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Molecular Graph Transformer: Stepping Beyond

ALIGNN Into Long-Range Interactions†

Marco Anselmi,a Greg Slabaugh,b∗, Rachel Crespo-Oteroc∗ and Devis Di Tommasoa∗

Graph Neural Networks (GNNs) have revolutionized material property prediction by learning directly

from the structural information of molecules and materials. However, conventional GNN models

rely solely on local atomic interactions, such as bond lengths and angles, neglecting crucial long-

range electrostatic forces that a�ect certain properties. To address this, we introduce the Molecular

Graph Transformer (MGT), a novel GNN architecture that combines local attention mechanisms

with message passing on both bond graphs and their line graphs, explicitly capturing long-range

interactions. Benchmarking on MatBench and Quantum MOF (QMOF) datasets demonstrates that

MGT's improved understanding of electrostatic interactions signi�cantly enhances the prediction

accuracy of properties like exfoliation energy and refractive index, while maintaining state-of-the-

art performance on all other properties. This breakthrough paves the way for the development of

highly accurate and e�cient materials design tools across diverse applications. Code is available at:

https://github.com/MolecularGraphTransformer/MGT

1 Introduction

Across various scientific disciplines, from computer vision to
chemistry, graphs serve as powerful models for representing sys-
tems of objects and interactions. A graph G = (V,E) consists of a
set of nodes V and a set of edges E between pairs of nodes, repre-
senting the relationship between them. Geometric Deep Learning
(GDL) leverages the expressive power of graphs to analyze these
systems, providing insights into their underlying structure. Com-
mon applications of GDL include shape analysis and pose recogni-
tion in computer vision,1 link and community detection on social
media networks,2–4 representation learning on textual graphs,5,6

medical image analysis for disease detection7–9 and property pre-
diction for molecular and crystalline materials.10–18

In the field of quantum chemistry, the development of Graph
Neural Networks (GNN) has provided a means of computing the
properties of molecules and solids, without the need to approx-
imate the solution to the Schrödinger equation. Furthermore,
compared to other Machine Learning (ML) techniques, they have
shown immense potential in the field of chemistry, since they
do not require manual feature engineering and have significantly
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better performance compared to other ML models.19 GNN mod-
els represent molecules or crystalline materials as graphs with a
node for each constituent atom and an edges as bonds or inter-
atomic relationships. By passing messages through the edges they
update the molecular representation and learn the function that
maps these graphs to properties obtained from reference elec-
tronic structure calculations such as Density Functional Theory
(DFT).

There has been rapid progress in the development of GNN
architectures for predicting material properties, such as such
as SchNet,10 Crystal Graph Convolutional Neural Network
(CGCNN),11 MatErials Graph Network (MEGNet),12 Atomistic
Line Graph Neural Network (ALIGNN)13 and similar vari-
ants.14–18,20–24 These models consider only the pairwise inter-
actions between bonded atoms or between atoms within a cut-off
radius of typically 6 Å to 8 Å. Some have also incorporated many-
body relationships, such as bond-angles, into the molecular rep-
resentation.13,14,16,17,20 Nevertheless, all of these GNN models
developed so far, can be categorised as local methods25 and are
limited to analysing only the local environment around atoms or
relying on multiple message passing layers to approximate long
range interactions.

However, for certain systems and/or tasks, long range inter-
actions can be important. One of the most eminent examples
of long-range interactions is electrostatics, which, together with
van der Waals, also define non-bonded interactions in the poten-
tial energy (PE) equation (Eq 1). To date there are only a few
ML models that have incorporated electrostatic interactions into
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their architecture.26–29 The electrostatic interaction between two
atoms in a structure can be obtained using Coulomb’s law, shown
in Eq 2.

