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Development of carbon-neutral energy sources 

and energy storage mechanisms is the major 

challenge of the 21st century required to address 

climate change. Hydrogen gas is a promising 

energy storage medium when produced via water 

electrolysis to store renewable energy in the form 

of stable chemical bonds.[1,2] However, water 

electrolysis is not yet cost-competitive with fossil-

derived H2.
[3,4] One of the major contributors to the 

high cost of green H2 is the slow kinetics of the 

anodic oxygen evolution reaction (OER), which 

transforms water into O2(g) via a four electron 

transfer.[1,2] Slow kinetics require large 

overpotentials to achieve industrially relevant 

current densities (η > 0.5 V at 0.3 – 10 A cm-2),[1] 

and state of the art catalysts are comprised of rare 

and expensive precious metal oxides such as 

IrO2.
[4,5] 

Despite intensive research efforts over the past 

two decades, the intrinsic activity of OER catalysts 

has only modestly improved.[2,6] Activities are 

limited by linear free energy relationships (LFERs) 

that couple the binding energies of OER 

intermediates (i.e., O*, OH*, and OOH*) on metals 

and oxides.[7–13] Reported for the OER by 

Nørskov[9,10] and Koper[14] via density functional 

theory (DFT) calculations, LFERs constrain 

catalyst design such that each reaction intermediate 

cannot be independently stabilized, preventing the 

design of a catalyst with thermodynamically ideal 

reaction energies of 1.23 eV/step.  

We propose using programmable catalysts (i.e., 

forced dynamics) as a strategy to accelerate the 

OER. Programmable catalysts bypass the 

limitations conventionally imposed by LFERs by 

varying the properties of a catalyst during reaction 

with application of an oscillating stimulus (e.g., 

light,[15] voltage,[16–22] ferroelectric polarization,[23] 

etc.) on the time scale of a catalytic turnover.[24] 

Microkinetic models of programmable catalysts 

applied to both model reactions[25–28] and ammonia 

synthesis[29] have predicted that reaction rates can 

be increased by one or more orders of magnitude 

over a range of applied frequencies. Regarding the 

OER specifically, switchable ferroelectric 

polarization has been proposed as a programmable 

catalyst,[30,31] but no studies have analyzed the 

kinetics of promoting the OER via programmable 

catalysis. 

Abstract.  Hydrogen gas is a promising renewable energy storage medium when produced via water electrolysis, 

but this process is limited by the sluggish kinetics of the anodic oxygen evolution reaction (OER). Herein, we used 

a microkinetic model to investigate promoting the OER using programmable oxide catalysts (i.e., forced catalyst 

dynamics). We found that programmable catalysts could increase current density at a fixed overpotential (100X to 

600X over static rates) or reduce the overpotential required to reach a fixed current density of 10 mA cm-2 (45 – 

140% reduction vs. static). In our kinetic parameterization, the key parameters controlling the quality of the 

catalytic ratchet were the O*-to-OOH* and O*-to-OH* activation barriers. Our findings indicate that 

programmable catalysts may be a viable strategy for accelerating the OER or enabling lower-overpotential 

operation, but a more accurate kinetic parameterization is required for precise predictions of performance, ratchet 

quality, and resulting energy efficiency. 
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In this work, programmable oxide catalysts were 

evaluated using a mean-field microkinetic model to 

assess the viability for accelerating the OER. The 

model is schematically represented in Figure 1a, 

and the model equations and computational 

methods are described in Section S2 of the 

Supporting Information (see Section S1 for 

nomenclature). The elementary steps were written 

based on the acidic Eley-Rideal type adsorbate 

evolving mechanism (AEM, Equations S2.1-

S2.4), which features four proton-coupled electron 

transfer (PCET) steps.[1,9,10] This mechanism has 

been used in numerous OER modeling studies,[8,32–

35] and there exists supporting experimental 

evidence.[36,37] Additionally, recent experiments 

excluded the meaningful participation of lattice 

oxygen on IrO2
[38] and RuO2,

[38,39] providing 

evidence against alternate mechanisms such as the 

lattice evolving mechanism (LOM) on those 

materials. However, we acknowledge that the 

precise mechanistic details of the OER remain 

debated.[36,37,40–43]  

