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Abstract: 

Machine learning driven Computer Aided Synthesis Planning (CASP) tools have 

become important tools for idea generation in the design of complex molecule synthesis but do 

not adequately address stereochemical features of the target compounds. A novel approach to 

automated extraction of templates used in CASP that includes stereochemical information 

included in the USPTO and an internal AstraZeneca database containing reactions from Reaxys, 

Pistachio, and AstraZeneca electronic lab notebooks is implemented in the freely available 

AiZynthFinder software. 367 templates covering reagent- and substrate controlled as well as 

stereospecific reactions were extracted from the USPTO while 20,724 templates were from the 

AstraZeneca database. The performance of these templates in multi-step CASP are evaluated 

for 936 targets from the ChEMBL database and an in-house selection of 791 AZ compounds. 

https://doi.org/10.26434/chemrxiv-2024-l48f9 ORCID: https://orcid.org/0000-0002-7624-7363 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-l48f9
https://orcid.org/0000-0002-7624-7363
https://creativecommons.org/licenses/by-nc/4.0/


S2 

 

The potential and limitations are discussed for four case studies from the ChEMBL and 

examples of FDA-approved drugs.            

 

 

Introduction 

For the past few decades, enantioselective reactions have been at the forefront of the 

development of new methods in synthetic organic chemistry. A critical driving force has been 

the biomedical sector where the majority of the world’s top-selling pharmaceuticals in recent 

years are chiral compounds, most of which are marketed as pure enantiomers.1 Drug 

development has transitioned away from the “flatland” of therapeutic agents that were largely 

devoid of stereochemical features to modern drug discovery and manufacturing where specific 

enantiomers and diastereomers have to be synthesized in high stereochemical purity.2, 3 It is for 

example well established that opposite enantiomers of chiral drugs may have greatly different 

biological activities whereby one enantiomer has desired therapeutic properties, but the other 

may have lower activity or even undesired toxic effects. The importance of enantioselective 

synthesis in the discovery and development of therapeutic agents4 was recognized, for example, 

by the award of the 2001 Nobel Prize in Chemistry to Knowles, Noyori, and Sharpless who 

developed some the earliest and most important enantioselective methods while working in a 

combination of industrial and academic settings.5 

In parallel with the growth of enantioselective methods has been the development of 

computer-aided synthesis planning (CASP) as a promising toolbox to assist chemists in the task 

of designing efficient and cost-effective synthetic routes for complex molecules. The first 

important steps in this direction were taken in the 1960s and 1970s with the efforts of Corey 

(LHASA),6 Wipke (SECS),7 Hendrickson (SYNGEN),8 and Gelernter (SYNCHEM).9 These 

programs were based upon algorithms for retrosynthetic analysis that were hand-coded by 
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human experts, interfaced with early forms of databases of organic reactions and the use of 

mathematical graph theory to treat chemical compounds as molecular graphs with atoms as 

joining points or nodes and bonds as the edges connecting them. These programs continued to 

be developed over the years. Some of them became commercially available,10, 11 and have been 

used in industrial process development. Retrosynthetic elements are now features of widely 

available resources such as SciFinder12 and Reaxys.13  

More recently, CASP has experienced a paradigm shift with the incorporation of 

machine learning (ML) and deep neural networks.14-18 ML models have proven to be invaluable 

in analyzing vast amounts of chemical data, extracting meaningful patterns, and generating 

predictive models. However, ML and data-driven CASP methods still face challenges with 

some classes of reactions. Despite the past decades of development, most of the computational 

retrosynthesis tools do not adequately address stereochemical features of compounds and the 

stereochemical outcome of reactions that are used to synthesize them. Stereochemistry has 

received only limited attention in recent studies in the CASP community. The reaction dataset 

derived from records of the US patent office (USPTO)19 is often divided into a set where all 

stereochemical information is removed, and another set which contains stereoselective 

reactions. One-step retrosynthesis models, like the Molecular Transformer16 or the Augmented 

Transformer,20 often perform worse on the set containing stereoselective reactions, although it 

has been shown to be effective in predicting stereoselectivity in selected examples. Pesciullesi 

et al. used transfer learning to predict regio- and stereoselectivity in carbohydrate reactions 

using a transformer model.21 For template-based models, stereoselective reactions could in 

principle be treated if the transformation can be encoded in a SMARTS pattern and this template 

can be applied.22 The RDChiral package have enabled the latter criteria and increased the 

usefulness of data-driven extraction of templates. Although some successful examples of 

multistep retrosynthesis for chiral compounds have been demonstrated with the rule-based 
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Chematica23 (commercialized as Synthia) and ASKCOS tools,24 little general evaluation of the 

performance of the models has been carried out.25 The sparsity of stereoselective 

transformations in datasets is also a potential issue, especially for template-based methods that 

often have issues in predictions for uncommon reaction classes. 

