the more difficult ones. 
Hence, the complexity-performance trade-off of 
multi-task learning should be evaluated on a case-by-
case basis.  

Additional approaches have been used to provide 
additional context at training time, e.g., by learning 
associations between a small set of molecules of interest 
with a larger set of (contextual) molecules [52], [53]. A 
particularly interesting strategy is meta-learning [54] – 
whereby the outputs of multiple machine learning 
algorithms are combined to predict a novel task, which 
is finding increasing application in drug discovery [55], 
[56], [57], e.g., to predict bioactivity on novel binding 
assays and protein targets [57]. 
 
Challenges and future opportunities 
 

Deep learning has enabled exciting new avenues 
in drug discovery. Despite the need for large training 
datasets being the ‘Achilles heel’ of deep learning in drug 
discovery, several advances allow neural networks to be, 
paradoxically, powerful tools in low-data scenarios. An 
increasing body of literature shows how strategies like 
the ones discussed in this minireview can lead to high-
performing deep learning models, even with little data. 
However, many challenges are still lurking in the data 
shallows. 

One of the central trials models face in a low-data 
setting is out-of-domain generalization. Since deep 
learning models are typically trained on a specific set of 
molecules (and the corresponding structure-activity 
relationships), they might be challenged in generalizing 
to new, unseen molecules that may come from a 
different distribution (e.g., novel molecular scaffolds, 
structural motifs, or binding modes). Although this aspect 
is relevant for deep learning in general, low-data regimes 
intrinsically put additional strains on the model's ability 
to generalize out of the (limited) training distribution. 
Awareness of prediction uncertainty and out-of-
distribution performance are expected to become crucial 
guides in the future for prospective decision making, 
especially in low-data scenarios. We also expect causal 
[58] and explainable deep learning [59] to become 
instrumental tools in low-data scenarios and for out-of-
domain generalization, by shedding light on causal 
relationships, spurious correlations, and potential model 
shortcuts.  

Geometric deep learning – which incorporates and 
processes symmetry information [60] – is also getting 
increasing attention in the molecular sciences, 
especially in the context of complex, three-dimensional 
molecular systems [5]. Incorporating symmetry 
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information, such as invariance or equivariance to roto-
translations into neural network architectures, bears 
promise to learn sophisticated molecular information, 
which might be especially relevant when little training 
data is available. However, little is currently known on 
the performance of geometric deep learning in low-data 
scenarios, and the incorporation of molecular symmetry 
might not necessarily lead to better performing 
approaches [61]. 

Structure-based drug discovery also bears a great 
potential in the low-data setting [62]. These approaches, 
in fact, can leverage large corpora of protein-ligand 
affinity annotations, and can apply them to targets for 
which little (or no) ligand affinity information is 
available. Current structure-based approaches do not 
necessarily outperform approaches based on ligand 
information only [63], and hence we encourage the 
cheminformatics community to explore novel strategies 
to combine protein structure and ligand information with 
deep learning. Finally, multimodal learning [48], [49], 
[50] and meta-learning  [55], [56], [57] strategies are 
getting increasing traction, and we expect them to 
become commonplace in drug discovery with low-data. 

A current ‘known unknown’ in the field is the 
minimal data requirement for deep learning in drug 
discovery. Only a limited number of studies 
systematically examine the effect of dataset size and 
diversity on the model performance and out-of-domain 
generalization [17], [64], [65]. The same holds for 
knowledge on what deep learning strategy to choose 
based on the task and data at hand. In this context, FS-
mol [41] – which provides the first-in-kind benchmark 
and set of baselines for low-data training – is a notable 
effort to further propel deep learning approaches in drug 
discovery. We expect the development of metrics and 
datasets tailored to low-data training to be key to 
harmonize the evaluation, choice, and development of 
novel approaches with an increased potential for drug 
discovery.   
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