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Abstract 

Molecular dynamics (MD) simulation is a powerful tool for characterizing ligand-

protein conformational dynamics and offers significant advantages over docking and 

other rigid structure-based computational methods. However, setting up, running, 

and analyzing MD simulations continues to be a multi-step process making it 

cumbersome to assess a library of ligands using MD. We present an automated 

workflow that streamlines setting up, running, and analyzing Desmond MD 

simulations. The workflow takes a library of pre-docked ligands and a protein 

structure as input, sets up and runs MD with each protein-ligand complex, and 

generates simulation fingerprints for each ligand. Simulation fingerprints (SimFP) 

capture protein-ligand compatibility, including stability of different ligand-pocket 

interactions and other useful metrics that enable easy rank-ordering of the ligand 

library for pocket optimization. SimFP from a ligand library can also be used to build 

machine learning (ML) models that can predict binding assay outcomes and 

automatically infer important interactions. Unlike relative free-energy methods that 
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are constrained to assess ligands with high chemical similarity, ML models based on 

SimFPs can accommodate diverse ligand sets. We present a case study on how SimFP 

helps delineate structure-activity relationship (SAR) trends and explain potency 

differences across matched-molecular pairs of cyclic peptides targeting the PD-L1 

protein. 
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Introduction 

Structure-based drug design (SBDD) has become central to the drug discovery 

process and helped identify several marketed drugs available today1. Physics-based 

computational approaches that characterize protein-ligand interactions have 

significantly evolved2 and benefited immensely from advances in hardware and 

algorithm optimizations3. Among the wide gamut of physics-based SBDD approaches, 

docking methods4 continue to be among the most popular and have been used for a 

range of drug discovery processes including library screening5 and ligand 

optimization6. Although their primary appeal lies in the ability to quickly predict the 

binding pose of a ligand in the protein pocket, it has been shown repeatedly that 

incorporating conformational dynamics of protein-ligand interactions is critical for 

driving the ligand optimization process7. 

Molecular dynamics (MD) simulations are an important tool for understanding 

the dynamics of binding pockets and optimizing ligands for drug discovery8. MD 

simulations can provide detailed information about the dynamic behavior of proteins 

and their interactions with ligands9. MD simulations reveal the stability of the 

complex and identify potential weaknesses or vulnerabilities that are useful in ligand 

optimization. MD simulations have been critical for delineating relation between 

pocket dynamics and function of several different classes of proteins including 

transmembrane receptors like ion channels10, opioid receptors11, viral capsids12, 

sirtuins13, and RAS14 family proteins among others. These MD studies led to the 

development of selective activators or inhibitors15-18 for these protein targets.  
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While there have been significant advances in high-performance computing 

infrastructure19-22 and optimization of MD algorithms23-25 to enable running MD with 

biological systems of increasing size26-28 and complexity29-31, the process of setting up, 

running, and analyzing data from MD simulations continues to be multi-step32, 33 and 

cumbersome. This severely constrains the regular use of MD for compound 

prioritization in a typical optimization campaign. Moreover, several recent works have 

explored different strategies to dramatically increase chemical search space 

considered either via generative machine learning (ML) strategies34 or through docking 

exercises involving extremely large libraries35, 36 in screening and optimization cycles 

of discovery projects37. These studies have applied thermodynamic methods to enrich 

hit rates by accounting for dynamic protein-ligand interactions and conformational 

heterogeneity of the protein and ligand and the interplay with water38, 39. Given the 

limitations around the chemical similarity of compounds considered in a dataset for 

relative free energy calculations40 and conformational sampling with thermodynamic 

approaches41, incorporating ‘regular’ long-time-scale MD into generative ML or at the 

end of large-library docking exercises is likely to improve the accuracy of predictions 

and enrichment of hits from these workflows. 

