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Here, TS-tools is presented, a Python package facilitating
the automated localization of transition states (TS) based
on a textual reaction SMILES input. TS searches can either
be performed at xTB or DFT level of theory, with the for-
mer yielding guesses at marginal computational cost, and
the latter directly yielding accurate structures at greater ex-
pense. On a benchmarking dataset of mono- and bimolecu-
lar reactions, TS-tools reaches an excellent success rate of
95% already at xTB level of theory. For tri- and multimolec-
ular reaction pathways –which are typically not benchmarked
when developing newautomated TS search approaches, yet
are relevant for various types of reactivity, cf. solvent- and
autocatalysis and enzymatic reactivity – TS-tools retains
its ability to identify TS geometries, though a DFT treat-
ment becomes essential in many cases. Throughout the
presented applications, a particular emphasis is placed on
solvation-induced mechanistic changes, another issue that
received limited attention in the automated TS search liter-
ature so far.
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1 | INTRODUCTION
Automating and accelerating reaction pathway exploration and transition state (TS) localization remains an outstand-
ing challenge in computational chemistry. Various approaches have been proposed and developed to this end in
recent years, each with their specific advantages and limitations. Providing a full overview of all the developed meth-
ods and codes is beyond the scope of this work; we refer to some excellent reviews on this topic for further reading.
[1, 2, 3, 4] Grosso modo, one can distinguish single-/open- and double-ended approaches. The former, e.g., the artifi-
cial force-induced reaction (AFIR) method, [5, 6, 7] the imposed activation method, [8] Chemoton [9, 10], the reaction
mechanism generator (RMG), [11] the chemical discovery engine (CDE), [12] and the nanoreactor, [13, 14] are typi-
cally designed for exhaustive reaction mechanism exploration efforts, i.e., they compute multiple reaction pathways
simultaneously, and consequently, they tend to require extensive computational resources to treat even a single com-
bination of reactants. Strategies have been explored to speed up such open-ended exploration efforts with remarkable
success, cf. the YARPmethod – which in its turn is based on an exhaustive molecular graph editing approach in combi-
nation with the double-ended growing string method (GSM) algorithm [15, 16] – developed by Savoie and co-workers
among others, [17, 18] but this usually requires the adoption of stringent limitations to the type of reactions that can
be considered, to reign in the combinatorial explosion of reaction possibilities as reactants grow bigger. [19] Double-
ended approaches only consider a single reaction pathway at a time, and hence they enable in principle more rapid
mechanistic investigations – under the condition that the reaction pathways of interest can straightforwardly be iden-
tified a priori – and/or they facilitate the generation of more refined, i.e., more accurate, reaction profiles on a limited
computational budget (for example by performing more exhaustive conformational searches), e.g., autodE [20] and
the RMSD-PP method. [21, 22]

A notable limitation of most TS search methods developed up to this point – with a few exceptions, cf. AFIR
[5, 6, 7] – however is that they have been primarily designed for – and validated on – mono- and bimolecular reac-
tions. This despite the unequivocal demonstration that reaction pathways involving more than two reaction partners
are ubiquitous and relevant in many important chemical processes as well, cf. autocatalysis, [23, 24] solvent-catalyzed
reactions, e.g., tautomerization, [25, 26, 27, 28] and enzymatic reactivity (Fig. 1). [29] The difficulty in straightfor-
wardly adapting most TS search algorithms to locate such multi-species mechanisms limits their practical usefulness
in reaction mechanism explorations for many reaction types. Another issue that has received limited attention so
far in the literature related to automated TS search algorithms is the impact of reaction conditions on mechanistic
landscapes. Indeed, benchmarkings and simulations across the research field are typically exclusively performed in
gasphase, even though it has been well documented that taking solvent environments into account not only affects
the relative energetics of reaction paths, but can also result in the emergence of new – as well as the disappearance
of old – pathways. [30, 24, 31]

It should also be noted that recently, algorithms for automated TS localization have emerged as generators of
training data for machine learning (ML) based reactivity models. [33, 34, 35, 36, 37, 38, 39, 40, 41] As such, these
algorithms are rapidly becoming an indispensable tool for setting up ML accelerated workflows for reaction discovery
and development. Consequently, one can expect a bias in the types of reactivity that can be treated accurately by
these TS search methods to also seep into downstream ML models. This underscores the continued need to explore
new algorithms and approaches to identify truly diverse reaction pathways under diverse conditions.