Epotential = Ebonded +Enon−bonded

Ebonded = Estretching +Eangle +Edihedral

Enon−bonded = Eelectrostatic +EvanderWaals

(1)

Eelectrostatic =
1

4πε0

qiq j

r2 = ke
qiq j

r2 (2)

where qi and q j are the atomic partial charges of atoms i and j, ε0

is the permittivity of free space and r is the distance between the
two atoms. However, computing Coulomb interactions without
truncation is limited by the availability of atomic partial charges.
However, in 2012, Rupp et al. introduced the Coulomb Matrix,30

which, includes a simplified representation of the Coulomb re-
pulsion between two atoms, that doesn’t make use of the atomic
partial charges.

With the aim of enhancing GNN architectures akin to
ALIGNN13 for the incorporation of long-range interactions, this
paper introduces the Molecular Graph Representation (MGR) and
the Molecular Graph Transformer (MGT). In this endeavour, the
simplified Coulomb interactions that can be obtained from the
Coulomb Matrix30 are explicitly included within the MGR and
subsequently analysed by the MGT. The MGR splits the graphi-
cal representation of the system into three graphs: local graph

(Glocal), line graph (Gline), and fully connected graph (Gglobal).
The MGT alternates between graph attention layers on the Gglobal

and graph convolutions on the Gline and Glocal , to update the
molecular representation through non-bonding, many-body and
two-body information. Our model is trained on both the Mat-
Bench31 and the QMOF32 to predict energetic, electronic and
vibrational properties of solid-state materials directly from their
unrelaxed structures.

2 Molecular Graph Transformer

2.1 Molecular Graph Representation

The Glocal , Gline, and Gglobal sub-graphs of the MGR are used to
represent both the bonded and non-bonded interactions between
atoms. The local and line graph both describe bonded interac-
tions, with the local graph describing pair-wise interactions (red
edges in Figure 1), and the line graph describing 3-body interac-
tions using angles between triplets of atoms (green edge in Fig-
ure 1). These two graphs can be considered the equivalent of
Estretching and Eangle in the PE equation. The full graph is based on
the Coulomb Matrix30 representation, and it is used to represent
the non-bonded interactions between pairs of atoms (blue edges
in Figure 1), making it the equivalent of the Eelectrostatic term in
Equation 1.

The construction of the local and line graphs is the same as the
ALIGNN13 representation. The local graph is constructed using
a periodic 12-nearest-neighbour methodology, in which an edge
is formed between an atom and its 12 nearest neighbours within

Fig. 1 Schematic showing the Molecular Graph Representation. For simplicity, only an atom connected to three other atoms is shown. Molecules

are encoded by converting each atom i into a vector representation hi. Using the Local Graph interactions between atoms i, j are dependent on their

representations hi, h j and the distance between them ei j. While, using the Line Graph interactions between triplets of atoms i, j, k are dependent on

the distance between pairs of atoms ei j, e jk and the angle between the atoms ti j, jk(ti jk). Lastly, using the Full Graph the interaction between pairs of

atoms I, J are dependent on their vector representation hi, h j and the Coulomb repulsion between them fi j.
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a cut-off distance of 8 Å. Each atom is then assigned a nine fea-
tures feature set based on its atomic species: 1) electronegativity;
2) covalent radius; 3) valence electrons; 4) group number; 5)
electron affinity; 6) first ionization energy; 7) period number; 8)
block number; 9) atomic volume. The feature sets are then en-
coded, through one-hot encoding, to form the feature vectors of
the atoms. The edges are instead initialized with the distance
between the two atoms that they connect. To form the feature
vectors for the edges, a Radial Basis Function (RBF) is used with
limits: 0 Å and 8 Å. The local graph can then be defined as
Glocal = (h,e), where h are nodes and e are edges between pair of
atoms, and Glocal has associated feature sets H = {h1, ...,hi, ...,hN}
and E = {ei j,eik,ekl ,emi, ...}, where hi is the feature vector given to
node i and ei j is the feature vector of the edge connecting nodes i
and j.

