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Unexpected Supramolecular Induced Redox Switching in Sandwich Gd 

Bisphthalocyaninate 

Anna A. Sinelshchikova,*a,b Lyudmila A. Lapkina, c Vladimir E. Larchenko, d Pavel V. Dorovatovskii, e 
Aslan Yu. Tsivadze, b, c and Yulia G. Gorbunova *b, c 

The redox state of the phthalocyanine in sandwich lanthanide complexes is crucial for their applications. In this work, we 

demonstrate that the cation-induced supramolecular assembly of crown-substituted phthalocyanine lanthanide complexes 

Ln[(15C5)4Pc]2 can be used to control the redox state of the ligand simultaneously with the coordination sphere of the 

central metal. We achieve unprecedented redox switching of phthalocyanine ligands in a double-decker Gd(III) complex, 

resulting from the intramolecular inclusion of potassium cations between the decks with simultaneous twisting of the ligands 

(the skew angle between them decreases from 44.61° to 0.21°). Such a structural change leads to an increase in the deck to 

deck distance and drastically facilitates ligand reduction. It was demonstated that this process is anion dependent. Thus, 

only potassium salts of weak acids (KOPiv, KOAc) induce intramolecular inclusion of cations with redox switching in contrast 

to salts of strong acids (KBr, KOPic, KSCN and KPF6), where such a redox process does not occur. This breakthrough opens 

new avenues for controlling the electrochromic properties of phthalocyanines, along with other properties, such as electrical 

conductivity, optics, etc.

Introduction 
Phthalocyanines (Pcs) and their lanthanide complexes are π-

conjugated electron-rich molecules, widely studied for various 

applications1–5. Phthalocyanines possess numerous aromatic π-

electrons, which determine their photo- and redox-activity6–9, 

electrochromic10,11 and semiconducting properties12. These 

properties are further enhanced in sandwich lanthanide complexes 

due to intramolecular π-π interactions and the intrinsic nature of the 

metal centres13–18. The electrochromic behaviour of 

bisphthalocyaninates is determined by the ligand-centred redox 

conversion of M(Pc)2 between at least three forms of trivalent metal 

complexes19 – anionic [M3+(Pc2−)2]−, neutral [(Pc−˙)M3+(Pc2−)]0 and 

cationic [M3+(Pc−)2]+ ones. In addition to the spectacular blue-green-

red colour changes displayed by these three forms, switching 

between redox states in sandwich Pcs is also crucial to tune their 

electron conductivity20, magnetic properties21–23 or nonlinear optical 

response24. The electron-conducting properties of double-decker 

lanthanide complexes are determined by the unpaired π-electron of 

the neutral form, making them important organic semiconductors 

first time reported in 198712. The interaction of double-deckers with 

oxidizing or reducing gases, such as NO2 or NH3, switches the redox 

state of ligands and drastically reduces the conductivity, which allows 

to use these complexes as semiconducting gas sensors25,26. Sandwich 

phthalocyanines can also be employed to construct voltammetric 

sensors, known as electronic nose and tongue, to discriminate 

odours from a variety of foods, beverages or fumes27–29.  

The introduction of substituents responsible for supramolecular 

assembly opens up new opportunities to organize phthalocyanine 

molecules in a specific way3,30–36. One of the brightest examples of 

such substituents are crown ethers37–44, which enable the cation-

induced assembly of sandwich lanthanide complexes, leading to 

control of their functional properties 45–55. Alkali cations with an ionic 

radius larger than the crown ether cavity can connect two adjacent 

molecules forming dimers41,55–61 or longer oligomers62–65 (Fig. 1a, b). 

They can also integrate between decks of the same sandwich 

molecule, altering the coordination polyhedra of the lanthanide 

centre66 (Fig. 1c), if the deck-to-deck distance is large enough. Late 

lanthanide complexes, including Lu with the smallest radius, do not 

allow intramolecular inclusion of alkali cations and form the 

extended nanowires through intermolecular connections of double-

deckers by potassium cations62,63,65. This leads to very high electron 

conductivity of the final material up to 11.4 S·cm-1 65. In contrast, a 

similar strategy for the middle lanthanides results in an electron 

conductivity that is 8 orders of magnitude lower. The reason for this 

difference has not been studied in detail, but our work reveals an 

important factor for that. Here we report comprehensive solution 

and single crystal X-ray diffraction characterization of the product of 

intramolecular potassium ion inclusion in the double-decker 

gadolinium complex Gd[(15C5)4Pc]2. This is the first direct structural 

characterization of the alkali cations intercalation into double-decker 

lanthanide complexes with crown phthalocyanines. We demonstrate 
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that for the middle lanthanide double-deckers, supramolecular 

assembly can additionally control the redox state of the ligand 

which is crucial for the electron conductivity37.  