In this manuscript, a compact and user-friendly Python module, enabling rapid localization of TS (guesses), result-
ing from the rapprochement of one or more reactants based on textual (atom-mapped) reaction SMILES [42] input is
presented. Basing our approach on a reaction SMILES input makes it inherently compatible with graph-based reaction
generation algorithms, which are commonly used in ML-based predictive reactivity models, [43] and could thus be en-
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F IGURE 1 (A) An example of a solvent-catalysis: the reaction network associated with the aldol reaction
between vinyl alcohol, formaldehyde and water; (B) an example of an autocatalysis: the electrophilic aromatic
substitution reaction between toluene and Cl2, where the product molecule HCl participates in the formation of
more energetically favorable TS structures; (C) an example of a (proposed) multi-molecular mechanism for a
prototypical enzymatic reaction: nitrile hydrolysis at the Co3+ site of Co-NHase. [32]

visioned to become an integral part of a future exhaustive reaction mechanism enumeration software package. At its
core, our approach is inspired by the AFIR method, but instead of a single-/open-ended search based on randomly
generated initial complex geometries, we generate reactive complexes by aligning reactant and product structures, in
a similar manner as in the YARP and Chemoton codes, [17, 10] before applying the artificial force along the bonds be-
ing formed throughout the reaction – as determined from the reaction SMILES. A final element of our approach is the
use of semi-empirical electronic structure methods, more specifically Grimme’s extended tight-binding (xTB) method,
[44] to generate reaction paths, and optionally full-fledged TS guesses, which speeds up the algorithm significantly
compared to a full DFT treatment. As demonstrated below, the latter does not compromise significantly the success
rate for many common reaction types.

The outline of the remainder of this paper is as follows. First, a more in-depth outline of the implemented code
will be provided, and its ability to recover elementary (mono- and bimolecular) reactions in an established benchmark-
ing dataset will be demonstrated. Subsequently, the usefulness of the algorithm in the exploration of trimolecular
reactions will be illustrated by considering a small representative set of relevant applications. In these applications,
we focus particularly on the effect of taking correct solvation conditions into account. Finally, some limitations and
an outlook on future improvements/envisioned expansions will be critically discussed.

2 | DESCRIPTION OF THE TS-TOOLS CODE

At its core, the TS-tools code is built around two Python classes: PathGenerator and TSOptimizer. Below, the method-
ology of both objects will be discussed, after which an overview of the custom run-scripts included in the TS-tools
code will also be provided. In Fig. 2, a schematic overview of the full TS search strategy is provided.
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F IGURE 2 A schematic overview of a TS-tools-based TS search. The part of the workflow covered by the
PathGenerator is shaded in purple; the part covered by the TSOptimizer is shaded in pink. The code makes use of
RDKit, [45] autodE, [20] xTB [21] and Gaussian16.[46]

2.1 | PathGenerator
The workflow associated with the PathGenerator object starts by generating an initial reactive complex. To this end,
reactant and product SMILES are compared, and ’active bonds’ that change throughout the reaction are identified
with the help of RDKit. [45] Subsequently, optimal bond lengths are determined for every active bond defined in
the SMILES for individual reactant and product molecules. Next, an initial conformer is generated with the help of
autodE’s randomize-and-relax algorithm, [20] in which the bond ideal lengths on the reactant-side are enforced, and
additional constraints are set to the bonds being formed throughout the reaction: they get assigned the ideal bond
length on the product side, multiplied by a (parameterized) stretch factor, to which a random modulating factor is
added to induce some variability in the geometries of the generated complexes. Taking this approach, the reactants
are pre-organized to facilitate the smooth transition from reactant to product geometry. If the stereochemistry of the
generated conformer is not compatible with the stereochemistry in the reactant SMILES, then the randomize-and-relax
procedure is repeated until the latter condition is fulfilled (or until 100 conformers with an incorrect stereochemistry
have been generated). The resulting stereocompatible conformer is subsequently optimized at xTB level of theory,
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[44] where the constraints on the forming bonds are set with small force constants.
In the next step, reactive (AFIR) paths [5] are generated for the (relaxed) reactive complexes. To this end, a

biased optimization is run on the reactant complex geometry, where constraining (harmonic) potentials are applied
to the forming bonds, with an optimal distance corresponding to the respective ideal product bond lengths. The
PathGenerator aims to find the lowest force constant required for the external potentials to facilitate access to the
product region of the potential energy surface (PES), as small force constants reduce the odds of visiting regions of
the unbiased PES that are unrealistically high in energy. In other words, they reduce the risk of drifting far away from
the saddle point connecting the reactant and product valleys, i.e., they improve the chance of sampling the actual
transition state region. [5]