As a result, most ML and data-driven CASP methods do not sufficiently consider the 

stereochemical information encoded in a molecule, limiting their use in synthesis planning of 

complex molecules such as drugs or natural products. Although some progress in addressing 

these shortcomings has been made,26 our current industrial/academic collaborative team is 

aimed at continuing to fill this void.  This work provides two important contributions towards 

better modelling of stereochemistry in retrosynthesis tools: (i) we have designed careful 

selection criteria for most common reactions that result in changes in stereochemistry, and (ii), 

we have trained a template-based retrosynthesis model for the selected stereoselective reactions 

and show its ability to suggest appropriate disconnections in a route prediction exercise within 

the AiZynthFinder27, 28 workflow. These proposed routes can then, for example, be coupled 

with the Q2MM/CatVS method for the accurate prediction of the ratio of stereoisomers 

produced by asymmetric catalysis,29-31 a topic beyond the scope of the present work. The long-

term goal of this work is to develop a widely available toolbox for the generation of ideas for 

the synthesis of stereochemically complex molecules.  

The large number of reactions providing stereochemically defined centers can be 

classified into a small number of different categories.32 For the purposes of this work, we 

consider the following types:  

• Stereospecific reactions: The reaction center is stereogenic in the reactant(s), as well as 

in the product. The stereochemical outcome depends on the enantiomeric purity in the 

starting material. Example: SN2 reactions, where the stereochemistry at the reaction 

center is inverted.   

https://doi.org/10.26434/chemrxiv-2024-l48f9 ORCID: https://orcid.org/0000-0002-7624-7363 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-l48f9
https://orcid.org/0000-0002-7624-7363
https://creativecommons.org/licenses/by-nc/4.0/


S5 

 

• Stereoselective reactions: A new stereogenic center is formed in the product, with one 

stereoisomer in excess. Example: ketone reduction. Stereoselective reactions can be 

further divided into the following, possibly overlapping, classes:  

o Substrate controlled reactions: the new stereogenic center is influenced by other 

stereochemical information already present in the reactant(s).  

o Reagent controlled reactions: the stereochemistry of the product is influenced 

by reaction components other than the reactant(s). This class includes both 

reagent and catalyst controlled reactions. 

o Desymmetrizations: the new stereogenic center of the product is not at the same 

position as the reaction center. This class is not considered in the current work 

because we focus exclusively on reactions where stereochemical information is 

generated at the reaction center.  

 

Methods 

Reaction center identification. An essential part of the data processing is the identification of 

the atoms that form the reaction center. We therefore outline our novel algorithm to extract 

these atoms. From an atom-mapped reaction SMILES, we create an RDKit reaction object.33 

This object has some functionality to extract reactant atoms that form the reaction center. The 

functionality is based on finding reactant atoms where there is a change in atomic number, if 

there is a change in number of bonds to this reaction center, if it is bonded to an un-mapped 

atom, if the atom-mapping number of bonded atoms changes, or if any of the bond types change. 

We prune this list of reactant atoms using the following logic: for each reactant atom, we find 

the corresponding product atoms and we generate a list of the atom-mapping numbers for the 

neighboring atoms. If all the atom-mapping numbers agree between the reactant atom and the 
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product atom and the number of explicit hydrogens bonded to the two atoms is identical, we 

remove the reactant atom from the reaction center. 

 

 

 

Figure 1: Determination of reaction centers 

 

Data preparation. The extraction of training data is implemented as a pipeline in the 

AiZynthTrain package and is available free of charge on Github.27 The algorithm for extracting 

templates for the modelling is summarized in Figure 2. We start from a clean set of atom-

mapped reactions, which has been filtered according to the rules detailed previously. These 

reactions are then processed by a pipeline that serves to 

1. remove all reaction SMILES lacking the @-character, marking a stereocenter anywhere 

in the reaction SMILES; 

2. extract and flag any changes in stereochemical assignment between reactants and 

product; 

3. flag if any of the reagent SMILES contain a stereocenter by identifying @-characters; 
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4. flag if there is a potential stereocenter in any of the reactants that are not marked in the 

SMILES string; this is based on RDKit routines to identify stereogenic centers; 

5. flag if any of the reactants have a stereogenic center outside the reaction center; 

6. flag if the product is a meso-compound based on the RDKit routines. 