We present an automated workflow (MDFit) that streamlines setting up, 

running, and analyzing Desmond25, 42 MD simulations using the OPLS443 force field. The 

workflow takes a library of pre-docked ligands and a protein structure as input, sets 

up and runs MD with each of the protein-ligand complexes, and then analyzes the MD 

trajectories for each of the ligands in the input dataset. Analysis of MD trajectories 

includes flexibility of the ligand in the pocket via root mean squared deviation (RMSD) 
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compared to the starting pose, stability of different ligand-pocket interactions, and 

other useful metrics that help quantify the dynamics of protein pocket and the ligand 

library. These metrics are combined into simulation fingerprints (SimFP) that enable 

easy rank-ordering of the dataset along any of these collected metrics.  In addition, 

we demonstrate that SimFPs can be used as features in ML models for potency 

prediction and mechanistic interpretation. In contrast to static encodings like protein-

ligand interaction fingerprints, SimFPs capture the dynamics of protein-ligand 

interaction and facilitate more accurate predictions. Unlike relative free energy 

perturbation calculations, SimFP-based ML models are less restrictive about the need 

for chemical similarity within a dataset and can accommodate much more 

comprehensive sampling of pocket ligand dynamics through longer time scale MD. 

We show an application of MDFit for assessing a set of cyclic peptides that 

target PD-L1 with therapeutical potential as anticancer agents44, 45. PD-L1 binds to PD-

1 at an elongated β-sheet interface. Cyclic peptides with beta-strand geometry offer 

unique advantages for binding to this shallow and expansive orthosteric site. An 

overlay of Pep-01 bound to PD-L1 (PDB code 6PV9) and PD-1 bound to PD-L1 (PDB code 

4ZQK) shows that Pep-01 binds to the β-sheet interface between PD-1 and PD-L1 

(Figure 1, left). By mimicking the PD-1 secondary structure, Pep-01 packs against the 

PD-L1 surface with sufficient interaction energy to overcome the major costs of 

binding (Figure 1, right). 
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Figure 1. (Left) Overlay of 4ZQK and 6PV9 crystal structures showing Pep-01 binds to 

the β-sheet interface of PD-L1 to block PD-1 binding. (Right) Peptide binding interface 

with PD-L1. All residues within 5 Å of Pep-01 are shown with critical residues 

determined by ML models (vide infra) shown in red (detrimental), green (beneficial), 

or blue (detrimental or beneficial). 

Previous studies have shown a strong correlation between strain measured in 

these peptides to mimic PD-1 binding and their potency through docking of 

extensively sampled conformations of the peptides46. The extremely large number of 

rotatable dihedrals with these cyclic peptides makes relative free-energy perturbation 

methods for assessing potency and pocket dynamics untenable47. We apply MDFit to 

provide insights from protein-peptide dynamics that can clearly explain potency cliffs 

among matched-molecular pairs (MMPs). SimFPs enable easy identification of 

differences in the pocket and water-mediated interactions across MMPs that help 

build an understanding of the structure-activity relationship (SAR). In this study, 

SimFP features are also used for training an ML model to predict potency outcomes 

and infer which features are most important for activity. For the PD-L1 dataset, the 
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top SimFP features identified by the ML model offer additional insights about MMPs 

and their potency cliffs that would have otherwise been easy to miss with static 

information such as docked poses. 

 

Methods 

The MDFit workflow (Figure 2) automates the following process and the scripts 

are available for download from Github (https://github.com/brueckna2020/MDFit). 

The workflow requires the user to provide a protein model and a library of ligands as 

inputs. The protein structure needs to be fully prepared with missing side chains and 

loops added, protonation states of residues determined, hydrogen atoms added, and 

terminal residues capped. For the PD-L1 case study discussed below, protein from PDB 

6PV948 was used as the starting protein conformation. Protonation states of protein 

residues were determined using PropKa49 and the protein was prepared using the 

Protein Preparation Wizard module in Maestro (Schrodinger, LLC). Ligands in the input 

library need to have 3D conformations with reasonable poses when bound to the 

protein pocket. For the PD-L1 dataset, Pep-0150 and sixty of its analogs as described 

here50 were used. Previous studies have harnessed solution-state NMR and X-ray co-

crystal structures of Pep-01 to accurately generate bound states of Pep-01 and its 

analogs46, 50, 51. Top poses from the docked conformer ensembles from the previous 

study46 were used as starting conformations for MDFit described here.  

  

1) Force-field parameters: The workflow begins with a call to the FFBuilder tool 

from Schrodinger that evaluates all dihedrals in the input library, sets up QM 
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calculations for dihedral scans, and optimizes missing or sub-optimal dihedral 

parameters using these QM scans. Optimized dihedral parameters are merged 

into the OPLS443 ‘main’ force field supplied by the user. This optimized force 

field is subsequently used for MD and analysis. 