The line graph is derived from the local graph. Each node in the
line graph represents an edge in the local graph, and nodes and
corresponding edges share the same feature vector, such that any

update on a node of the line graph is reflected on the correspond-
ing edge in the local graph. Edges in the line graph, correspond
to the relationship between pairs of edges in the local graph that
have one atom in common, representing a three-body interac-
tion system between triplets of atoms, i.e. bond pair ei j, eik and
atom triplet hi, h j, hk where atom hi is the shared atom. The line
graph edge features are given by an RBF expansion of the angle
formed by two connected local graph edges, shown in green in
Figure 1. The line graph can then be defined as Gline = (e, t),
where e are local graph edges and t are angles between con-
nected edges or atom triplets, and Gline has associated feature
sets E = {ei j,eik,ekl ,emi, ...} and T = {ti jk, tikl , ti jm, ...}.

The full graph is constructed similarly to the local graph. Each
node in the local graph represents an atom in the structure, and it
shares its latent representation with the nodes of the local graph.
Edges in the full graph represent an interaction between pairs of
atoms, and they are formed between all atoms that are within
a cut-off distance from each other. Full graph edges features are

(a) (b)

Fig. 2 (a) MGT Encoder layer architecture. For the current layer L of the model, the node (HL) embeddings are �rst updated using Multi-Headed

Attention (MHA). The node features of central atoms hi and neighbouring atoms h j are separated and updated through individual linear layers.

Attention scores are computed using atoms i, j and coulomb repulsions (FL) between them, and used to select features of atoms j. Selected features

of atoms j are added to core atoms i to update their features and further re�ned through residual and normalization steps. The updated node features

H ′ from the MHA block are then used as input to the ALIGNN block, which uses a series of Edge Gated Graph Convolutions (EGGC) to update the

input node features H ′ using edge information from the line graph T L and local graph EL. The ALIGNN Block, returns updated node features H ′′,
updated edge features E ′ and updated triplet features T ′. Node features H ′′ are then further re�ned through N EGGC layers using edge features E ′.
Lastly the output features from the EGGC layers, H ′′′, are then re�ned through a Linear Block, which passes them through two linear layers with a

SiLU activation function between then. (b) Edge Gated Graph Convolution (EGGC) module. Each EGGC module splits its input node features (X)
into core nodes xi and neighbouring nodes x j and are re�ned through separate linear layers. Using edge features ei j, core nodes i and neighbouring

nodes j, edge messages are computed and then added to core atoms i to update their representation. The EGGC then returns the edge message as

an updated edge information (E ′) and the updated node informations (X ′).
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derived from the Coulomb matrix30 of the structure and they rep-
resent the Coulomb repulsion between the two different atoms as
described in the Coulomb matrix in Equation 3

fi j =

0.5Z2.4
i ∀ i = j

ZiZ j
Ri j

∀ i ̸= j
(3)

where Zi and Z j are the atomic numbers of atoms i and j respec-
tively, and Ri j is the distance between the two atoms. The full
graph can then be defined as Gglobal = (h, f ), where h are nodes
and f are edges between pairs of atoms. Gglobal has associated
feature sets H = {h1, ...,hi, ...,hN} and F = { fi j, fik, ...}, where hi is
the feature vector given to node i and fi j is the feature vector of
the edge connecting nodes i and j.

2.2 Molecular Encoder

The main part of the MGT is the encoder module. This module
executes updates on the nodes and edges of the MGR, by apply-
ing different update functions based on the sets of edges provided
by the three parts of the MGR. Using the edges provided by the
Gglobal , the module updates the nodes using Multi-Headed Atten-
tion (MHA). The encoder, then, uses a series of Edge Gated Graph
Convolution (EGCC) modules, which are aggregated into a block
called the ALIGNN Block, to update the edges and nodes of both
the Gline and the Glocal . Outside of the ALIGNN Block, the EGCC
module is also used for a further update to the edges and nodes
of the Glocal . Lastly, the encoder also performs a final update
on the nodes without using any edge information by running the
nodes through a linear block, which, contains a fully connected
layer with a SiLU activation function, followed by another fully
connected layer.