Results and discussion 

Supramolecular assembly of Gd[(15C5)4Pc]2 (I) in solution 

The neutral form of the double-decker complexes 

[(15C5)4Pc2−]Ln3+[(15C5)4Pc−•]0 possess characteristic spectra 

corresponding to π–π* transitions in macrocyclic ligands, including a 

high-intensity Q band in the range of 660–690 nm; a radical band in 

the range of 480–510 nm, assigned to the presence of one unpaired 

electron distributed between two phthalocyanines, as well as B 

(Soret) bands at 350–400 (Fig. 2, Fig. S1). Owing to macrocyclic 

substituents, the bis(tetra-15-crown-5)-phthalocyaninate 

Ln[(15C5)4Pc2]2 can form sandwich complexes with alkali cations 

such as potassium or rubidium. It is known that for the double-decker 

complexes of the middle lanthanides it results in two possible 

processes: intramolecular binding of the alkali cations with the 

formation of inclusion complex (Fig. 1c) or intermolecular cofacial 

binding of adjacent molecules with the formation of 1D oligomers 

(Fig. 1b) 51,67. Each kind of interaction leads to characteristic changes 

in UV-vis spectra. Intramolecular binding leads to a red shift of the 

Q-band of the complex67. When assembling into 1D structures, a 

significant broadening and decrease in the Q-band intensity, along 

with a slight blue-shift, are observed65. It is important to emphasize 

that none of these structures for double-deckers were characterized 

by crystallographic data. 

Herein we used the neutral radical complex Gd[(15C5)4Pc]2
0• (I) for 

titration with potassium salts. The titration of I solution in CHCl3-

CH3OH by KOPiv methanol solution in the conditions similar to66 

allowed to register two parallel processes (Fig. 2): the 

unexpected formation of specie II with drastically blue-shifted Q-

band from 674 nm to 646 nm and the formation of the expected 

intramolecular inclusion complex III with Q-band at 698 nm. The 

second process of intramolecular cations inclusion agrees well 

with previous experience67: by inclusion of K+ the distance 

between decks increases due to the large ionic radius of K+ and 

all different lanthanide complexes independent from ion radius 

have similar spectra with Q-band around 698 nm. However, the 

appearance of sharp new bands of an unknown species II is different 

from both that we could expect – intramolecular K+ inclusion or 

intermolecular oligomers formation. 

Interestingly, once the titration is complete with a high excess of 

KOPiv (50 eq), the spectra change with time, shifting the equilibrium 

further towards the formation of the unknown species II (Fig. S2), 

indicating a slow kinetics of II formation. We decided to study the 

process in detail and determine the structure of the previously 

unknown complex II.  

The same spectral changes were observed when using another 

potassium salt, KOAc (Fig. S3). However, when testing potassium 

salts of strong acids like KBr (see Fig. 3), KOPic (Fig. S4), KSCN (Fig. S5), 

and KPF6 (Fig. S6), only the formation of the intramolecular inclusion 

complex III with a stable Q-band at 698 nm was observed. This 

confirms the anionic selectivity in the electrochromic properties of 

Gd[(15C5)4Pc]2, as previously found in67 for other lanthanides: 

titration by potassium salts of strong acids results in red-shift and the 

color of solution changes from green to purple, with the potassium 

salts of weak acids blue-shift occurs and the color changes from 

green to blue (Fig. S7).  

The fact that the formation of the new complex II is detected 

only when using salts of weak acids suggests that the hydrolysis 

of potassium salts plays a crucial role. In all titration 

experiments we used methanol as solvent for potassium salts, 

which can contain traces of water. Salts of strong acids and 

strong bases yield a neutral pH when they hydrolyze, while salts 

of weak acids and strong bases result in a basic pH. 

Fig. 2 Spectrophotometric titration of the solution of complex I in CHCl3:CH3OH = 4 : 1 

(c = 11.4 μM) with the solution of KOPiv in CH3OH (c = 2.85 mM). The inset shows the 

titration curves.