For this kinetic study, a continuum descriptor 

space was needed to model and optimize a generic 

(i.e., unspecified external stimulus) programmable 

OER catalyst. However, parameters for both 

thermodynamic and kinetic scaling relations are 

currently unknown for this system. Periodic trends 

of monometallic oxides[9] were thus used as a first 

approximation of the thermodynamic scaling 

behavior of programmable OER catalysts. 

Following convention, the reaction free energy of 

step 2 at zero applied potential (Δ𝐺2
0𝑉) was used as 

the catalyst descriptor.[2,44] We acknowledge that it 

is likely that programmable catalysts will feature 

scaling parameters distinct from those of periodic 

trends, because methods of implementing 

programmable catalysts change a property of the 

catalyst rather than the material itself. For example, 

programmable catalysts based on semiconductor 

devices tune the electron density, not nuclear 

composition, of metal,[16–18] oxide,[19–21] and 

transition metal dichalcogenide[22,45] catalysts. 

However, the results presented herein provide 

insights into the design of programmable OER 

catalysts and motivation for future analyses that 

will further refine their precise behaviors.  

To parameterize the activation barriers of the 

OER elementary steps, we adopted the strategy 

used by Nørskov[46] and Mavrikakis[47] in which all 

PCET reactions were assumed to have the same 

reversible activation barrier (𝐸𝑎
𝑒𝑞

, see Figure 1b), 

independent of catalyst material; the catalyst 

identity was incorporated into the reaction kinetics 

through the elementary reversible potential. This 

strategy was utilized, because there is no widely-

accepted method for calculating electrochemical 

activation barriers;[48,49] kinetic information also 

cannot be simply extracted from Tafel slopes for the 

OER.[5,50–52] This leads to large variation in reported 

activation barriers (Figure S3.1) and scant 

Brønsted-Evans-Polanyi relations for the 

OER.[53,54] Therefore, 𝐸𝑎
𝑒𝑞

 was treated as an 

adjustable model parameter and varied between 

0.16 and 0.66 eV; these bounds were approximated 

from a literature review of calculated kinetic 

barriers for the OER on oxide catalysts (details, SI 

section S3).[53,55–62] The kinetics of the OER were 

then evaluated using the Butler-Volmer 

framework,[63,64] and the microkinetic model was 

solved at differential conversion conditions at pH = 

0 in Julia.[65,66] Mass transport effects were not 

considered. 

To assess the values of the reversible activation 

barrier (𝐸𝑎
𝑒𝑞

) used in the model, simulations were 

conducted at static (i.e., non-oscillating) conditions 

to determine the minimum overpotential (𝜂𝑖=10) 

required to reach a current density of 10 mA cm-2, 

a common benchmark value.[67] Figure 1c depicts 

these simulated overpotential volcanoes. Markers 

overlaid on the volcano plot compare both 

theoretical (black)[9] and experimental (pink)[68–72] 