To determine the minimal value needed to push the molecular system from the reactant to the product valley in
the PES, the force constant is increased by stepsize 0.1 au (Hartree/Bohr2) in first instance. At every step, the value
of the total external potential at the end of the biased optimization is compared to a small threshold value. As soon
as the threshold is reached, indicating that the product geometry is obtained for the considered force constant, a
more refined search is performed within the window of the last force constant step. More specifically, force constant
values are now gradually increased by 0.01 au increments, starting from the second to last value tried during the first
phase of the search. Once the external potential reaches the threshold value anew, a final refinement of the force
constants is performed with a stepsize of only 0.001 au. Since the external potential values can become extremely
low in this final refinement phase, the external potential threshold is complemented with a comparison between
the product connectivity (as defined in the SMILES string) and the connectivity of the optimized structure, to gauge
the success of the reactive path search at this stage. Up to five paths, each starting from a (re-)initialized reactive
complex, are generated in this final refinement. As soon as a successful path is detected, the intermediate geometries
and associated energies visited throughout the optimization are extracted and saved as the reactive path retained for
further examination.

2.2 | TSOptimizer
The workflow associated with the TSOptimizer object starts by determining a reactive path for a defined stretching
factor, i.e., it involves the generation of a PathGenerator object (vide supra). If during the initialization of the latter
object, the number of bonds being formed is detected to be smaller than the number of bonds being broken, then
the direction of the reaction is reversed by default for intramolecular reactions, to facilitate the generation of correct
reactive paths.

Subsequently, unbiased energy values are determined for every frame along the reaction path by subtracting the
external potentials from the energies outputted during the biased optimization. Local maxima in terms of unbiased
energy along the generated path are then selected as candidate TS guesses. A crude filtering is applied in this step to
remove local minima that stand no chance of resembling the actual transition state. More specifically, local maxima
for which the corresponding geometry yields an imaginary frequency below 150 cm−1 and/or an imaginary mode for
which the main displacement does not correspond to an active bond – as computed with xTB – are rejected. The local
maxima are subsequently ranked according to their energies, and the 5 highest-energy ones are then successively
used as input for a Gaussian16 [46] transition state optimization.

With the help of TS-tools, Gaussian16 TS optimization can be performed either at xTB or DFT level of theory
(the former is made possible through the xtb_guassian-script from the Jensen lab). [47] By default, a TS optimization
is always followed by an IRC confirmation at the same level of theory, since this constitutes the most reliable tool
to validate that the correct TS has been found. [22] If the (re-optimized) end-points of the TS search yield the same
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connectivity, as gauged with the help of autodE, [20] as the begin- and end-point of the retained reactive path, then
the TS is assumed to be correct. As soon as a correct TS is encountered, iteration through the local maxima is halted,
and the final geometry is returned.

2.3 | Run scripts
Three generic run scripts, which build on the PathGenerator and TSOptimizer objects, have been included in the
current version of the TS-tools package. The run_ts_searcher.py script takes as input a .txt file and generates (validated)
TS geometries at xTB level-of-theory. To this end, it iterates through a set of stretching factors to generate reactive
complexes, and runs the TSOptimizer workflow. As soon as a validated transition state is obtained, the final geometry,
as well as the geometries of the begin- and end-points of the reactive path that resulted in this TS are saved. The
run_dft_validation.py script refines the TS geometries from xTB to DFT level of theory. Since xTB TS geometries are
typically good estimates for the DFT TS geometries, Gaussian16 [46] usually reaches convergence in just a handful
of iterations in this manner. As such, successively applying both scripts described so far is the fastest way to obtain
DFT quality transition states in TS-tools.

Alternatively, the run_ts_searcher_dft.py script can be used to generate TS geometries at DFT level of theory
directly from reactive paths generated with xTB. While the latter approach is significantly slower, it often times leads
to the successful location of the TS when the xTB to DFT refinement approach fails (vide infra).