2) Protein-ligand complexes: Each of the ligands in the input library is complexed 

with the protein which is put through an initial round of minimization using the 

MacroModel52 module by Schrodinger. Powell-Reeves Conjugate Gradient 

(PCRG) minimization of the complex is run for a maximum of 500 steps with a 

convergence criterion of all gradient thresholds set to 0.3 kJ/mol. 

3) Solvation: Minimized protein-ligand complexes are then inserted into an 

orthorhombic box with dimensions determined to set each edge of the box at 

10 Å from the protein surface. The total charge of the protein and ligand is 

calculated and neutralizing ions of either Na+ or Cl- are placed randomly inside 

the box between the protein surface and the box edges. The remaining space is 

filled with water molecules. 

4) Relaxation, Equilibration:  

a. Protein, ligand, and ion parameters are modeled using OPLS443 while SPC53 

is used to model water. All simulations are run using the Desmond25 engine 

with Schrodinger suite version 2022-2. 

b. Solvated protein-ligand systems are relaxed before the production MD 

simulations. Initially, the entire system is equilibrated for 100ps using 

the NVT brownian dynamics at T=10K, with a harmonic position restraint 

of force constant of 50 kcal/mol/Å2 applied to all protein & ligand heavy 
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atoms. At the same temperature and using the same restraints, the 

system is equilibrated for an additional 24ps using a Berendsen54 

thermostat with pressure gradually dropping from 50 to 2 bars through 

an NPT dynamics run.  

5) Production: This is followed by production MD simulations using NPT dynamics 

and positional restraints removed. By default, the workflow is set to run each 

protein-ligand solvated system in triplicate for a simulation time of 2 ns with a 

trajectory saving frequency set to 100 ps. Velocity seeds are randomized for 

each of the three MD runs. For the PD-L1 dataset, each peptide-protein system 

was run for 3 replicates, each for 100 ns. 

6) Analysis: Schrodinger's Simulation Event Analysis (SEA) scripts are used for 

assessing the production MD trajectories. The scripts collect a wide range of 

metrics (Supplementary Info, Table SI) that capture meaningful information 

and insights about ligand and pocket flexibility.  

a. Clusters from Trajectories: RMSD-based clustering analysis provides the 

top N cluster representations (default of 5) of the model system, 

revealing common structural motifs or states. The Desmond MD 

clustering algorithm calculates the RMSD similarity matrix for the given 

trajectory frames. By default, ligand atoms are used for RMSD 

calculations, and the matrix is computed based on these chosen atoms. 

Subsequently, the workflow clusters the trajectory frames using the 

RMSD matrix. An affinity propagation algorithm is employed for 

clustering, which is well-suited for identifying distinct conformational 
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clusters. The output CMS files include information about cluster size, 

frame indices, and timestamps. These diverse conformations based on 

ligand RMSD are used for all analyses described with the PD-L1 dataset. 

b. Parched Trajectory: A trimmed MD trajectory is generated by retaining 

only the protein+ligand and closest N solvent molecules. By default, this 

is set to 100. Before parching, trajectories are aligned using the ligand 

atoms from the starting pose for reference.  

c. Interactions: Protein-ligand interactions, water-mediated interactions, 

dihedral motions in ligands, and ion permeation are all recorded using 

event detection scripts that use pre-defined distance, angle, and 

dihedral cutoffs based on literature precedent55-57. The workflow 

extracts and tabulates all protein-ligand interactions and characterizes 

their stability as a percentage of the simulation time that each 

interaction was observed. For the PD-L1 dataset, along with the protein-

ligand interactions, pre-calculated strain from the docked pose46 is also 

added to the SimFP output for further analysis. Although all frames of 

the triplicate MD production runs can be included for this analysis (and is 

the default setting in the workflow), for the PD-L1 dataset, the first 10ns 

(100 frames) were not considered for fingerprint generation. 