overpotentials for various oxide catalysts (see 

Figure S4.1 for a magnified view near the volcano 

peak). Models with 𝐸𝑎
𝑒𝑞

 between 0.26 and 0.46 eV 

returned peak overpotentials (𝜂𝑖=10
𝑝𝑒𝑎𝑘

) of 229 – 451 

mV (Table S4.1), which is in the range of 

experimentally-measured overpotentials of highly 

active OER catalysts in highly acidic electrolyte at 

this current density (e.g., 220 – 260 mV for 

RuOx,
[68,69] 373 – 458 mV for IrOx,

[68–70] and 468 

mV for CoOx;
[71] see Table S4.2). These 𝐸𝑎

𝑒𝑞
 values 

are also within the range of DFT calculations for 

AEM steps 3 and 4 on IrO2 (0.36 – 0.54 eV and ~0.4 

– 0.5 eV, respectively),[57,59,62] but lower than 

reported for step 3 on RuO2
 (~0.6 eV).[56] In our 

model, 𝐸𝑎
𝑒𝑞

 of 0.56 – 0.66 eV returned peaks 

between 645 and 845 mV, far larger than 

experimental values; at 𝐸𝑎
𝑒𝑞

 of 0.16 eV, the model 

underpredicted both theoretical and experimental 

overpotentials. 
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During reaction, a programmable catalyst will 

be held at a constant working electrode potential 

(i.e., constant overpotential); the application of an 

additional stimulus oscillates the properties of the 

catalyst and thus surface energetics. This additional 

stimulus can be a voltage applied to a catalytic 

condenser[16–19] or transistor,[20–22,45] strain,[29] 

ferroelectric polarization,[23,30,31] etc.; this 

mechanism is not specified in our model. To 

generate a performance baseline, we simulated 

OER current density volcanoes at a constant 

overpotential for an intermediate 𝐸𝑎
𝑒𝑞

 value of 0.46 

eV, which featured close agreement between model 

and experimental 𝜂𝑖=10
𝑝𝑒𝑎𝑘

; the results are shown in 

Figure 2. Each current density volcano has several 

distinct regions (Figure 2a): to the left of the peak, 

step 3 (OOH* formation) was the potential 

determining step (PDS) for all simulated 

overpotentials (see e.g., Figure 2f) and the surface 

is covered by O* (Figure 2d). To the right of the 

peak, the PDS was step 2 (O* formation) (see e.g., 

Figure 2g) and the dominant coverage transitioned 

from O* to OH* to empty sites as Δ𝐺2
0𝑉 increased 

(Figures 2c & 2b). Step 4 (O2(g) formation) was 

essentially barrierless at 𝜂 > 0 V across most of the 

descriptor space, so there was never any 

appreciable coverage of OOH* (Figure 2e). A 

degree of rate control analysis (Figure S4.4) 

revealed that the rate-determining step (RDS) at the 

high-Δ𝐺2
0𝑉side of the volcano was step 2; to the 

immediate left of the peak, the RDS switched to 

step 3. While only steps 2 and 3 are considered 

relevant from a purely thermodynamic viewpoint,[9] 

recent studies considering kinetic barriers have 

proposed that O2 formation can be rate limiting on 

IrO2
[40,41,73] and RuO2.

[74,75] Our model predicted 

𝑋𝑅𝐶,4~1 at Δ𝐺2
0𝑉 ≲ 1 eV, which is lower than the 

DFT-calculated[9] Δ𝐺2
0𝑉 of IrO2 (1.3 – 1.5 eV) and 

RuO2 (1.47 – 1.49 eV). Similar trends were 

observed for constant-potential simulations at other 

𝐸𝑎
𝑒𝑞

 values (Figures S4.5 – S4.9). 

Programmable catalysts were simulated by 

defining two states between which the catalyst 

oscillated according to a square waveform with 

tunable frequency (𝑓), amplitude (ΔΔ𝐺2), center 

point (Δ𝐺2
𝑐𝑡𝑟), and duty cycle (𝜙, fractional time at 

state 1). All waveform parameters were defined 

with respect to the zero applied potential reaction 

coordinate. One set of rate constants was calculated 

for each catalyst state, and the programmable 

catalyst was modeled by switching the rate 

constants at the specified time points (determined 

by the waveform frequency and duty cycle) during 

ODE integration using callbacks in Julia (details, SI 

Section S2).[65,66] After the model reached a 

dynamic steady state (i.e., limit cycle), the time-

averaged OER current density was calculated by 

averaging over five oscillations. 