3 | BENCHMARKING THE PERFORMANCE OF TS-TOOLS
As a first test to probe the performance of TS-tools, we turned to the benchmarking reaction dataset proposed by
Zimmerman et al. [48, 49] As demonstrated by Jensen and co-workers, this dataset of 100 mono- and bi-molecular re-
actions contains some errors, i.e., reactions that are not elementary. [22] Additionally, some reactions involve SMILES
that RDKit cannot parse straightforwardly. As such, a cleaned-up version of this dataset has been curated as part of
this study (cf. Section S1 in the Supporting Information). Passing the resulting 86 curated reactions through our work-
flow (and using the settings described in Section S2), correct guesses are obtained for 82 of them at xTB level of theory,
corresponding to a success rate of over 95%. Visual inspection of the 4 failures indicates that the employed AFIR path
approach sometimes struggles to identify the correct saddle point/imaginary mode when complex rearrangements
of the atoms are needed to transform reactant into product geometries (cf. Fig. 3). The full xTB level workflow is
extremely fast: over 80% of the TS geometries are found and validated within 5-10 minutes on 2 CPU cores; the
longest (failed) TS search lasted for 1.5 hours (cf. Section S3 for the specifications of the computing infrastructure
used).

Of the 82 xTB level TSs obtained, 75 passed DFT level validation (following previous work on this dataset,
UB3LYP/6-311G** was selected as the functional/basis set combination). [48, 49] Because of the quality of the
xTB TS guesses, the DFT level TS searches typically converge in a couple of iterations, [17] so that all calculations
finished in less than 6 hours (with an allocation of 8 CPUs each). The 7 failures are readily recovered when the TS
search is retried from scratch at DFT level of theory, albeit at a much higher computational cost (the longest TS search
now lasted for almost 12 hours on 8 CPUs; cf. Section S4).
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F IGURE 3 Reactive reactant (left) and product (right) complexes for the failed reactions from the benchmarking
dataset: (A) R8, (B) R98, (C) R82 and (D) R101. [50]

4 | APPLICATIONS
4.1 | Aldol Reaction
As a first test of the ability of the TS-tools approach to treating three- (and multi-)component reactions, we aimed
to locate TS geometries for 5 reaction pathways associated with the aldol reaction, which constitutes a popular car-
bon–carbon bond formation strategy in organic chemistry. Reaction SMILES were constructed for all pathways in-
volving vinyl alcohol, formaldehyde and water, as previously characterized by Maeda and co-workers. [51]

It should be noted that in their original work, Maeda an co-workers did not take solvent effects into account;
effectively modeling the reactions in the gasphase. Adopting the same solvent-free conditions, all 5 (previously re-
ported) TSs are readily recovered at xTB – and successfully validated at DFT – level of theory by TS-tools (cf. Fig. 4).
The xTB TS searches were completed in approximately 15 min (2 CPUs were used per calculation). DFT validation
finished in approximately half an hour (8 CPUs per calculation).

When a more realistic water environment is (implicitly) taken into account through the SMD polarizable contin-
uum solvent model, [52, 53] 4 out of 5 TSs, corresponding to pathways A-D, are recovered at xTB level of theory.
Unfortunately, 2 out of the 4 xTB level guesses, i.e., those associated to pathways C and D, do not survive DFT val-
idation any longer. Performing the TS search entirely at DFT level readily recovers all guesses (cf. Fig. 5), albeit at a
significant computational cost (up to 14 hours on 8 CPUs each).

Analysis of the TS associated with pathway E reveals the likely cause for its more difficult localization in an aque-
ous environment. Visually, one can straightforwardly observe a much higher degree of asynchronicity in the bond
formation/breaking events. Additionally, the magnitude of the imaginary frequency – calculated at DFT level of the-
ory – has been reduced dramatically compared to the gasphase TS, from 1098 cm−1 to 571 cm−1, indicating a much
wider reaction barrier. [54] Both of these observations can be connected to the growing inter-mixing of charge trans-
fer states along concerted reaction pathways in increasingly polar environments, as discussed at length in previous
conceptual work. [55, 56] In extreme cases, such intermixing can result in mechanistic cross-over, whereby a single,
concerted TS breaks down into multiple TSs separated by stable – ionic – intermediates (see for example the example
in the subsection below). [24, 57, 31] It appears that for the considered transition states in this subsection, this tipping
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F IGURE 4 Transition states found for the aldol reaction between vinyl alcohol, formaldehyde and water in the
gasphase. The indices correspond to the respective pathways in Fig. 1a with which the TS are respectively
associated. [50]

point is approached, but has not yet been crossed.

