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Abstract: Germacranolides, secondary metabolites produced by plants, have garnered academic 
and industrial interest due to their diverse and complex topology as well as a wide array of 
pharmacological activities. Molephantin, a highly oxygenated germacranolide isolated from 10 
medicinal plants, Elephantopus mollis and Elephantopus tomentosus, has exhibited anti-tumor, 
inflammatory, and leishmanicidal activities.  Its chemical structure is based on a highly strained 
ten-membered macrocyclic backbone with an (E,Z)-dienone moiety, which is fused with an a-
methylene-g-butyrolactone and adorned with four successive stereogenic centers.  Herein, we 
report the first synthesis of molephantin via 12 steps starting from readily available building blocks.  15 
The synthesis is featured by the highly diastereoselective intermolecular Barbier allylation of the 
b,g-unsaturated aldehyde with optically active 3-bromomethyl-5H-furan-2-one intermediate and 
ensuing intramolecular Nozaki-Hiyama-Kishi (NHK) macrocyclization for the construction of the 
highly oxygenated ten-membered macrocyclic framework. This synthetic route enabled to craft 
another germacranolide congener, tomenphantopin F.  Furthermore, cycloisomerization of 20 
molephantin into 2-deethoxy-2b-hydroxyphantomolin could be facilitated by irradiation with 
ultraviolet A light (lmax = 370 nm), which opened a versatile and concise access to the related 
furanogermacranolides such as EM-2, phantomolin, 2-O-demethyltomephantopin C, and 
tomenphantopin C.  
 25 
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Introduction 
The diverse family of sesquiterpene lactones (germacranolides), which are plant secondary 
metabolites, has captured considerable attention from the natural product chemistry, medicinal 
chemistry, and synthetic chemistry communities over the years.[1-3]  Molephantin (1), a highly 
oxygenated germacranolide, was first isolated in 1973 from a medicinal herb, Elephantopus mollis, 5 
by Lee,[4] and then, found in 2012 from Elephantopus tomentosus by Liu and Dai[5] (Figure 1A). 
Molephantin (1) is known to exhibit strong in vivo anti-tumor activity in Ehrlich and Walker 256 
carcinosarcoma tumors[6] as well as anti-inflammatory and leishmanicidal activities.[7,8]  The 
molecular structure of molephantin (1) consists of a 10-membered macrocyclic core with an (E,Z)-
dienone moiety (C10-1-4), which is fused with an a-methylene-g-butyrolactone and adorned with 10 
four successive stereogenic centers (C5-8).  Tomenphantopin F (2), isolated in 2012 from 
Elephantopus tomentosus by Liu and Dai, is structurally analogous to molephantin (1).[9]  Its 
structure is based on the same 10-membered macrocyclic core with an a-(S)-methyl-g-
butyrolactone moiety and a free hydroxyl group at C8.  Other topologically relevant constituents 
found in Elephantopus mollis and Elephantopus tomentosus include furanogermacranolides such 15 
as EM-2 (2-deethoxy-2b-methoxyphantomolin) (3),[10] phantomolin (4),[11] 2-O-
demethyltomenphantopin C (5),7 and tomenphantopin C (6).[5,12]  Notably, EM-2 (3) has been 
observed to render breast cancer cells more susceptible to epirubicin when both are co-
administered, primarily by inhibiting the cells’ protective autophagy pathway.[13] Their 10-
membered macrocyclic core contains a (Z,Z)-skipped diene centered on a C2 (hemi)ketal carbon. 20 
While the biosynthetic routes of these highly oxygenated (furano)germacranolides remain 
unclear,[14] we posited that molephantin (1) could be a biosynthetic precursor of EM-2 (3) and 
other furanogermacranolides. This hypothesis is based on their intriguing topological similarity, 
suggesting a potential synthetic route involving E/Z-isomerization of the C1-C10 double bond of 
molephantin (1) to the (Z,Z)-dienone congener A and its successive (hemi)ketalization with the 25 
C5-hydroxyl group.   
 
Despite the landmark studies in the synthesis of highly oxygenated germacranolides isolated from 
different plant species such as eremantholide,[15-17] diversifolin,[18,19] and goyazensolide,[20] to the 
best of our knowledge, total synthesis of (furano)germacranolides derived from Elephantopus 30 
species has not been reported (Figure 1B).  The exception to this gap is the synthesis of 
nordeoxyelephantopin, an unnatural analogue of deoxyelephantopin derived from Elephantopus 
scaber.[21,22]  Motivated by the unique topological complexity and therapeutic potential of the 
Elephantopus-derived (furano)germacranolides, we embarked on the development of a collective 
synthetic strategy that enables divergent preparation of these congeners.[23]  The details of our 35 
synthetic studies are reported herein. 
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Figure 1. A. Germacranolides and furanogermacranolides isolated from Elephantopus mollis and 
tomentosus.  B. Highly oxygenated germacranolides derived from different plants. 
 