Figure 1.  Microkinetic model description.   (a) Schematic representation of our microkinetic model of the OER. Inset 

(b) illustrates the definition of 𝐸𝑎
𝑒𝑞

.   (c) OER overpotential volcano at a current density of 𝑖𝑂𝐸𝑅 = 10 mA cm-2. Solid 

lines show microkinetic model results as a function of the reversible activation barrier (𝐸𝑎
𝑒𝑞

∈ [0.16, 0.66] eV); black 

☆[9] are theoretical overpotentials predicted via DFT; pink markers[67–71] are experimentally measured overpotentials 

in acidic electrolyte (details, Table S4.2). 
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We note that oscillation of a working electrode 

potential has been experimentally demonstrated to 

accelerate formic acid electro-oxidation rates 20–

30×,[76,77] improve the Faradaic efficiency of CO2 

electrolysis,[78,79] and even increase the rate of 

ethylene hydrogenation (which is not promoted by 

static potentials) by ~550%.[80] However, it should 

be emphasized that oscillating the electrode 

potential is conceptually distinct from the type of 

programmable catalyst modeled in this study.[28] 

When a potential is oscillated to a higher value, all 

(electrochemical) steps proceed with larger 

thermodynamic driving force and lower activation 

energies (see e.g., the purple → blue reaction 

coordinates in Figure 2f, which show the effect of 

increasing 𝜂 from 0 to 500 mV). Conversely, 

application of an oscillating stimulus to a 

programmable catalyst modifies the energetics of 

adsorbates via a change in electron density. In our 

model, this is represented by oscillating the catalyst 

descriptor at constant potential (i.e., at a fixed 

electrochemical driving force); this makes some 

steps more energetically favorable, and others less 

so (compare reaction coordinates in Figures 2f & 

2g at 𝑈 = 0 V; the PDS switches from step 3 to step 

2, respectively). It is this biasing of the reaction 

coordinate from one state to another that is 

responsible for the orders-of-magnitude rate 

enhancement observed in previous modeling 

studies.[25–28] 

Figure 2.  Static OER simulation results.  (a) OER current density volcano and (b-e) surface coverages for 𝐸𝑎
𝑒𝑞

=
0.46 eV at overpotentials 𝜂 ∈ [100, 500] mV.  (f-g) Reaction coordinates at 𝐸𝑎

𝑒𝑞
= 0.46 eV as a function of the 

electrochemical potential at Δ𝐺2
0𝑉= 1 eV and 2 eV, respectively. The black line shows the reaction coordinate at zero 

applied potential; purple → blue lines correspond to the constant-potential simulation results (panels a-e); and pink to 

the overpotential volcano (Figure 1c), depicting the reaction coordinate at the minimum overpotential (𝜂𝑖=10) required 

to reach 𝑖𝑂𝐸𝑅 = 10 mA cm-2. 
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Figure 3 depicts three examples of 

programmable catalyst simulations for an 

intermediate reversible activation barrier (𝐸𝑎
𝑒𝑞

) of 

0.46 eV, with fixed waveform parameters (center 

point Δ𝐺2
𝑐𝑡𝑟 = 1.5 eV, amplitude ΔΔ𝐺2 = 1 eV, 

frequency 𝑓 = 1 kHz, and duty cycle 𝜙 = 50%). 

Figures 3a-3d show the results of a simulation at 

𝜂 = 650 mV, which yields an effective state 2 

forward ratchet for O* (i.e., O* prefers to react 

forwards to OOH* rather than backwards to OH*). 