 

Figure 2. Flowchart summarizing the extraction of the templates from the reaction data. 

Oval boxes indicate start and end of the workflow. 

 

From these calculations, we then identify three categories of stereoselective reactions on 

the reaction center(s) as outlined in Table 1. We only keep reactions that fall into any of these 

categories for the template extraction and one-step retrosynthesis modelling. The template 

extraction was then performed identically to the general one-step and RingBreaker models as 

detailed previously.27 For the reagent-controlled reactions, we add additional templates from 

the extraction templates by flipping stereocenters in products with only one stereocenter, i.e. 

replacing @ with @@ and vice versa in the reaction template. For the modelling, we only keep 

templates that are supported by at least three reactions in the databases. 
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Table 1 Categories of stereoselective reactions treated in our model and the criteria used to 

identify them 

Reaction category Criteria 

Reagent-controlled 

stereoselective 

• A new stereocenter was created in the reaction 

• The reactants should not have any potential 

stereocenters not marked in the SMILES string 

• There should not be any stereocenters in the 

reactants outside the reaction center 

• The reagent should be chiral 

• The product should not be a meso-compound 

Substrate-controlled 

stereoselective 

• A new stereocenter was created in the reaction 

• The reactants should not have any potential 

stereocenters not marked in the SMILES string 

• There should at least one chiral atom in the 

reactants outside the reaction center 

• The reagent should not be chiral 

• The product should not be a meso-compound 

Stereospecific • A new stereocenter was not created in the reaction 

• A stereocenter was not destroyed in the reaction 

• The product should not be a meso-compound 

 

One-step retrosynthesis model training. We train two retrosynthesis models for 

stereoselective disconnections: one based on the reactions extracted from the US Patent Office 

(USPTO),19 and one based on our internal AstraZeneca reaction database, containing reactions 

from Reaxys,34 Pistachio,35 and AstraZeneca electronic lab notebooks (ELNs). The 
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retrosynthesis models were trained as previously detailed with the exception that the product 

atoms were featurized with an ECFP4 fingerprint containing chirality information.36  

 

Model evaluation. The retrosynthesis model is used both in single-step and multi-step settings. 

For single-step evaluation, we constructed a set of 13,051 reactions from the test set of the AZ 

model by removing reactions also in the training and validation sets for the corresponding 

general retrosynthesis model previously detailed. Thus this set contains reactions from Reaxys, 

Pistachio, and AstraZeneca electronic lab notebooks and have not been featured in the training 

of any retrosynthesis model. For each of these reactions, we then extracted top-50 predictions 

from a one-step retrosynthesis model. We then computed top-n accuracies, i.e. the ability to 

find the recorded reactant set among the predictions. We also computed if any of the top-50 

predictions changed the stereochemistry during the reactions; for the model trained only on 

stereocontrolled reactions, this is guaranteed if a top-50 template is applicable to the query 

compound, but for the general model it is not. Finally, we also record how many of the top-50 

predicted templates could not be applied to the product, and therefore could not produce 

reactants. 

In addition to  the template-based models trained herein or in a previous publication, we 

also evaluated the performance of three contemporary one-step models: a template-free model, 

Chemformer,37 a graph-based method LocalRetro,38 and a template-based model trained for 

zero-shot learning, MHNReact.39 For Chemformer, we downloaded the model weights trained 

on USPTO data, whereas for LocalRetro and MHNReact, we retrained those models on 

USPTO-50 data as explained on their Github pages. 

 

Multistep route planning. We selected compounds from previous retrosynthetic analyses to 

evaluate the stereo model in multistep settings. We selected targets from the ChEMBL 
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database40 and an internal AZ dataset (AZ designs). We selected compounds for which route 

predictions utilizing only the general retrosynthesis model failed to find any routes leading to 

commercial starting materials and where at least one of the starting materials (i.e. leaf 

compound of a synthetic route) had a stereogenic center. We then subjected these targets to 

multistep retrosynthesis analysis using the AiZynthFinder package.28 The general 

retrosynthesis model and the new stereo model, both trained on AZ reaction data were put next 

to each other in the tree search. At each iteration, the top-50 suggestions from both the general 

and stereo models were added to the search tree, without altering the priors as given by the 

neural networks, hence at each expansion 100 potentially new children nodes were added. The 

list of available starting materials, i.e. the stock, used was an internal AstraZeneca stock or 

eMolecules for the AZ designs and ChEMBL, respectively. Default values were used for all 

other settings. 