 5 
Result and discussion 
Our retrosynthetic approach toward molephantin (1) began with the construction of the highly 
strained C(sp2)-rich ten-membered ring framework.  This involves the construction of the C2-C3 
bond through the intramolecular Nozaki-Hiyama-Kishi (NHK)[24] macrocyclization of E-enal I 
tethered with a Z-iodoalkene, followed by oxidation of the resulting secondary alcohol (Figure 10 
2).[25]  The stereoselective construction of the a-methylene-g-butyrolactone moiety of I would be 
achieved by forging the C7-C8 bond through the Barbier allylation of b,g-unsaturated aldehyde II 
with optically active 3-bromomethyl-5H-furan-2-one III.[26-28]  We envisioned that the preparation 
of aldehyde II could be started from commercially available trimethylphosphonoacetate (7) and 
4,4-dimethoxy-2-butanone (8), whereas 3-bromomethyl-5H-furan-2-one III was anticipated to be 15 
synthesized from dimethyl 2,3-O-isopropylidene-L-tartrate (9) derived from L-tartaric acid as a 
cheap chiral source of C5 and C6, ensuring the potential scalability of the developed synthetic 
route.   
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Figure 2. Retrosynthetic analysis of molephantin (1) 
 
 
We embarked on our studies with the synthesis of aldehyde II, containing the C8-10-1-2 fragment, 5 
that could be achieved via the following three steps (Figure 3A): (i) the Horner-Wadworth-
Emmons reaction of ketone 8 with phosphonoacetate 7, providing the trisubstituted alkene 10 as 
an E/Z-mixture (71:29); (ii) DIBAL reduction of the ester moiety of 10 to give allylic alcohol 11, 
where the desired E-11 could be separated from Z-11 through the silica gel column 
chromatography; (iii) treatment of E-11 with trimethylsilyl trifluoromethanesulfonate (TMSOTf) 10 
in the presence of 2,6-lutidine[29] to afford b,g-unsaturated aldehyde 12 bearing a trimethylsilyl 
ether moiety. Due to instability of 11, it was utilized without purification for the next step (Figure 
4A). 
In parallel, optically active 3-bromomethyl-5H-furan-2-one III was synthesized in five steps from 
dimethyl 2,3-O-isopropylidene-L-tartrate (9) (Figure 3B).  Nucleophilic acyl substitution at one 15 
of the methoxy carbonyl groups of 9 with MeLi allowed for the construction of methyl ketone 13 
and subsequent Wittig iodoalkenylation proceeded stereoselectively to afford the desired (Z)-
iodoalkene 14 (>98% purity).[30]  This two-step sequence was scalable to a multi decagram scale. 
Upon mono-hydride reduction of the ester moiety of 14 with diisobutylaluminum hydride 
(DIBAL), the resulting crude aldehyde was treated with methyl acrylate in the presence of 1,4-20 
diazabicylo[2,2,2]octane (DABCO), yielding a-methylene-b-hydroxyester 15 as an 
inconsequential mixture of diastereoisomers.[31] Following the protocol developed by 
Winssinger,[32] treatment of 15 with aqueous HBr enabled the construction of optically active 3-
bromomethyl-5H-furan-2-one 16 as the major product, along with 3-bromomethyl-5,6-dihydro-
2H-pyran-2-one 16’ as the minor component. After the isolation of pure 16 through reprecipitation 25 
from diisopropylether, its free hydroxy group was protected as a methoxymethyl (MOM) ether, 
resulting in 17. 
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Figure 3. Preparation of the two key intermediates. A. Synthetic route of the aldehyde fragment 12.  B. 
Synthetic route of the key 3-bromomethyl-5H-furan-2-one 17. 
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With the two key fragment parts, b,g-unsaturated aldehyde 12 and 3-bromomethyl-5H-furan-2-
one 17 in hand, their coupling via the intermolecular Barbier allylation was performed by treating 
a mixture of 12 (ca. 2 equiv) and 17 with chromium(II) chloride (CrCl2) in dimethylformamide 
(DMF), affording a-methylene-g-butyrolactone 18 having the desired stereochemistry at C7 and 
C8 with an excellent selectivity (no other diastereomers detected in 400 MHz 1H NMR 10 
spectroscopy scale). The workup with aqueous acid resulted in concomitant deprotection of the 
trimethylsilyl ether at the C2 position (Figure 4A).  This stereocontrol could be rationalized by 
the Zimmerman-Traxler pseudo-chair transition state B between aldehyde 11 and allylchromium 
species derived from 17, in which aldehyde 11 predominantly approached from the top face of the 
sp2-hybridized C7, opposite to the C5-C6 bond.[33]  The C2-allylic alcohol moiety of 18 was then 15 
chemoselectively oxidized by manganese dioxide (MnO2), resulting in a,b-unsaturated aldehyde 
19.  Extensive screening of the reaction conditions for the NHK macrocyclization of 19 (see the 
Supporting Information) revealed that treatment of 19 with CrCl2 (4 equiv) and Ni(acac)2 (2 mol%) 
in DMSO (5 mM) at 25 °C afforded the desired 10-membered macrocycle 20 in 51% yield as a 
single diastereomer. The structure of 20 could unambiguously be confirmed by the single X-ray 20 
crystallographic analysis.  MnO2 oxidation of the bis-allylic alcohol moiety of 20 furnished 
dienone 21 and subsequent acylation of the remaining C8 hydroxyl group with methacrylic 
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anhydride gave 22. Finally, the MOM ether at C5 was deprotected using trifluoroacetic acid (TFA) 
to give molephantin (1), with its spectral data matching the reported values.[9] Furthermore, we 
took advantage of 10-membered macrocyclic intermediate 20 for the synthesis of tomenphantopin 
F (2) (Figure 4B).  Treatment of 20 with sodium borohydride (NaBH4) in MeOH enabled 
diastereoselective reduction of the exo-methylene moiety, providing a-(S)-methyl-g-butyrolactone 5 
23 as a single stereoisomer.  The stereochemistry of 23 was verified by the X-ray diffraction 
analysis.   Subsequent MnO2 oxidation of 23 facilitated the construction of dienone 24, and the 
ensuing MOM deprotection with TFA delivered tomenphantopin F (2). 