 

While the automated part of the MDFit workflow stops with the generation of 

SimFPs, a predictive model can be readily trained to map SimFPs to experimental 

potency values. We emphasized the selection of simple, interpretable models that 
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enable both the prediction of potency from SimFPs and the identification of important 

features. In this study, we investigated Linear, Ridge, Lasso, Random Forest, and 

Gradient Boosting Regression as implemented in scikit-learn58 (see Supporting 

Information; Table S2, Figure S1-S5). Our workflow uses regression weights, impurity 

for tree-based models, and/or leave-one-feature-out cross-validation to estimate 

feature importance. Model prediction performance was investigated via nested leave-

one-molecule-out cross-validation (LOMO-CV). SimFPs from triplicate runs were used 

as is or averaged to arrive at an input feature matrix. The feature matrix was 

preprocessed by normalizing on the unit hypercube. The target IC50 values were 

transformed to pIC50 values and standardized to zero mean and unit variance. For 

each model type, hyperparameters were selected by minimizing the mean squared 

error using grid search LOO-CV. Feature importance was computed in CV folds and a 

final model was fit to the full data set for comparison. 
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Figure 2. MDFit workflow takes a library of ligands with reasonable starting poses in a protein 

pocket, runs MD, and generates collated SimFP for easy analysis of the stability of all ligands 

in the protein pocket across MD trajectories. 

 

Results and Discussion 

Simulation fingerprints (SimFPs) are a collection of interactions between a 

ligand and the protein target observed through MD simulations. The reported values 

are the average interaction frequency across a simulation. For example, a SimFP of 

0.5 translates into a protein-ligand interaction occurring in 50% of the MD simulation 

frames. A SimFP value can be greater than 1.0 in cases where a ligand interacts with 

a protein residue through multiple points of contact (e.g., a bidentate interaction). 

SimFPs can be used to rank-order or identify patterns across Matched Molecular 

Pairs (MMPs) for ligands with experimental readouts. Observed trends can be used to 
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prioritize design ideas where the user gives preference to those that retain or 

enhance desired interactions. For larger data sets, SimFPs can be used as features to 

train ML models that can in turn be used to predict experimental readouts and assign 

feature importance. In addition, the critical SimFPs highlighted by the ML model can 

be used to further explain differences in observed readouts, such as potency. In this 

section, we discuss the utility of SimFPs in detail, focusing first on feature importance 

followed by handling edge cases. 

 

SimFP Feature Selection 

Machine learning methods can be used to identify specific peptide-protein 

interactions that contribute to the prediction of the desired endpoint from the full 

SimFP data set. For PD-L1, a Lasso regression model was built to predict the HTRF 

pIC50 values using SimFPs and strain energy46 as features. While the model 

performance was modest (Figure 3, right) (LOMO-CV Q2 = 0.36 and RMSE = 0.78), using 

the SimFPs as features provides interpretability lost in more complex modern ML 

models.  

The top ten features (weights with the largest absolute value) of the PD-L1 

data set are reported in Figure 3, left. We note that along with interaction stability 

fingerprints that come from MDFit, pre-computed strain energies46 were included as 

an additional feature of SimFP. Strain energy remains the standout feature, consistent 

with previous studies46, while a water-mediated interaction with Asn63 was the most 

detrimental (negative weight) and a water-mediated interaction with Val76 was the 

most beneficial (positive weight) SimFP to potency. Based on the feature importance, 
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peptide optimization should focus heavily on minimizing peptide strain followed by 

minimizing water-mediated interactions with Asn63 and maximizing water-mediated 

interactions with Val76. Select Match Molecular Pair (MMP) cases will be described 

herein using the feature selection to explain SAR. 

 

 

Figure 3. Left : Top features for the full peptide SimFP data set are shown in left plot. 

Green : Positive contribution, i.e., improving this interaction or maximizing this 

feature improves pIC50. Red : Negative contribution, i.e., reducing this interaction or 

minimizing this feature improves pIC50. Right: Lasso leave-one-molecule-out cross-

validation (LOMO-CV) RMSE = 0.78 and Q2 = 0.36. The parity plot shows ½ and 1 log 

error bands. Normalized strain energy is the top feature with negative contribution. In 

other words, reducing strain helps with improving potency.  Water-mediated 

interaction with Asn63 is identified to have the most detrimental contribution while 

water-mediated interaction with Val76 has the most positive contribution to the HTRF 

potency of these cyclic peptides to PD-L1.  
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MMPs with strain energy differences: Mutating position 2 from NMe-Ala in Pep-01 to 