The dominant reaction pathway of surface 

molecules is shown in Figure 3a as the catalyst 

oscillated between the two states. In state 1 (navy), 

water dissociates to form OH* and then O*, which 

covers the surface (Figure 3b) because it cannot 

react further due to the large barrier of step 3. Upon 

switching the catalyst to state 2 (grey), the majority 

of surface O* followed the more kinetically facile 

Figure 3.  Selected programmable catalyst simulations for 𝐸𝑎
𝑒𝑞

= 0.46 eV at different overpotentials corresponding 

to different quality ratchets. All panels have the same waveform parameters (center point Δ𝐺2
𝑐𝑡𝑟 = 1.5 eV, duty cycle 

𝜙 = 50%, amplitude ΔΔ𝐺2 = 1 eV, and frequency 𝑓 = 1 kHz).   (a) Reaction coordinate of an ‘effective’ forward 

ratchet at 𝜂 = 650 mV; (b,c) time on stream data for surface coverages and current density; (d) frequency response 

plot. The frequency response traces overlap the parity line, indicating there is ~1 catalytic turnover per catalyst 

oscillation, corresponding to an efficient ratchet.  (e) Reaction coordinate of an ‘intermediate’ ratchet at 𝜂 = 𝜂𝑖=10
𝑝𝑒𝑎𝑘

 

(451 mV); (f,g) time on stream data for surface coverages and current density; (h) frequency response plot.  (i) 

Reaction coordinate of a ‘reverse’ ratchet at 𝜂 = 250 mV; (j,k) time on stream data for surface coverages and current 

density; (l) frequency response plot where traces are far from the parity line, indicating an inefficient programmable 

catalyst. 
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pathway to produce O2(g);  this created open sites on 

the catalyst surface, which were slowly populated 

with OH* (Figure 3b). Upon switching back to 

state 1, the OH* and any remaining empty sites 

were rapidly converted to O*, completing the 

catalytic cycle. The relative rates of surface 

coverage changes were determined by the forward 

activation barriers (Figure 3a); formation of O* is 

barrierless in catalyst state 1, while formation of 

both OH* and OOH* in state 2 have small barriers 

(0.34 and 0.16 eV, respectively). Rapid change in 

surface coverages was also apparent in the 

magnitude of the current density spikes that 

occurred when switching catalyst states (Figure 

3c), with the switch from state 2 to state 1 

(barrierless O* formation) featuring the larger spike 

due to the faster catalytic rate.  

The example of Figures 3a-3d is characterized 

as an ‘effective’ forward ratchet due to small 

forward activation barriers and simultaneously 

large backward activation barriers. For every 

catalyst cycle between states (1 → 2 → 1), each site 

predominately yields one turnover to form O2(g). 

This is apparent in the frequency response plot of 

Figure 3d, which shows the time-averaged 

catalytic rates (s-1) relative to applied waveform 

frequency (Hz [=] s-1) at oscillation amplitudes 

(ΔΔ𝐺2) between 0.4 and 1.0 eV. At ΔΔ𝐺2 > 0.4 eV, 

each trace overlaps with the parity line (y = x), 

indicating an efficient dynamic catalyst of one 

catalytic turnover per oscillation. 

Figures 3e-3h depict an intermediate quality 

catalytic ratchet in state 2 (grey), which results from 

a simulation at 𝜂 = 451 mV (𝜂𝑖=10
𝑝𝑒𝑎𝑘

 for 𝐸𝑎
𝑒𝑞

 of 0.46 

eV). As shown in Figure 3e, the forward barrier for 

O*-to-OOH* formation in state 2 (grey) is only 

slightly smaller than the reverse barrier of O*-to-

OH* formation (0.26 vs. 0.3 eV, respectively). 

Thus, as the catalyst switches from state 1 to state 

2, a small fraction of the O* reacts backwards to 

form OH* instead of following the forward 

pathway to produce O2(g) (Figure 3f & 3g). 

However, the majority of molecules still proceed 

forward such that frequency response traces 

(Figure 3h) are comparable to the parity line, 

indicating that one catalyst oscillation (1 → 2 → 1) 

still yields about one catalytic turnover. 