The modifications to the feature vectors follow a global-to-
local sequence. Initially, nodes for increased attention are de-
termined through non-bonding two-body interactions from the
global graph, followed by updates using the same interactions.
Subsequently, utilizing the line graph, updates involving three-
body interactions are executed, succeeded by updates involving
two-body interactions from the local graph. Lastly, updates based
on single-body information are performed using only the node
information.

Multi-Headed Attention

The MHA block, in Figure 2a, is derived from the Trans-
former33 attention mechanism and it is adapted to a message
passing architecture. Given a input set of node features HL =

hL
1 ,h

L
2 , ...,h

L
n at layer L, it first splits the set into Q, K, V , using

learnable parameters WQ, WK , WV . Q corresponds to the target
nodes hi (nodes to be updated) and K and V correspond to the
neighbouring nodes h j. Q, K and V are then split into M dif-
ferent subsets (heads), Q = {Q1,Q2, ...,QM}, K = {K1,K2, ...,KM},

Parameter Value
Encoder Layers 2
MHA Layers 1
ALIGNN Blocks 3
EGGC Layers 1
Atom Input Features 90
Edge Input Features 80
Angle Input Features 40
Coulomb Input Features 120
Embedding Features 256
Hidden Features 512
FC Layer Features 128
Global Pooling Function Average
Batch Size per GPU 2
Learning Rate 0.0001

Table 1 Optimal MGT con�guration and hyper-parameters obtained

through testing. This con�guration and hyper-parameters were used for

the testing of the model on both datasets used in this paper.

V = {V 1,V 2, ...,V M}, such that we can obtain attention scores for
each subset (head). If the edges of the input graph contain edge
attributes, then, given a set of edge features FL at layer L, they are
transformed into a set F using learnable parameter WF and then
split into M different subsets (heads) as well, F = {F1,F2, ...,FM}.
In the case of one attention head, we have Qm = Q, Km = K,
V m = V and Fm = F . For each node hi the attention for each
subset of Q, K, V and F is obtained as:

Q =WQhi, K =WKh j, V =WV h j, F =WF fi j (4)

Sm
i j =

QmKm +Fm
√

dm
(5)

Attm(hi) = ∑
j∈Ni

so f tmax(Sm
i j)V

m (6)

where dm is the dimension of each subset of Q, K, V and F , Sm
i j

is the attention score between nodes hi and h j, Ni defines the set
of neighbours of hi, ∑ j∈HL denotes the summation with all the
neighbours of node hi, and so f tmax is used to normalize each
message along the edges of node hi such that:

so f tmax(Sm
i j) =

exp(Sm
i j)

∑k∈Ni
exp(Sm

ik)
(7)

The update to each node is then defined as:

ĥi = WHhi +
M
∥

m=1
Attm(hi) (8)

h′i = Norm(ĥi) (9)

where ∥ denotes concatenation, and WH is a learnable parameter.

Edge Gated Graph Convolution
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The EGGC used in this work, shown in Figure 2b, was intro-
duced by Choudhary and DeCost 13 . It takes inspiration from the
CGCNN update11, but in contrast to it, the edge features are in-
corporated into normalized edge gates. Furthermore, EGGC, un-
like the CGCNN update, also updates edge features by utilising
edge messages. Using EGGC, the input node representations H ′

are updated as follows:

h′′i = h′i +SiLU(Norm(Wsrch′i + ∑
j∈Ni

ê′i jWdsth
′
j)) (10)

ê′i j =
σ(e′i j)

∑k∈Ni
σ(e′ik)+ ∈

(11)

e′i j = ei j +SiLU(Norm(Ah′i +Bh′j +Cei j)) (12)

where SiLU is the Sigmoid-weighted Linear Unit34, σ denotes
the sigmoid function and A, B, C are weight matrices for updating
h′i, h′j and ei j respectively.