Fig. 1 Examples of cation-induced supramolecular assembly of crown-substituted sandwich lanthanide phthalocyanines. 
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Phthalocyanine double-deckers are known to be reduced in 

basic conditions68. Therefore, our suggestion is that when using 

KOPiv or KOAc, we observe inclusion of K+ cations and 

subsequent reduction of ligand in basic conditions.  

 

Verification of supramolecular induced reduction of I  

Indeed, double-decker Gd complex with phthalocyanines can 

exist in three redox forms and each form has its characteristic 

spectra (Fig. 4, Scheme 1, Table S1): neutral radical form 

Gd[(15C5)4Pc]2
0• (I), reduced anionic form Gd[(15C5)4Pc]2¯ (I¯) and 

oxidized cationic form Gd[(15C5)4Pc]2
+ (I+). The switching 

between the forms can be easily achieved by use of 

corresponding reducing (hydrazine hydrate N2H4) or oxidizing 

agent (traces of Br2 in N-bromosuccinimide NBS).  

The reduction of the complex I results in the disappearance of 

characteristic band of unpaired electron at 480 nm and the 

blue-shift of Q-bands – similar changes to what we observe 

during the formation of II. However, the value of blue-shift and 

final spectra of I¯ differs from II.  

When we started the titration by KOPiv from reduced anionic 

I¯complex we obtained absolutely the same specie II with Q-

band at 646 nm (Fig. 5). The formation of specie II is much faster 

compared to initial titrations of neutral form I, which can be 

explain by the slow kinetics of the reduction step in slightly basic 

conditions. 

It is known that switching between redox states causes 

modulation of near-IR absorbance, and the nature of the NIR 

bands of neutral green complexes is determined by unpaired 

electron and has been previously discussed69 70. We measured 

NIR spectra for initial complex I and supramolecular complexes 

II and III. The complex I has a broad band around 1600 cm-1. 

When a KBr solution is added to the complex, we observe a 

redshift in this band, indicating the formation of an inclusion 

complex. However, when KOPiv is added, the intensity of the 

band decreases over time, suggesting that the complex loses an 

unpaired electron on the ligand (Fig. S8). 

It is known that the lanthanide double-decker complexes with 

larger ion size reduces easier than the complexes with small ion 

radius71–73. Our hypothesis is that inclusion of K+ cations in 

double-decker results in two main structural changes: i) twist of 

ligands and change of coordination polyhedron of Gd(III), ii) 

increase of distance between ligands due to the large size of 

potassium cations. As a result, double-decker of middle 

lanthanide becomes similar to complexes of early lanthanides 

with larger size and can be reduced easier in slightly basic 

conditions. In order to verify the structural changes during K+ 

inclusion, the single crystals of I and II were grown. 

Single crystal XRD of I and II 

Fig. 4 UV-vis absorption spectra of Gd(III) complexes with (15C5)4Pc in CHCl3. Three 

electronic forms: neutral radical Gd[(15C5)4Pc]2
0•= I (green), reduced anionic 

Gd[(15C5)4Pc]2¯ = I¯(blue) and oxidized cationic Gd[(15C5)4Pc]2
+= I+ (orange).

Fig. 3 Spectrophotometric titration of the solution of complex I in CHCl3 (c = 

10.0μM) with the solution of KBr in CH3OH (c = 1.52 mM). The inset shows the 

titration curves. 

Fig. 5 Spectrophotometric titration of the solution of complex Gd[(15C5)4Pc]2¯ = I¯ in 

CHCl3 : CH3OH = 10 :1 (c = 8.20μM) with the solution of KOPiv in CH3OH (c = 0.2 

mM). The inset shows the titration curves.

Scheme 1 Three redox forms of complex I.
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We succeeded in growing the single crystals of both – initial 

double-decker I and the product of its interaction with KOPiv 

complex II. Single crystal XRD (SCXRD) allowed for the first time 

and unambiguously prove the formation of intramolecular 

inclusion complex for double-decker of middle lanthanide and 

showed that using KOPiv methanol solution we obtain reduced 

form of ligand (Fig. 6). The crystallographic data, refinement 

parameters, bond lengths and angles, asymmetric units, and 

location of the charge-compensating anions in 

Gd[(15C5)4Pc]2·6Ph2O and 

[{Gd[(15C5)4Pc]2¯·4K+}3+·PivO¯·PivOH·2Cl¯]·13CHCl3·2H2O are 

represented in Fig. S9–S11 and Tables S2–S7. The reduced form 

of the double-decker is determined from the charge balance of 

observed anions and the complex (see ESI for details, SCXRD 

section). 