The third example in Figures 3i-3l depicts a 

reverse O* ratchet in state 2 for a simulation 

conducted at 𝜂 = 250 mV. Consistent with the prior 

two examples, the catalyst surface is covered in O* 

in state 1 (Figure 3j). However, as depicted in 

Figure 3i, the kinetically favorable reaction 

pathway for O* in  state 2 is the reverse reaction 

pathway from O* to OH* (0.2 eV barrier, vs. 0.36 

eV for O* to OOH*). When the catalyst switches 

from state 1 to state 2, the surface coverage of OH* 

immediately increases to ~1 (Figure 3j); after 

forming OH*, the molecules continue along the 

reverse reaction pathway to produce empty sites. 

Because most molecules are following the reverse 

reaction pathway, the current density is negative in 

state 2 (Figure 3k). For this programmable catalyst, 

only a small fraction of O* molecules react to 

OOH* and follow the forward pathway to O2(g). 

This inefficiency is apparent in the frequency 

response plot (Figure 3l), as the average catalytic 

rate traces are now far from the parity line. Despite 

this catalytic inefficiency, the programmable 

catalyst still achieves ~1,200× higher rates than the 

corresponding volcano peak when oscillated at 

sufficiently fast rates. 

Programmable catalysts were then simulated 

with different waveform parameters to maximize 

OER activity. Simulations were conducted at both 

𝜂𝑖=10
𝑝𝑒𝑎𝑘

, corresponding to an intermediate quality 

ratchet (e.g., Figures 3e-3h), and at the minimum 

overpotential (𝜂𝑖=10) required to reach 10 mA cm-

2, which typically corresponded to a ‘reverse O*’ 

ratchet (e.g., Figures 3i-3l). The key results from 

these simulations at an intermediate reversible 

activation barrier (𝐸𝑎
𝑒𝑞

) of 0.46 eV are shown in 

Figures 4a-4c. Figure 4a compares static (dashed 

lines) and programmable (markers) catalyst 

performance at overpotentials (𝜂) of 250 mV and 

451 mV (𝜂𝑖=10
𝑝𝑒𝑎𝑘

) for a 50% duty cycle waveform 

with amplitude ΔΔ𝐺2 = 0.5 eV and frequency 𝑓 = 

10 kHz. At both 𝜂 values, the programmable 

catalyst achieved ~60× higher current densities 

than the respective static volcano maximum. The 

heatmap of Figure 4b shows the results of 

simulations at the larger overpotential (451 mV, 

𝜂𝑖=10
𝑝𝑒𝑎𝑘

) where the amplitude (ΔΔ𝐺2) was varied 

between 0.1 and 1.0 eV; static results are depicted 

at ΔΔ𝐺2 = 0 eV. As ΔΔ𝐺2 increased, the current 

density also increased, as expected. The maximum 

current density achieved by this programmable 

catalyst was ~5,300 mA cm-2 at ΔΔ𝐺2 = 1.0 eV, 

corresponding to a ~520× increase over the static 

volcano peak. 
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Next, the ability of programmable catalysts to 

decrease overpotential was assessed by setting a 

target current density of 10 mA cm-2 and simulating 

the minimum overpotential (𝜂𝑖=10) required to 

reach this target in 50 mV increments. The heatmap 

of Figure 4c shows the results at a reversible 

activation barrier (𝐸𝑎
𝑒𝑞

) of 0.46 eV as a function of 

waveform center point (Δ𝐺2
𝑐𝑡𝑟) and amplitude 

(ΔΔ𝐺2) for a 50% duty cycle waveform oscillating 

at 10 kHz frequency; static results are again shown 

at ΔΔ𝐺2 = 0 eV. A minimum ΔΔ𝐺2 of 0.3 eV was 

necessary to outperform the static volcano peak 

(𝜂𝑖=10
𝑝𝑒𝑎𝑘

=  451 mV). Increasing ΔΔ𝐺2 to 0.4 eV 

further decreased 𝜂𝑖=10 to 350 mV, and at ΔΔ𝐺2 of 

0.9 eV or higher, a minimum 𝜂𝑖=10 of 250 mV was 

achieved, corresponding to a 45% decrease from 

the static 𝜂𝑖=10
𝑝𝑒𝑎𝑘

. Tuning the waveform duty cycle 

(𝜙) allowed a larger range of Δ𝐺2
𝑐𝑡𝑟 to reach the 

Figure 4.  Programmable OER simulation results. Unless noted otherwise, results are shown for 𝐸𝑎
𝑒𝑞