 

Table 2 – Statistics for extracted reactions from the USPTO and AstraZeneca sets 

 

USPTO AZ set 

Number of reactions Count % Count % 

Total 3285790 

 

34741776 

 
With stereocenters 562933 17.13 5527989 15.91 

Where stereocenter changes 46603 1.42 1840526 5.30 

With chiral reagent 30712 0.93 461171 1.33 

With potential stereocenter 29645 0.90 720224 2.07 

With stereocenter outside reaction center 512378 15.59 4208117 12.11 

Where product is meso-compound 31530 0.96 368612 1.06 

Reagent-controlled reactions 1764 0.05 114873 0.33 

Substrate-controlled reactions 10853 0.33 389210 1.12 
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Stereospecific reactions 7943 0.24 112851 0.32 

Number of unique templates 

Reagent-controlled templates 84 

 

8266 

 
Substrate-controlled templates 167 

 

10169 

 
Stereospecific templates 116 

 

2289 

 
 

Results 

Dataset statistics. Table 2 shows statics on the two reaction datasets (USPTO and AZ sets) that 

we have analyzed. In both datasets, ~16-17% of the reactions have a stereocenter anywhere in 

the reaction SMILES, but the percentage of reactions where the stereochemistry changes during 

the reaction is much larger in the AZ set, ~5% compared to 1% in USPTO. The AZ set seems 

generally to be richer in reactions with stereochemistry, both the percentage of chiral reagents 

and potential stereocenters are enriched in this set. The most abundant type of stereochemistry 

is substrate-controlled, which amounts to 63% and 53% of the selected stereocontrolled 

reactions for the AZ set and USPTO, respectively. The USPTO set has only a low fraction of 

reagent-controlled reactions, only about 9% of the reactions fall into this category compared to 

about 19% for the AZ set. Finally, the stereospecific reactions make up 18% and 39% of the 

AZ and USPTO sets, respectively. We extract 20,724 unique templates from the AZ set, but 

only 367 from the USPTO set. Although the relative abundance among the different categories 

changes when extracting the templates, the order remains the same within each dataset after the 

template extraction. 
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Table 3 – Performance of template-based retrosynthesis model on test set of 

stereocontrolled reactions 

Model 

Exact match accuracy Stereochemistry 

change 

Non-applicable 

templates top-1 top-5 top-50 

AZ stereo 0.43 0.90 0.93 0.98 30.5 

AZ 0.04 0.07 0.08 0.21 37.1 

USPTO 

stereo 0.01 0.02 0.02 0.96 48.9 

USPTO 0.00 0.01 0.01 0.18 38.3 

 

Single-step performance. The performance of one-step retrosynthesis models on the design 

test set of stereocontrolled reactions are shown in Table 3. The model based on the AZ stereo 

set is clearly the only model that is able to produce the ground truth reactants with a top-5 of 

0.90 compared to 0.07 for the model trained on all reaction data and 0.01 to 0.02 for the USPTO 

models. The models trained on the AZ or USPTO sets can only suggest a disconnection leading 

to a stereochemical change for about 20% of the tested products, whereas the models trained 

on only stereocontrolled reactions can suggest those disconnections for 96-98% of the products. 

Of course, if more than the top-50 predictions were explored, this percentage would increase. 

For all models, the average number of non-applicable templates is high, with most of the top-

50 ranked templates not being applicable to the query product. In Table S1 we show the 

corresponding performance of three other one-step models trained on USPTO data, LocalRetro, 

MHNreact, and Chemformer. None of those models have any predictive power when it comes 

to produce the ground truth, but are better than the template-based model trained on all USPTO 

data in suggesting disconnections leading to a stereochemical change. In fact, the LocalRetro 
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model approaches the performance of the template-based models trained on only 

stereocontrolled reactions, as it suggests those disconnections for 93% of the products. 