ALIGNN Block

The ALIGNN Block combines an EGGC update on the line graph
Gline with an EGGC update on the local graph Glocal . The convolu-
tion on Gline produces updates edge updates that are propagated
to Glocal , which, further updates the edge features and the atom
features.

m′, t ′ = EGGC(Gline,e, t) (13)

h′,e′ = EGGC(Glocal ,h,m
′) (14)

2.3 Overall Model Architecture

The MGT, shown in Figure 3, is composed of M encoder layers,
with a pooling function, applied on the edge features of all three
graphs, in between the encoders. After M encoder layers we then
apply a global pooling function to aggregate the node features
into one feature for the whole graph. Finally to predict the prop-
erties of the input structure or perform classification on it, we
apply a fully connected regression or classification layer. Table
1 shows the hyper-parameters that were used to train the model
with which we obtained the results shown in the Results and Dis-
cussion section. These hyper-parameters were obtained through
hypothesis-driven hyper-parameter search.

2.4 Model Implementation and Training

The MGT is implemented using PyTorch35 and the Deep Graph
Library36. The code also relies on Pytorch Fabric for the distri-
bution of the model across multiple GPUs and devices. For re-
gression tasks the loss is obtained using the Mean Squared Error

Fig. 3 Flowchart for the overall model architecture. The nodes and

edges from the MGR are �rst transformed to feature vectors through

encoding layers for the nodes and each edge type. The feature vectors

are then passed through a series of MGT Encoder layers each with the

same dimension. The output node features from the MGT Encoders are

then aggregated using a pooling function to create a global feature vector

for the whole structure. The global features are then re�ned through a

linear layer, which, provides the output to the model. For this paper,

2 MGT Encoder were used, with an input and output feature length of

512.

(MSE) function, while the error is obtained using the Mean Av-
erage Error (MAE) function. The models trained on the QMOF
database were trained for 100 epochs, while 300 epochs were
used for those trained on the MatBench database. For all models
the Adam optimizer was used with a weight decay of 10−5 and a
learning rate of 0.0001. Calculations were performed using the
Sulis Tier 2 HPC platform and on the JADE 2 Tier 2 HPC platform.
On the Sulis HPC at most 5 nodes with 3 A100 40GB GPUs were
used, while on JADE 2 the model was trained on 8 V100 32GB
GPUs.

3 Results and Discussion

3.1 Performance on Datasets

The MGT was created with the purpose of predicting properties of
solid-state materials from their unrelaxed structures. To evaluate
its performance, the Materials Project’s MatBench31 version 0.1
dataset and the QMOF32 version 14 database were used.

The MatBench31 dataset encompasses eight distinct regression
tasks, each associated with an individual database containing a
varied number of structures, ranging from 636 for the "jdft2d"
task to 106,113 for the "Formation Energy" task. The "jdft2d" task
involves predicting the exfoliation energy for separating 2D lay-
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Table 2 Performance on the MatBench v0.1 dataset. The errors shown in the table are Mean Average Errors (MAE). For the models other than the

MGT the values have been obtained from the o�cial MatBench website. Next to the errors, in the parenthesis, their respective rankings for each task

are shown

Tasks jdft2d phonons dielectric log10 GVRH log10 KVRH perovskites bandgap formation E

Units meV/atom cm−1 unitless log10 GPa log10 GPa eV/unit cell eV eV/atom

ALIGNN 43.4244 (8) 29.5385 (3) 0.3449 (13) 0.0715 (3) 0.0568 (5) 0.0288 (2) 0.1861 (3) 0.0215 (3)

AMMExpress
v2020

39.8497 (6) 56.1706 (13) 0.3150 (6) 0.0874 (10) 0.0647 (9) 0.2005 (12) 0.2824 (13) 0.1726 (15)