= 0.46 eV with 

waveform parameters duty cycle 𝜙 = 50% and frequency 𝑓 = 10 kHz.  (a) Comparison of static (dashed lines) and 

programmable (markers) OER catalysts at overpotentials 𝜂 of 250 and 451 mV with waveform amplitude ΔΔ𝐺2 = 0.5 

eV. At both 𝜂 values shown, the programmable catalyst achieves current densities ~60 × above the corresponding 

volcano peak.  (b) Heatmap showing the current density achieved by a programmable catalyst operating at 𝜂𝑖=10
𝑝𝑒𝑎𝑘

 (451 

mV) as a function of waveform center point and amplitude. ΔΔ𝐺2 = 0 eV represents static results.  (c) Heatmap 

showing the minimum overpotential (𝜂𝑖=10) needed to achieve 𝑖𝑂𝐸𝑅 = 10 mA cm-2  as a function of waveform center 

point and amplitude. ΔΔ𝐺2 = 0 eV represents static results (see Figure 1c).  (d) Maximum current density achieved 

by optimized programmable catalysts operating at 𝜂𝑖=10
𝑝𝑒𝑎𝑘

 as a function of the reversible activation barrier 𝐸𝑎
𝑒𝑞

 (see 

Table S5.1  for corresponding waveform parameters). Numbers represent the enhancement over the static volcano 

peak.  (e) Reduction in 𝜂𝑖=10 by programmable catalysts as a function of the reversible activation barrier 𝐸𝑎
𝑒𝑞

. Static 

values correspond to volcano peaks of Figure 1c, and programmable values to optimized waveforms (see Table S5.2 

for corresponding waveform parameters). 
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target current density at the minimum 𝜂𝑖=10 of 250 

mV (details, SI Section S5.2). 

Figures 4d-4e show how the reversible 

activation barrier (𝐸𝑎
𝑒𝑞

) value impacts the simulated 

performance of programmable catalysts. Figure 4d 

compares the maximum current densities achieved 

by optimized programmable catalysts within the 

bounds of sampled parameters (see Table S5.1 for 

optimized waveform parameters) operating at the 

respective static volcano peak overpotentials 

(𝜂𝑖=10
𝑝𝑒𝑎𝑘

, Table S4.1). For 𝐸𝑎
𝑒𝑞

 of 0.16 – 0.26 eV, 

~300× enhancement was achieved, correspond to 

current densities ~ 3,200 mA cm-2. 𝐸𝑎
𝑒𝑞

 of 0.36 eV 

returned the lowest performance at only 110× 

enhancement (1,100 mA cm-2), and 𝐸𝑎
𝑒𝑞

 of 0.56 – 

0.66 eV both achieved 620× enhancement (~ 6,400 

mA cm-2). For 𝐸𝑎
𝑒𝑞

 of 0.46 eV and larger, 𝜂𝑖=10
𝑝𝑒𝑎𝑘

 

results in ‘effective’ forward ratchets with relevant 

forward barriers of ~0.2 eV (Figures S5.4d & 

S5.5d). This leads to these systems experiencing 

close to maximal performance at the maximum 

oscillation frequency sampled (i.e., resonance 

frequencies on the order of 10 kHz, Figures S5.4b 

& S5.5b). For 𝐸𝑎
𝑒𝑞

≤ 0.26 eV, ratchets are of 

‘intermediate’ quality (Figure S5.1d & S5.2d). 