 

Multi-step performance. We performed multi-step route planning for 936 targets from the 

ChEMBL database and an in-house selection of 791 AZ compounds. These compounds were 

previously used to benchmark the general retrosynthesis model,27 but the multi-step 

retrosynthesis failed to provide routes that lead to purchasable starting materials when only 

using the general model. For these compounds, the set of leaf compounds for the top-ranked 

predicted route contained at least one compound with a chiral center. Table 4 shows that putting 

the new stereo model next to the general model results in successful predictions for 177 of the 

ChEMBL compounds and 242 of the AZ designs, i.e. a success rate of about 20%. The stereo 

model was used in slightly less than 10% of the disconnections in the search tree, and about 

10% of the reactions in the top-10 ranked routes were disconnections suggested by the new 

stereo model. However, if we instead consider the compounds for which the prediction found 

a route leading to purchasable starting material, the percentage of disconnections coming from 

the new stereo model is greatly enriched. For the ChEMBL targets, close to a third of the 

disconnections in the top-10 ranked routes come from the stereo model, and for the AZ designs 

the proportion is close to a fifth. 

Table 4 – Performance of multi-step retrosynthesis on two target sets 

 

ChEMBL AZ designs 

Number of targets 936 791 

Number of solved targets 177 242 

Usage of stereo model in search tree 9.2% 8.0% 

Stereocontrolled reactions in top-10 routes 11.4% 9.0% 

Stereocontrolled reactions in top-10 solved routes 27.7% 19.6% 
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Discussion 

From the evaluation of the one-step retrosynthesis models on the diverse set of 

stereocontrolled reactions, it is clear that the USPTO dataset is not sufficient for training a 

widely applicable model for stereocontrolled reactions with high accuracy. First, we could only 

extract a few hundred unique reaction templates, indicating that the reaction diversity of the 

stereocontrolled reactions in the USPTO dataset is very low. The USPTO dataset has a 

reasonable fraction of reactions with stereocenters, in fact it is slightly higher than in the AZ 

dataset, but the fraction of those reactions that leads to a change in stereochemistry during the 

reaction is low. This could indicate that the information on stereocenters is simply missing from 

the reactions, but the fraction of reactions with a potential stereocenter in the reactant is 

comparable between the two datasets. Considering that USPTO is the only large reaction dataset 

in the public domain, it is worrisome that such an important class of reactions cannot be 

modelled with anything but large, diverse but proprietary datasets like Reaxys. For the general 

dissemination and development of better models for stereocontrolled reaction, this is far from 

ideal, and further confirms the need for better reaction data in the public domain.41, 42 

All of the one-step retrosynthesis models, except the stereo model trained on AZ data, 

fail to reproduce the recorded reactant. For Chemformer,37 LocalRetro,38 and MHNReact,39 this 

is expected considering that they were trained on USPTO data. However, all of these models 

have some predictive capability when considering reactants where the stereochemistry is 

different from the product, and therefore these models have some potential usefulness in an idea 

generation exercise. Especially LocalRetro38 is very good and almost as good as the stereo 

model trained on AZ data in suggesting these kinds of disconnections, which could be an effect 

of the model's two-stage approach to retrosynthesis. LocalRetro first identifies a reaction center 

followed by predicting a suitable bond change. Considering that MHNReact39 was trained for 
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zero-shot learning, it is disappointing that it does not perform better on a low-data regime like 

the stereocontrolled reactions.  

In Figure 3, we highlight one example of a targeted product and the reactants generated 

with the different one-step retrosynthesis models. The AZ, AZ stereo and LocalRetro all 

generate the principal ground-truth reactant, although they are unable to suggest the second 

reactant. However, the generated reactants with these three models are probably sufficient to 

provide an understanding of how to synthesize the product. MHNReact on the other hand 

introduces a third stereocenter in the product, rather than remove one, and Chemformer 

introduces a Weinreb amide together with an epoxide precursor with an additional methyl 

group. It might be possible to find a metallated epoxide reactant that could react with the 

Weinreb amide to give the desired product, but the suggested chlorohydrin could not. 

 

Figure 3 – Prediction of reactants for a product from the US20180298056A1 patent in the 

Pistacchio database using different one-step retrosynthesis models. The ground-truth is 

included as well as a reference. Three of the one-step models predicts the principal reactant 

correctly, although none of them predicts the minor reactant.  