CGCNN
v2019

49.2440 (13) 57.7635 (14) 0.5988 (15) 0.0895 (11) 0.0712 (12) 0.0452 (9) 0.2972 (14) 0.0337 (7)

coNGN 36.1698 (5) 28.8874 (2) 0.3142 (5) 0.0670 (1) 0.0491 (1) 0.0290 (3) 0.1697 (2) 0.0178 (2)

coGN 37.1652 (4) 29.7117 (4) 0.3088 (4) 0.0689 (2) 0.0535 (2) 0.0269 (1) 0.1559 (1) 0.0170 (1)

CrabNet 45.6104 (9) 55.1114 (12) 0.3234 (9) 0.1014 (14) 0.0758 (13) 0.4065 (14) 0.2655 (12) 0.0862 (13)

DimeNet++
(kgcnn
v2.1.0)

49.0243 (12) 37.4619 (6) 0.3400 (12) 0.0792 (6) 0.0572 (6) 0.0376 (8) 0.1993 (5) 0.0235 (5)

Finder_v1.2
composi-
tion only
version

47.9614 (11) 46.5751 (10) 0.3204 (8) 0.0996 (13) 0.0764 (14) 0.6450 (16) 0.2308 (10) 0.0839 (12)

Finder_v1.2
structure

based
version

46.1339 (10) 50.7406 (11) 0.3197 (7) 0.0910 (12) 0.0693 (11) 0.0320 (4) 0.2193 (7) 0.0343 (8)

MegNet
(kgcnn
v2.1.0)

54.1719 (15) 28.7606 (1) 0.3391 (11) 0.0871 (9) 0.0668 (10) 0.0352 (6) 0.1934 (4) 0.0252 (6)

MODNet
(v0.1.12)

33.1918 (2) 34.2751 (5) 0.2711 (1) 0.0731 (4) 0.0548 (3) 0.0908 (10) 0.2199 (8) 0.0448 (10)

MODNet
(v0.1.10)

34.5368 (3) 38.7524 (7) 0.2970 (2) 0.0731 (5) 0.0548 (4) 0.0908 (11) 0.2199 (9) 0.0448 (11)

RF-
SCM/Magpie

50.0440 (14) 67.6126 (15) 0.4196 (14) 0.1040 (15) 0.0820 (15) 0.2355 (13) 0.3452 (15) 0.1165 (14)

SchNet
(kgcnn
v2.1.0)

42.6637 (7) 38.9636 (8) 0.3277 (10) 0.0796 (7) 0.0590 (7) 0.0342 (5) 0.2352 (11) 0.0218 (4)

MGT 31.4223 (1) 39.0179 (9) 0.3047 (3) 0.0840 (8) 0.0636 (8) 0.0361 (7) 0.2145 (6) 0.0378 (9)

Dummy 67.2851 (16) 323.9822
(16)

0.8088 (16) 0.2931 (16) 0.2897 (16) 0.5660 (15) 1.3272 (16) 1.0059 (16)
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ers from crystal structures, computed with the OptB88vdW37 and
TBmBJ38 exchange-correlation DFT functionals. The "Phonons"
task is dedicated to predicting the vibrational properties of crys-
tal structures computed using the ABINIT within the harmonic
approximation based on density functional perturbation theory.
The "Dielectric" task is concerned with predicting refractive in-
dex from crystal structures. The "log10 GVRH" and "log10 KVRH"
tasks involve predicting the logarithm (base 10) of the shear
(GVRH) and bulk (KVRH) modulus property of crystal structures.
The "Bandgap" task focuses on the prediction of the electronic
bandgap of crystal structures computed with the Perdew Burke-
Ernzerhor39 (PBE) functional. Lastly the "Perovskites" and "For-
mation Energy" tasks are dedicated to predicting the formation
energy of crystal structures, with the "Perovskites" task focusing
on perovskites. For all the tasks, the train-test splits provided by
the MatBench api were used, and the train set was further di-
vided into train-validation splits of approximately 80%-20% for
each task. The performance of the MGT model on the MatBench
dataset, is shown in Table 2

The "jdft2d" and "Dielectric" tasks have benefited the most from
the inclusion of electrostatic interactions with the MGT model,
with improvements of 27% and 12%, respectively, compared to
ALIGNN. The jdft2d task is related to the prediction of exfoliation
energy of crystal structures, which involves the energy required
to remove a layer of the material from its surface.40 Since molec-
ular layers usually are connected through non-covalent weak
interactions,41–43 as in the case of graphene, the inclusion of
non-bonding interactions, such as electrostatics, can benefit GNN
models in this task. Inclusion of electrostatics can also benefit in
the dielectric task, which predicts the refractive index and is af-
fected by the electrostatic interactions between all neighbouring
atoms within 12 in the structure.