Single crystal diffraction analysis confirmed that the 

intramolecular binding of K+ ions induced significant molecular 

motion by twisting of the decks and simultaneously changed the 

redox state of the ligand. Phthalocyanines twist changes the 

skew angle between them from 44.61° to 0.21° and switches 

the coordination polyhedron of Gd(III) from SAP (square anti-

prismatic) to SP (square prismatic) (Fig. 6) in analogy to 

previously reported triple-decker complexes66. The inclusion of 

K+ ions causes a significant change in geometry, affecting 

specific bond lengths and distances, as shown in Table 1. This 

includes an increase in the interligand distance between the N4 

planes of crown-substituted ligands from 2.805(10) to 3.016(8) 

Å and an elongation of Gd–N(Pc) distances from 2.423(2) to 

2.480(2) Å. The increase in distance between ligands can be 

attributed to a combination of three factors: the π–π repulsion 

of forced eclipsed crown-Pc decks, as demonstrated by DFT 

calculations66, the inclusion of large size potassium cations, and 

the one-electron reduction of phthalocyanines. The reduction is 

known to increase the deck-to-deck distance, as previously 

observed in variously substituted tetrapyrrole Gd double-

decker crystal structures in distinct redox states74–76. The 

distance between ligands in {Gd[(15C5)4Pc]2¯·4K+}3+·is closer to 

those in tetrapyrrole triple-decker Gd complexes75,77 (Table S3), 

which typically exceeds the distances in double-deckers. In 

contrast to inclusion complex of triple-decker [Y*,Y]·4KBPh4
66 

where the forced eclipsing of the crown-Pc ligands resulted in 

their deviation from planarity, in this case, we observe that the 

phthalocyanine rings become flatter after potassium 

intercalation (Fig. 6, Table 1). This is due to the one-electron 

reduction of the ligand, which reduces the repulsion between 

decks and increases the deck-to-deck distance. 

Thus, the addition of KOPiv to I results in the intramolecular 

inclusion of K+ with subsequent one-electron reduction of 

phthalocyanine. This is a completely new observation, never 

reported before. 

 
Table 1 Selected Structural Characteristics of I and II According to Single-Crystal X-ray 

Diffraction Studies 

crystal I II 

formula Gd[(15C5)4Pc]2··

·6Ph2O 

[{Gd[(15C5)4Pc]2¯·4K+}3+·PivO¯· 

·PivOH·2Cl¯]·13CHCl3·2H2O 

Bond Length (Å) 

M−Niso, Å 2.4032(17) – 

2.4318(17) 

2.466(11) – 2.496(11) 

M−Niso, Å, 

av. 

2.423(2) 2.480(2) 

Plane distances (Å) 

N4 – N4, Å 2.805(10) 3.016(8) 

M−N4, Å 1.401 – 1.404 1.508 

Skew Angle (deg)a 

 44.61 0.21 

Deviation from Planarity  

(deg)b 5.0 − 13.8 2.7 − 8.9  

Åc 0.135, 0.137 0.085 
a Average torsion angle N1–Cg1–Cg2–N2, where Cg1 and Cg2 are the 

centroids of the corresponding N4 planes, b Dihedral angles between 

the isoindoline rings and the corresponding N4 plane, c RMSD of 

atoms from the plane of 24 atoms 

Fig. 6 Top and side views of the single-crystal X-ray diffraction structures of the complexes I and II: Gd[(15C5)4Pc]2·6Ph2O and 

[{Gd[(15C5)4Pc]2¯·4K+}3+·Piv¯·HPiv·2Cl¯]·13CHCl3·2H2O. The H atoms, solvent molecules, and counterions are not shown for clarity.
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Conclusions 

Summarizing obtained results, it was demonstrated the 

supramolecular controlled ligand reduction of double-decker 

Gd phthalocyaninate. The increased distance between ligands 

resulting from the supramolecular inclusion of potassium 

cations facilitates switching of redox state. The case reported 

here is a rare example of dynamic control simultaneously over 

the coordination environment of the Ln ion and the redox state 

of the ligand, achieved through large-amplitude molecular 

motion in the context of supramolecular self-assembly. 
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