4.2 | Electrophilic aromatic substitution reactions in apolar and polar environments
Next, we considered the ability of TS-tools to rapidly recover the TSs for 5 pathways associated with the electrophilic
aromatic substitution reaction between toluene and Cl2. As repeatedly demonstrated in the literature through com-
putational means, in apolar environments, this reaction adheres to a surprisingly complex, autocatalyzed mechanism.
More specifically, we selected the pathways identified in reference [23] (cf. Fig S1 in the Supporting Information). 3
of these pathways are fully concerted (so one TS is associated with each); the final two are stepwise and involve two
TSs each.

A full xTB search yields only 3 out of the 7 attempted TSs. Direct DFT optimization of the preliminary guesses
from the reactive paths, however, results in the recovery of 5 out of 7 TSs (cf. Fig. 6; all successful TSs were located
within 12h). Failure for the final two reactions is not surprising, since their expected structures are not so different from
the geometries for some of the successfully located TSs. Consequently, even slight inaccuracies in the (preliminary)
TS guesses derived from the reactive path will result in the optimization procedure leading toward an incorrect TS.
Remedying these errors would likely require a more accurate topology of the reactive path than what can be achieved
here with xTB.

In polar environments, the mechanism of electrophilic aromatic substitution reactions is of course very different;
under these reaction conditions, an ionicWheland intermediate is typically formed (cf. Fig. 7A). [23, 24] TS-tools read-
ily yields the transition state leading from the reactants to this intermediate at xTB level of theory, but DFT validation
fails (and so does a full DFT search). This failure can be attributed to an interfering normal mode corresponding to the
rotation of the methyl group of toluene: for the simplified benzene + Cl2 reacting system, the TS is found at both xTB
and DFT level of theory without any problem (Fig. 7B).

Note that, by definition, a second TS is associated with the Wheland intermediate as well. It is however known
from the literature that the latter TS involves the migration of the Cl− species from one side of the plane, formed by
the aromatic ring, to the other. [23, 24] Since the latter cannot be described as a regular bond formation/breaking
event in our SMILES-based approach, we did not try to model this here.
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F IGURE 5 Transition states found for the aldol reaction between vinyl alcohol, formaldehyde and water in
aqueous solution. The indices correspond to the respective pathways in Fig. 1a with which the TS are respectively
associated. [50]

4.3 | Passerini reaction
Finally, we applied TS-tools to the Passerini reaction, another iconic example of a solvent-catalyzed reaction. Three
elementary reaction steps, determined in the absence of solvent effects, were once more selected from previous work
by Maeda and co-workers. [51] With default settings of TS-tools, only a single TS is recovered at xTB level of theory
(R2 in Fig. 8A). Lowering the increments of the final force constant refinements from 0.001 to 0.0002 au however,
yields a second TS guess (R1 in Fig. 8A), though the latter does not survive subsequent DFT validation. All calculations
were finished within 3.5 hours (on 2 CPUs). A full DFT search yields 2 TSs (R2 and R3); their geometries are shown in
Fig. 8B. At this level of theory, the successful TS searches lasted for 12 and 14 hours respectively (the failed TS ran
for 2.5 days). Once more, solvent effects affect the mechanistic landscape; only the most robust TS, i.e., R2 in Fig. 8A,
is recovered when implicit solvation is taken into account (cf. Section S6).

5 | CONCLUSIONS & OUTLOOK
Here, we have presented a new code for automated transition state localization, TS-tools. TS-tools takes as input a
simple textual reaction SMILES input and can generate the corresponding transition state structure guesses at either
xTB or DFT level of theory. The presented approach exhibits excellent performance already at xTB level of theory
on a common benchmarking dataset of mono- and bimolecular reaction pathways, locating good guesses for 95% of
TSs in a matter of CPU minutes, 90% of which survive DFT validation and are thus of excellent quality. This superb
performance suggests that TS-tools could be used for high-throughput mechanism evaluation and ML training data
generation for these reaction types.

For more challenging trimolecular reaction pathways, TS-tools unequivocally retains its usefulness as an aid to
rapidly and automatically identify TS guesses, but optimized xTB guesses are now significantly less accurate approx-
imations of the actual TSs, particularly when solvent environments are taken into account. In most of the advanced
applications considered, expensive DFT optimization of the preliminary guesses from the xTB reactive path was nec-
essary to obtain validated TSs. The observation that the accuracy of semi-empirical methods such as xTB is reduced
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F IGURE 6 Transition states found for the electrophilic aromatic substitution reaction between toluene and Cl2,catalyzed by a single HCl molecule. The indices correspond to the respective pathways in Fig. 1a with which the TS
are respectively associated. At the bottom, two alternative stepwise realizations of pathway A presented. As
discussed above, for both pathways, only a single TS was found, since the other optimized towards previously found
TSs (the approximate structures of those TSs are drawn here for clarity). [50]

considerably in these situations is relevant not only for the presented work, but also for other TS search algorithms
making use of xTB. [17, 20, 58]