On the other hand, the "Formation Energy" task has seen
the least benefit from this inclusion, with a MAE of 0.0448
eV/atom with the MGT model compared to 0.0215 meV/atom
with ALIGNN. The Formation Energy task is a regression task for
predicting the energy required to form the crystal structure. As
the energy needed to form a covalent or ionic bond between two
atoms is much greater than the electrostatic interaction between
them, the bond energy plays a dominant role in determining the
formation energy of a molecule or compound. Therefore, includ-
ing the electrostatic interaction without using a filtering function
to correctly add the processed electrostatics to the bonded inter-
actions, and using simplified Coulomb interactions can result in a
negative impact on the performance of the model.

From the test results on the remaining tasks in the MatBench
dataset, the incorporation of the attention module for long-range
interactions shows promising results. While the overall MAE of
MGT across all tasks is higher than that of ALIGNN, it ranks fifth
out of 16 models, as shown in Table S1 (Supporting Information),
and it still manages to rank in the top 10 best-performing models
across all tasks. This demonstrates its broad applicability and
competitive performance.

The QMOF32 consists of 20375 Metal Organic Framework

(MOF) structures with results from electronic structure calcula-
tions done using the functionals: PBE,39 High Local Exchange
201744 (HLE17) and Heyd–Scuseria–Ernzerhof45 06 (HSE06)
with 10% and 25% of the Hartree-Fock exact exchange. A train-
validation-test split of 16000-2000-2375 was applied and the per-
formance of the MGT on this dataset is shown in Table 3. The
performance on the prediction of bandgap values in the QMOF
database is similar to that observed in the bandgap task in the
MatBench dataset, however, we also have two additional prop-
erties, the Highest Occupied Molecular Orbital (HOMO) and the
Lowest Unoccupied Molecular Orbital (LUMO) energy levels. On
all three properties, the MGT demonstrates a difference in error
of about 0.02 eV with respect to ALIGNN.

Table 3 Performance on the QMOF v14 dataset. All the error reported

have been obtained by retraining the original models on the QMOF v14

dataset, using the train-validation-test splits reported in this paper

Property MGT ALIGNN CGCNN

Bandgap (eV) 0.240 0.224 0.330

HOMO (eV) 0.263 0.245 0.361

LUMO (eV) 0.252 0.232 0.330

Overall, the results on both datasets suggest that the attention
module can be a valuable tool for analysing long-range interac-
tions and improving the performance of graph neural networks.

3.2 Ablation Study

Each component of the MGT Encoder is ablated to further under-
stand the impact that they have on the performance of the model.
The ablation study was performed using the QMOF32 dataset for
the prediction of Bandgap, HOMO and LUMO energies. All the
parameters, other than the number of MHA, ALIGNN and EGGC
Layers, were kept the same as the ones specified in Table 1.

Table 4 Performance of each component (MHA, ALIGNN, EGGC) of

the MGT Encoder on their own, at varying number of repetitions. In the

tests performed for each component, the linear block is included after the

component being tested, while the other two components were excluded

completely.