 
Figure 4.  A. Synthesis of molephantin (1).  B. Synthesis of tomenphantopin F (2). 10 
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Our next objective was to explore a method to convert molephantin (1) into the 
furanogermacranolides.  The hypothetical skeletal transformation via isomerization of the (E,Z)-
dienone moiety of 1 to the (Z,Z)-dienone [(Z,Z)-1] and its subsequent hemiketalization with the 
C5-hydroxyl group could afford 2-deethoxy-2b-hydroxyphantomolin (25), which was also 
isolated from Elephantopus mollis (Figure 5A).[34]  Inspired by the previous studies on 5 
photochemical isomerization of dienone-based sesquiterpene natural products such as tagitinin 
C,[35] asteriscunolide D[36] and zerumbone[37,38] under irradiation with UV light, we investigated 
the analogous photochemical dienone-isomerization of molephantin (1).  Indeed, we observed a 
weak absorption band at lmax = 348 nm in the ultraviolet-visible (UV-vis) spectrum of molephantin 
(1) in CH2Cl2 (0.5 mM), which was characterized as the n-p* transition of the carbonyl group of 10 
the dienone moiety (see the Supporting Information).[39]  We found that irradiation of a solution 
of 1 in degassed CH2Cl2 with ultraviolet A light (lmax = 370 nm) could generate multiple alkene 
isomers within a few minutes, as confirmed by the 1H NMR analyses, suggesting that the dienone 
isomers (E,E)-1, (Z,E)-1 and (Z,Z)-1 could be formed under photoequilibrium. We observed that 
these dienone congeners could eventually converge to 25 in a quantitative yield via 15 
hemiketalization of (Z,Z)-1.  

Hemiketal 25 served as a primary scaffold to synthesize a set of other furanogermacranolides such 
as EM-2 (3) and phantomolin (4), through ketalization by the simple treatment of 25 with the 
corresponding alcohol in the presence of a catalytic amount of p-toluenesulfonic acid (TsOH) 
(Figure 5B). On the other hand, the treatment of 25 with sodium methoxide (NaOMe) in methanol 20 
enabled the chemo- and diastereoselective addition of methanol to the exo-methylene-g-
butyrolactone moiety, yielding 2-O-demethyltomenphantopin C (5).  In turn, after the addition of 
methanol to 25 under basic reaction conditions, acidification of the solution induced successive 
C2 ketalization to afford tomenphantopin C (6). 
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Figure 5. A. Photoinduced cycloisomerization of molephantin (1) to 2-deethoxy-2b-hydroxyphantomolin 
(25). B. Collective synthesis of furanogermacranolides. 
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Conclusions 

In this work, we have accomplished the first syntheses of (furano)germacranolides isolated from 
Elephantopus mollis and Elephantopus tomentosus. The key to the stereoselective assembly of 
highly oxygenated and strained ten-membered macrocyclic core of molephantin (1) and 
tomenphantopin F (2) was the employment of the highly diastereoselective intermolecular Barbier 5 
allylation, coupled with the intramolecular Nozaki-Hiyama-Kishi (NHK) macrocyclization. In 
addition, the photoinduced isomerization of the (E,Z)-dienone moiety of molephantin (1) to (Z,Z)-
dienone followed by hemiketalization enabled the collective access to four furanogermacranolides, 
EM-2 (3), phantomolin (4), 2-O-demethyltomephantopin C (5), and tomenphantopin C (6).  Our 
future research endeavors will focus on taking advantage of the developed synthetic strategies to 10 
craft other highly oxygenated (furano)germacranolides as well as various unnatural congeners of 
molephantin (1) for the structure-activity relationship studies. 
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