NMe-Val in Pep-41 results in a significant drop in potency (pIC50 = 8.1 vs 6.0, 

respectively). Minor variations were observed for the top SimFP features, but a major 

increase in strain energy for Pep-41 explains the loss in potency (Figure 4). While 

seemingly minor, the addition of a bulky sidechain distorted Pep-41’s backbone 

conformation, increasing the strain by nearly 0.02 kcal/mol/heavy atom which is a 

remarkably high cost for two additional heavy atoms. In a prospective peptide design 

exercise around this MMP, modifications would focus on reducing the strain energy of 

Pep-41 while retaining the SimFPs observed with MDFit. 

 

 

Figure 4. Cluster representatives for matched molecular pairs Pep-01 and Pep-41 in 

the PD-L1 data set. The backbone conformation of Pep-41 is distorted compared to 

Pep-01, resulting in a much higher strain energy. 

MMPs with Hydrophobic interactions differences: Pep-01 and Pep-66 differ only at 

position 11, where Pep-01 has NMe-Nle and Pep-66 has NMe-Ser. This mutation results 

in a significant loss in HTRF potency (pIC50 = 8.1 vs 6.8, respectively). Truncating the 
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sidechain of Pep-01 results in a favorable reduction in strain energy but sacrifices a 

hydrophobic interaction with Tyr123 (Figure 5). The attractive forces between Tyr123 

and NMe-Nle fully liberate water in the binding interface, more fully optimizing the 

protein-peptide compatibility59. Smaller polar sidechains will not fully desolvate the 

binding site, compromising the binding affinity. This case exemplifies the importance 

of integrating SimFPs and metrics from rigid methods such as docking. Relying solely 

on strain energy for ligand optimization or prioritization would incorrectly rank Pep-

66 higher than Pep-01. Without the high-throughput analysis of MD provided by MDFit, 

project teams could be misled and optimization strategies may lead to undesired 

outcomes. For peptide optimization in this MMP, designs would aim to recover the 

hydrophobic interaction in the Pep-01 MDFit SimFP while maintaining the lower strain 

energy observed for Pep-66. 

 

 

Figure 5. Cluster representatives for matched molecular pairs Pep-01 and Pep-66 in 

the PD-L1 data set. Pep-66 loses a hydrophobic attractive interaction with Tyr123 

relative to Pep-01. 
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Kullback-Leibler Divergence for Matched-pairs 

In some cases, differences in MD stabilities across the top features highlighted 

by the ML model do not fully explain the difference in potencies. Pep-52 features a 

beneficial water-mediated interaction with Val76 which is not observed for Pep-01 

(importance = +0.64) as well as an amplified detrimental water-mediated interaction 

with Gln66 (importance = –0.38). All other SimFP features were remarkably similar 

between the two peptides. Based on only these features, one would expect Pep-52 to 

have equal or slightly better HTRF potency compared to Pep-01. However, Pep-52 was 

about 5 fold less potent than Pep-01. 

The Kullback-Leibler divergence (KL divergence, relative entropy60) between 

SimFPs offers an alternate quantification strategy that characterizes differences 

across all the features in the SimFPs into a single dimensional quantity. SimFP of Pep-

01 is treated as the reference and KL divergence for all the other peptides in the 

series was calculated relative to Pep-01. KL divergence identified Pep-52 to have the 

most divergent SimFP compared to Pep-01 (29.9; Figure 6A) prompting further 

investigation. 

The difference between the raw SimFPs (|SimFPPep-52 – SimFPPep-01|) identified 

the water-mediated interaction with Gln66 as the single most divergent SimFP feature 

across all three repetitions of Pep-01 and Pep-52. The detrimental water-mediated 

interaction between Pep-52 and Gln66 for the individual repetition SimFPs were 80%, 

61%, and 55% (Figure 6B; trajectory 3, 2, 1, respectively). In contrast, Pep-01 

featured this interaction a mere 42% in trajectory 2 and never registered (0%) in 

trajectories 1 and 3. 
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Figure 6. (A) The top 10 most divergent SimFPs by KL divergence relative to Pep-01. 