Component
Number of Repetitions

1 2 3 4

MHA 0.4031 0.3981 0.3880 0.3816

ALIGNN 0.3224 0.2894 0.2767 0.2609

EGGC 0.3840 0.3328 0.3152 0.3016

Excluding all three modules (MHA, ALIGNN and EGGC) the
model has an error of 0.8734 eV, including even just a single MHA
shows an improvement of at least 54% bringing the error down
to 0.4031, which demonstrates the importance of these layers.
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Excluding two and using just one of the modules shows the
individual performance of these layers. Using only EGGC layers
there is an improvement of at least 56% over using no layers, and
the performance saturates at 4 layers with an error of 0.3016 eV.
Performance using only one ALIGNN layer is improved to 0.3224
eV and saturates at 4 layers with an error of 0.2609 eV. Mean-
while, the use of MHA Layers only shows a performance satura-
tion at 4 layers with an error of 0.3816 eV.

(a)

(b)

(c)

Fig. 4 Graphs showing the impact that each module within the MGT

Encoder has on model size, training and inference. (a) shows the impact

of the modules on the number of parameters. (b) shows the in�uence

that each module has on the training time of the model (results obtained

by training the model on 4 GPUs). (c) shows the impact that the modules

have on the inference time (results obtained by running the model on 1

GPU)

The effect of each layer and the coupling between them can
also be studied by varying the number of layers, while using all
modules at the same time. Due to the number of possible config-
urations and the training time only a subset of them have been
tested.

Increasing the number of MHAs within an encoder has almost
no effect on the performance on the model; using configurations
with 1, 2, 3 and 4 MHAs the MAE obtained are 0.2888 eV, 0.2880
eV, 0.2865 eV, 0.2877 eV respectively, which shows a very small
improvement when using more MHAs with a performance sat-
uration at 3 Layers. Increasing the number of ALIGNN Blocks,
on the other hand has the biggest effect on the QMOF, with er-
rors of 0.2888 eV, 0.2685 eV, 0.2661 eV, 0.2672 eV using 1, 2,
3, 4 Layers respectively, showing improvements with an increase
of Layers up to 3. Increasing the number of EGGCs, similarly to
MHA, also brings small improvements on the performance, with
errors of 0.2888 eV, 0.2828 eV, 0.2750 eV and 0.2716 eV using 1,
2, 3, and 4 Layers respectively. These results have been obtained
by changing the number of repetitions of each component while
keeping the other two components at one . Nevertheless, even
when testing for all possible combinations the results (shown in
Table S2 in the supporting information) are almost the same.

Changing the number of layers of each module, impacts not
only the performance but also size, training time and inference
time of the model. Although, getting access to more powerful
computers is becoming easier, not everyone has the latest and
best computing resources, thus, the decision to add more or less
layers is also dependent on their impact upon computational re-
quirements. From Figure 4a it can be seen that the ALIGNN blocks
are the ones that have the biggest impact on the model size, with
each block adding 2,630,656 parameters, while, the MHA and
EGGC modules add 1,052,672 and 1,315,328 respectively. Nev-
ertheless, the module that has the largest impact on training and
inference times is the MHA module, as shown in Figure 4b and
4c. Each additional MHA layer adds around 20 seconds to the
inference time, double that of each additional ALIGNN block and
quadruple the EGGC Layers, which, add around 10 second and 5
seconds respectively.

4 Conclusions

In this paper the Molecular Graph Representation (MGR) and the
Molecular Graph Transformer (MGT) were introduced and tested
on the prediction of several materials properties.. The combi-
nation of MGT and MGR introduces a methodology for includ-
ing long-range electrostatic interactions between pairs of atoms
within an arbitrary cut-off distance, here set at 12Å, by using a
simplified representation of Coulomb interactions obtained from
the Coulomb Matrix30. The MGT has achieved results in line with
the state-of-the-art models on most tasks, and in some cases per-
forming better than previously published models.While the size
and training time of the model can be a constraint for some users,
the MGT has shown capable of achieving great performance even
on tasks with smaller datasets, such as the jdft2d task in the Mat-
Bench dataset, which contains only 636 structures. Therefore,
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users have the option of reducing the training time by training
on a smaller set. Furthermore, with the modularity of the model,
its size can be reduced, making it trainable even on smaller ma-
chines, at the cost of reduced performance.
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