However, barriers are almost nonexistent, resulting 

in resonance frequencies far above 10 kHz (Figures 

S5.1b & S5.2b). For 𝐸𝑎
𝑒𝑞

 of 0.36 eV, which 

returned the lowest rate enhancement, the ratchet is 

a mild ‘reverse’ ratchet (Figure S5.3d) and 

resonance frequencies are above 10 kHz (Figure 

S5.3b); this combination hinders rate enhancement. 

Figure 4e compares overpotential-optimized 

programmable catalysts (see Table S5.2 for 

optimized waveform parameters) with the highest-

performing static catalysts (e.g., peak 

overpotentials 𝜂𝑖=10
𝑝𝑒𝑎𝑘

of Figure 1c). For the most 

physically-representative reversible activation 

barrier values sampled in this model (𝐸𝑎
𝑒𝑞

 of 0.26 – 

0.46 eV), 𝜂𝑖=10 of programmable catalysts was 30 

– 250 mV (compare to 𝜂𝑖=10
𝑝𝑒𝑎𝑘

 of 229 – 451 mV). At 

the larger end of 𝐸𝑎
𝑒𝑞

 values simulated, reductions 

of ~50% were achieved, corresponding to 𝜂𝑖=10 

values of 300 and 410 mV for 𝐸𝑎
𝑒𝑞

 of 0.56 eV and 

0.66 eV, respectively. For 𝐸𝑎
𝑒𝑞

 of 0.16 eV, the 

optimized programmable catalyst resulted in 𝜂𝑖=10 

of -70 mV. While this may seem like an error in the 

kinetic model, previous simulations have 

demonstrated that programmable catalysts can 

drive reactions away from equilibrium because they 

impart work directly into the surface reaction by 

changing the energetics of intermediates with 

time.[26,27,29,81] This phenomena of a fluctuating 

energy source driving reactions away from 

equilibrium is also well-documented in the 

molecular machines community.[82–84]  

In this work, microkinetic simulations of 

programmable OER catalysts were conducted using 

a simple kinetic parameterization in which all 

proton-coupled electron transfer (PCET) reaction 

steps featured the same reversible activation barrier 

(𝐸𝑎
𝑒𝑞

), which was varied between 0.16 – 0.66 eV. 

We found that volcano peak overpotentials (𝜂𝑖=10) 

predicted by our model at intermediate values of 

𝐸𝑎
𝑒𝑞

 (0.26 – 0.46 eV) featured closest agreement 

with literature. For this range of 𝐸𝑎
𝑒𝑞

 values, 

programmable catalyst simulations conducted at 

the volcano peak overpotential(s) achieved current 

densities ~100 – 500× higher than static, while 

programmable catalysts simulated at a benchmark 

current density of 10 mA cm-2 were able to operate 

at 45 – 90% lower overpotentials than static. 

Additionally, we found that this kinetic 

parameterization led to ‘effective’ forward ratchets 

at high overpotentials, while the ratchets became 

less effective (even promoting backwards reaction) 

at low overpotentials. The key parameters 

controlling ratchet quality were the O*-to-OOH* 

and O*-to-OH* formation barriers at the high Δ𝐺2
0𝑉 

catalyst state. 

This simple kinetic model demonstrated that 

programmable catalysts are a potentially viable 

strategy to accelerate the OER and/or reduce the 

overpotential required to reach a specific current 

density. By accelerating the OER, programmable 

catalysts may enable the use of cheaper, more 

abundant catalyst materials. However, future work 

improving the parameterization of OER kinetics by 

replacing the assumed LFERs and single-valued 

reversible activation barrier is required to enable 

more accurate predictions of rate enhancement and 

ratchet quality for the programmable OER. This is 

requisite for determining the energy efficiency of 

programmable OER catalysts. 
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