 

The evaluation of the product example in Figure 3 shows the limit of evaluating one-

step retrosynthesis models in isolation with something like exact-match accuracy. As pointed 
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out previously, one-step retrosynthesis models need to be evaluated within the context of route 

prediction. To this end, we performed route planning for which AiZynthFinder and the general 

retrosynthesis model previously failed to break down starting material with at least one 

stereocenter. Encouragingly, incorporating the stereo model in the route planning algorithm 

shows an increased capability of breaking down compounds with stereocenters. For about 20% 

of the target compounds, the combined expansion protocol guides the planning to at least one 

route where all of the starting materials are in stock. However, in considering the entire dataset 

of 5,000 and 10,000 compounds for AZ designs and ChEMBL, respectively, the 177 ChEMBL 

and 242 AZ designs for which we now can identify a synthesis route, the increase in 

performance is rather modest. Hence, we can conclude that the combined expansion protocol 

is helpful in particular cases, but we are still a considerable way from being able to find 

synthesis routes for all molecules that may be selected as targets. 

  To demonstrate the performance of the model in the context of more complex synthesis 

and to highlight how it could be used in the synthesis of bioactive compounds, we examine the 

stereo-controlling steps in two example routes in Figure S1 (CHEMBL3112743) and Figure S2 

(CHEMBL3559952). Figure S1 shows a seven-step synthesis for CHEMBL3112743, a 

compound with four stereogenic centers. One of these is an unspecified enolizable center, and 

one comes from a commercially available chiral amine.  The other two stereocenters are derived 

from the stereocenter set in the first two steps of the proposed retrosynthesis (Figure 4). The 

first reaction is a ketone reduction, a classic example of reagent-controlled stereoselective 

reactions.43 The second is a stereospecific inversion through an SN2-type reaction, which could 

be realized in one pot by converting the free hydroxy to a sulfonate, or under Mitsunobu 

conditions.44 
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Figure 4. The first steps of the synthesis of CHEMBL3112743 

CHEMBL3559952 has three stereogenic centers with the enolizable center again 

unspecified. In the proposed five-step route (Figure S2), the two stereogenic centers are created 

in the first two steps (Figure 5). The first step can be seen as a rearrangement of the alkyne to 

an allene, followed by addition of a carboxylic acid to the internal double bond. The reaction 

has precedent from rhodium-catalyzed transformation of terminal alkynes,45 and does occur on 

model substrates with the desired regio- and stereo-selectivity, but will probably require 

protection of the α-hydroxy carboxylic acid. The second step is an epoxidation followed by an 

intramolecular 5-exo-trig ring closure of the free hydroxy group onto the epoxide. The 

epoxidation is proposed as substrate-controlled, but there are also ample opportunities to fine-

tune the selectivity with well-known chiral epoxidation catalysts.46  

  

Figure 5. The first steps of the synthesis of CHEMBL3559952 . 

We also examine two routes in Figure S3 and Figure S4, which highlight limitations 

inherent in the current approach of extracting and applying templates. Figure S3 shows a five-

step synthesis for CHEMBL215018 with a single stereocontrolling disconnection based on use 

of a 3+2 cycloaddition suggested by the stereochemistry model (Figure 6). However, this 

template represents the substrate controlled category whereas the reactants in the predicted 

synthesis does not have any stereogenic centers. The stereogenic centers influencing the 
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transformation in the reaction precedents are outside the reaction center and thus are not 

included in the template. In the absence of a chiral controlling element, the ring formation is 

expected to be diastereoselective, but racemic. A solution would be the application of an 

enantioselective modification of the cycloaddition for which many variations are known using 

chiral catalysts or chiral auxiliaries47, 48  

 

Figure 6. The stereocontrolling step in the synthesis of CHEMBL215018. 

Figure S4 shows a predicted route for the drug sacubitril where we have forced the 

search to start with stereoselective disconnections shown in Figure 7. The first step is a methyl 

addition to an electron deficient double bond using copper catalysis (i.e., reagent controlled 

stereochemistry according to our classification). In the second step, a reductive amination is 

proposed, in principle a good candidate for reagent-controlled stereoselectivity, but here the 

proposed reactant is an amide.49 Precedents for such reactions are limited, and the templates do 

in fact come from much more common reductive aminations, but the limited radius of the 

template extraction does not allow a distinction between amine and amide reactants. A skilled 

chemist can still see that the synthesis could be accomplished, for example employing a chiral 

catalyst or a chiral auxiliary such as a phenethyl amine in the reductive amination, followed by 

benzylic hydrogenation and N-acylation of the resulting amine using succinic anhydride.50 

Thus, this type of proposal can still be useful for ideation, followed by fine-tuning to provide 

final routes.  
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Figure 7. The stereocontrolling steps in the proposed route to sacubitril. 