Based on the description above, it should be clear that TS-tools would first and foremost benefit from further im-
provements in semi-empirical electronic structure methods (and their associated implicit solvation models). New gen-
erations of these methods will hopefully result in an improved description of the PES associated with the considered
reaction systems, resulting in the generation of more realistic reactive paths, and consequently a faster convergence
of subsequent DFT-level TS validations. Machine learning may lead to significant advancements in this aspect in the
long run, through the development of accurate neural network potentials (NNP), [59] which could potentially replace
more traditional – and, as it stands, more robust – methods such as xTB. [60] In this regard, it is important to note once
again that reaction mechanisms are strongly affected by their respective solvent environments – as demonstrated on
several occasions throughout this manuscript – and consequently, a truly universal NNP should have the capacity to

F IGURE 7 (A) The (charge-transfer) Wheland intermediate for toluene and Cl2 emerging in polar environments;
(B) the TS leading the Wheland intermediate for benzene and Cl2 (in this search, the intermolecular distance
constraint was adjusted to 4Å, the basis set was increased to 6-31++G**, and the frequency cut-off during
preliminary guess filtering was reduced to 30 cm−1, to take the extreme width of this charge-transfer induced TS
into account; water was chosen as the prototypical polar SMD solvent). [50]
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F IGURE 8 (A) The elementary reaction steps associated with the Passerini reaction, as determined by Maeda
and co-workers. [51] (B) The corresponding transition states found with TS-tools. [50]

account for this.
Next to new methods to generate reactive paths, several other opportunities to speed up and improve the al-

gorithm can be foreseen, particularly by finetuning the selection procedure of preliminary TS guesses. Dramatic
speed-ups could be achieved in this manner since most CPU time is currently spent on unsuccessful saddle-point
optimizations. Selection could for example be performed by an ML agent that judges the chance of success of the
downstream DFT calculations based on geometric features of the individual reactive path frames; related ideas to
employ ML models to preempt unproductive calculations have recently been explored by other research groups. [61]

A similar ML-based strategy could be taken during the generation of initial reactive complex poses. Currently, a
randommodulating factor is included when setting non-bonded optimal distances in these complexes, and a couple of
attempts are usually needed to facilitate the construction of a successful path connecting reactants and products. One
can envision that an ML model trained on previous data may speed up this process by predicting distance constraints
that maximize the odds of successful reactive path generation. [62]

Additions and improvements to the code that will be considered in the short to medium run are for example the
introduction of a feature to construct reactive complexes through the combination of .xyz-files for individual reactant
and product molecules. By enabling alternatives to the current SMILES input, TS-tools would become applicable to
a much more diverse range of chemistries, e.g., transition metal chemistry – which is crucial to describe mechanistic
pathways in most enzymes – as well as exotic boding situations such as compounds containing 3-center-2-electron
bonds. Additionally, we will aim to explore more refined schemes to assign the external potentials, with the hope of
being able to capture the handful of failed TSs in the benchmarking dataset as well (cf. Fig. 3). Finally, we also intend
to introduce a feature to detect the emergence of ionic intermediates: if a reactive path yields other minima than
the pre-defined product, that oftentimes means that a stable species is formed along the concerted reaction pathway
due to the emergence of a charge-transfer state. Automatic detection of such intermediates could accelerate the
identification of entire elementary reaction sequences, similar to those presented in the work by Maeda et al. for the
original AFIR method. [5]
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lar environments, note about the modeling of the solvated Passerini reaction. The main code used to generate the
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GRAPHICAL ABSTRACT
TS-tools facilitates
the automated local-
ization of transition
states (TS) based on
a textual reaction SMILES
input. On a bench-
marking dataset of
mono- and bimolec-
ular reactions, TS-tools
reaches an excellent

success rate of 95% already at xTB level of theory. For tri- and multimolecular reaction pathways – which are typically
not benchmarked when developing new TS search approaches – TS-tools retains its ability to identify TS geometries,
though a DFT treatment becomes essential in many cases.

https://doi.org/10.26434/chemrxiv-2024-st2tr ORCID: https://orcid.org/0000-0002-8322-0572 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-st2tr
https://orcid.org/0000-0002-8322-0572
https://creativecommons.org/licenses/by-nc-nd/4.0/