(B) Differences in water-mediated interactions with Gln66 across three runs of MD. 

Pep-01 features less water-mediated interaction with Gln66 compared to Pep-52 

indicating a tighter binding, compared to Pep-52 where water has seeped into the 

pocket. 

Visualizing the representative clusters for Pep-01 and Pep-52 revealed the 

backbone carbonyl of Pro4 in Pep-52 forms a water-mediated hydrogen bond with the 

backbone carbonyl of Gln66 (Figure 7). For Pep-01, the same backbone carbonyl of 

Pro4 hydrogen bonds directly with the sidechain of Gln66. Water infiltration 

characterizes protein-peptide incompatibility for Pep-52, explaining the drop in HTRF 

potency relative to Pep-01 (pIC50 = 7.6 vs 8.1, respectively). While incompatibility 

may be observed tangentially in computational methods that treat proteins as rigid 

bodies, direct observation of water infiltration at a specific residue from dynamic 

models focuses the project team on an area of the ligand for further optimization. In 
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this case, a deep dive into ML feature importance, KL divergence, and raw SimFPs 

helped differentiate the peptide’s behavior in the binding pocket and explain the 

difference in potency. 

 

Figure 7. Cluster representatives for matched molecular pairs Pep-01 and Pep-52 in 

the PD-L1 data set. Pro4 engages Gln66 through a direct hydrogen bond (Pep-01) or a 

water-mediated hydrogen bond (Pep-52). The water infiltration in the Pep-52 

simulations provides a possible explanation for the difference in potency relative to 

Pep-01. 

Simulation Length 

To enable efficient rank-ordering of peptide designs using SimFPs 

prospectively, it is important to also assess simulation convergence. Root Mean Square 

Deviation (RMSD) of the ligand conformations relative to the protein pocket is an 

often discussed metric to estimate convergence. However, as shown in Figure 8A, 
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RMSD plots are not always useful in estimating how long a simulation needs to be for 

full convergence. Instead, the divergence of SimFPs from different time intervals 

relative to the full simulation trajectory (100 ns) can be used to estimate simulation 

convergence (Figure 8B). For the reference Pep-01, SimFPs converge at 70 ns for all 

three MD trajectory repetitions. Therefore, 100 ns MD trajectories can be assumed to 

fully characterize relevant protein-ligand dynamics, and ML models can rank-order 

designs using the SimFPs. 

 

Figure 8. (A) Heavy-atom RMSD of Pep-01 relative to the protein pocket throughout 

the three 100 ns MD repetitions. (B) KL divergence of SimFPs relative to the full 

trajectory (100 ns) shows that simulations converge at 70 ns. 

 

Conclusions 

We have presented a new high-throughput workflow for setting up, running, 

and analyzing molecular dynamics simulations for a library of ligands. MDFit produces 

compiled simulation fingerprints (SimFPs) for users to decipher critical protein-ligand 

interactions and rank-order ligands based on compatibility. Application of the MDFit 

workflow to a data set of 61 peptides bound to PD-L1 resulted in the discovery of 
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several SimFPs critical for HTRF potency. Matched molecular pairs were explored to 

highlight the utility of SimFPs when combined with ML techniques. KL divergence 

offers an attractive alternative to explain potency differences that are otherwise not 

evident in the top ML features. 

The stability of pocket interactions from MD simulations characterizes the 

enthalpy of binding into the protein pocket. Conformational entropy is included via 

pre-calculated strain of the docked pose46 in the SimFP. Through sufficient sampling 

of each ligand in the binding pocket, ML models trained on these SimFPs account for 

all important thermodynamic events and therefore have reasonable accuracy of 

predictions of binding affinity. Unlike relative free energy perturbation61 approaches 

that have limitations based on ligand size47 and chemical similarity62, SimFP-based ML 

models for potency assessment are less likely to have either of these constraints.  

Future version releases will support other MD engines (OpenMM63, GROMACS64) and 

force-fields (OpenFF65), add more information into SimFPs66, and additional analysis 

via machine learning approaches. The MDFit workflow is expected to be useful for 

characterizing pocket dynamics of multiple modalities, including small molecules, 

peptides, PROTACs, and molecular glues to drive drug discovery projects moving 

forward. 
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