 

We have herein focused on three well-defined classes of stereocontrolled reactions for 

which we could design robust extraction rules. We have also taken the approach to be strict in 

identifying these reaction classes, and we have not attempted to correct any reaction in order to 

fit them into a category. In the future, it would be of interest to incorporate other types of 

stereocontrolled reactions.  

 

Conclusions 

We have devised a robust workflow to extract stereoselective and stereospecific 

reactions from historical reaction data and trained a template-based retrosynthesis model on 

these reactions. The one-step retrosynthesis model outperforms existing, more general, models 

but we have also identified room for improvements such as the approach we use to extract and 

apply templates. This becomes especially clear in the evaluation of the multi-step performance. 

We improve upon the general performance by mixing the general model with the new 

stereochemistry model, albeit at a modest rate. Detailed analyses of the stereocontrolling steps 

of a few case studies lead us to conclude that the predictions should be used primarily as an 

idea generation that should be carefully examined and elaborated on by chemists. The model is 

now implemented in the AiZynth workflow at AstraZeneca where it is used for this purpose in 

an industrial setting, and the USPTO-derived model, templates and workflows are available 

free of charge to the broader scientific community.  
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The results show that there is an urgent need for high-quality data for stereoselective 

and stereospecific reactions. The only large publicly available dataset, USPTO, contains only a 

small number of reactions from which only a few hundred templates can be extracted whereas 

proprietary datasets such as the in-house AZ dataset offer much richer stereochemical 

information. Thus the scarcity of data in the public domain limits the training and dissemination 

of a model for stereochemical reactions. This is unfortunate considering the importance of these 

reactions in modern drug development and the need for more robust computer-aided synthesis 

planning tools. The ongoing development of free, publicly available reaction databases such as 

the Open Reaction Database41 provides an opportunity to address this issue early on by 

including stereocontrolled reactions and the appropriate information in the datasets.    

In conclusion, the tools described in this work provide the framework to address a 

recognized weakness in CASP, the reliable identification of reactive centers and the inclusion 

of stereochemical information in automatically extracted templates. Even with the limited 

information in publicly available datasets, a significant improvement over existing methods was 

achieved with the goal of making CASP more useful as a hypothesis generator for the practicing 

organic chemist. The model can be further improved by applying the framework to 

stereochemical richer datasets that could include more focused parts of the reaction space or 

proprietary datasets without changes of the framework.         

 

Associated Content 

Additional performance metrics of three one-step retrosynthesis models and full proposed 

synthetic routes for case studies.  
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Data Availability Statement 

All workflows and programs are part of the AiZynthTrain and AiZynthFinder packages which 

are available free of charge at the Github repository of the AstraZeneca Molecular AI group 

https://github.com/MolecularAI/.   Models and other artifacts from the training of the USPTO 

model, as well as database IDs of the Pistachio and Reaxys reactions are available on Zenodo: 

https://zenodo.org/records/10548209 
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Table S1 – Performance of three one-step retrosynthesis models on test set of 

stereocontrolled reactions 

Model 

Exact match accuracy 

Stereochemistry change top-1 top-5 top-50 

LocalRetro 0.00 0.01 0.03 0.93 

MhnReact 0.00 0.00 0.00 0.28 

Chemformer 0.00 0.00 0.00 0.48 
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Figure S1 – Example route 1 showing a pathway for CHEMBL3112743. The disconnections are marked with a solid circle, and the disconnections suggested 

by the stereochemistry model are marked with a solid, red circle. 

 

Figure S2 – Example route 2 showing a pathway for CHEMBL3559952. The disconnections are marked with a solid circle, and the disconnections suggested 

by the stereochemistry model are marked with a solid, red circle. 
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Figure S3 – Example route 3 showing a pathway for CHEMBL215018. The disconnections are marked with a solid circle, and the disconnections suggested 

by the stereochemistry model are marked with a solid, red circle. 

 

Figure S4 – Example route 4 showing a pathway to synthesize Sacubitril. The disconnections are marked with a solid circle, and the disconnections suggested 

by the stereochemistry model are marked with a solid, red circle. 
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