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Abstract9

Mass spectral reference libraries are fundamental tools for compound identification in electron-10

ionization mass spectrometry (EI-MS). However, the inherent complexity of mass spectra and the11

lack of direct correlation between spectral and structural similarities present significant challenges in12

structure elucidation and accurate peak annotation. To address these challenges, we have introduced13

an approach combining CFM-EI, a fragmentation likelihood modeling tool in EI-MS data, with a14

multi-step complexity reduction strategy for mass-to-fragment mapping. Our methodology involves15

employing modified atomic environments to represent fragment ions of super small organic molecules16

and training a transformer model to predict the structural content of compounds based on mass and17

intensity data. This holistic solution not only aids in interpreting EI-MS data by providing insights18

into atom types but also refines cosine similarity rankings by suggesting inclusion or exclusion of19

specific atom types. Tests conducted on EI-MS data from the NIST database demonstrated that our20

approach complements conventional methods by improving spectra matching through an in-depth21

atomic-level analysis.22

1 Introduction23

Chemical analysis fundamentally hinges on structural elucidation, a process in which mass spectrometry24

(MS) plays a critical role. Despite a plethora of literature, identifying small molecules from their mass25

spectra remains an unsolved problem due to its complicated nature [1]. Electron Ionization Mass Spec-26

trometry (EI-MS) is particularly notable for small-molecule investigation, often used in tandem with27

Gas Chromatography-Mass Spectrometry (GC-MS) setups. This technique ionizes molecular samples at28

a standardized ionization energy, typically set at 70eV, resulting in a mass spectrum that represents a29

frequency distribution of ions based on their mass-to-charge (m/z) ratio. While the key feature of EI-MS30

is its ability to generate fragment-rich mass spectra, a limitation is the low abundance or absence of the31

molecular ion, which is essential for accurate calculation of elemental compositions [2].32

With the advancements in artificial intelligence (AI) and machine learning (ML), there is a growing33

interest in leveraging AI techniques to predict molecular structures directly from spectra [3–6] and vice34

versa [7–9]. There are also methods predicting molecular fingerprints from mass spectra followed by35

database search using fingerprint similarity [10–13]. Spectra-to-structure prediction faces challenges36

due to the limited size of available training sets, as only thousands of small molecule MS data are37

publicly available [14]. These end-to-end approaches currently have low accuracy and are difficult for38

practitioners to incorporate into their existing workflows. A widely adopted strategy for molecular39

identification involves juxtaposing a sample’s mass spectrum against experimental or in-silico libraries.40

Spectra searching aims to match compounds with library entries for exact identification or to provide41

structural clues for similar compounds. Consistent and fragment-rich spectra obtained by EI-MS enhance42

the effectiveness of spectra searching, making it the most widely used method for molecular identification.43

Although spectra searching is the preferred approach for EI-MS interpretation, it suffers from a44

coverage problem: If the query spectrum is outside of the library domain, the correct identification can45

be overly challenging [15]. This is an issue in practice, since existing mass spectral reference libraries, such46
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as the NIST/NIH/EPA MS database [16], Wiley Registry of Mass Spectral Data [17], and MassBank [18],1

only contain hundreds of thousands of reference spectra. One strategy to alleviate the coverage problem is2

augmenting existing libraries with model-generated synthetic spectra; however, the high computational3

cost of current prediction methods has limited their use in practical applications [19, 20] Recording4

additional spectra for more molecules can help mitigate this issue; for instance, NIST updates its library5

every three years, adding approximately 20K new spectra each time. The inclusion of new molecules6

in these libraries is often restricted to those of widespread interest, leaving out many newly synthesized7

compounds.8

The accuracy of library matching largely depends on how well the metric reflects the true similarity9

between the query and reference spectra, assuming reasonable measurement noise (0.4-0.005 Da for low10

to high resolution measurements) in obtaining the query spectrum [21]. Various search algorithms and11

similarity metrics have been developed over the years to improve this process. Initially, algorithms12

like the dot-product [22], and probability-based matching [23] were introduced. Further, metrics such as13

normalized and absolute euclidean distance [24, 25], Hertz similarity index [26] representing the weighted14

average ratio, and neutral-loss matching [27] were also developed. Other significant advancements feature15

Fourier- wavelet- transform-based and partial correlation-based measures, introduced by Koo et al. [28]16

and Kim et al. [29], respectively. Among all, the weighted cosine similarity (defined by the standard17

dot-product), along with its variants such as the simple match factor and identity match factor, is widely18

adopted in mass spectrometry for molecular identification [30]19

High-quality spectrum libraries, effective matching algorithms, and accurate peak assignments (an-20

notations) are prerequisites for achieving reliable results in structural elucidation. As EI-MS libraries21

expand, it becomes increasingly difficult to accurately match query spectra with the vast number of22

reference spectra. With the high complexity of mass spectra in mind, there are instances where spectra23

matching may not yield insightful results, as spectral similarity does not necessarily imply structural sim-24

ilarity. We propose a holistic solution for this problem by using the fragment ions of super small organic25

molecules generated by CFM-EI fragmentation modelling tool [31] for electron ionization. We first form26

a multi-step one-to-many (mass-to-fragment) complexity reduction plan then train a transformer model27

to predict structural content of the compound given mass and intensity information. Model outcomes28

provide insight into atom-types to interpret EI-MS data more accurately by suggesting corrections to29

the library search results.30

2 Result31

Spectral library search stands as the most widely employed technique for structural elucidation. If the32

database does not contain the sample compound, we look for spectra that are similar to deduce the33

structural features of the unknown compound. Library searches typically link spectral to structural34

similarity—a trend supported by Demuth et al. [32]. We evaluated the spectra similarity searches’35

interpretative power, using structures and mass spectra of ”unknown” compounds, and yielding hit lists36

(top-1 and top-10). The figure 1 presents the outcomes of a library search of 10K mass spectra from the37

NIST main library, showing disparities between spectral and structural similarities.38

Figure 1a highlights a specific instance where a high weighted cosine similarity (0.86) contrasts with39

a low Tanimoto similarity (0.22), suggesting that high spectral similarity does not necessarily equate to40

structural similarity. In fact, we observed this as a visible trend in the scatter plot (Figure 1b), where41

the correlation between weighted cosine similarity and structural similarity (ECFP2 [33]) for top-1 hits42

is weak with Spearman and Pearson correlation coefficients of 0.58 and 0.54. We also conducted a hy-43

pothetical re-ranking of the top-10 hits for 10K query molecules by retrospectively applying structural44

information. This adjustment revealed an average of 2.8 swaps and a maximum of 6.3 swaps in the45

cosine rankings, indicating that, had the structures been known and structural similarity been the basis46

for ranking, it would have been preferable to re-rank the spectral similarity hit lists. Structural consid-47

erations thus necessitate careful hit list inspection and potential re-ranking for more accurate structural48

interpretation.49

The deduction of key aspects of a given compound such as molecular formula, structural features50

like side groups or substructures, and overall molecular structure, heavily relies on the accurate anno-51

tation of mass spectra [35, 36]. Incorrect annotations are likely to amplify structural dissimilarities,52

prompting a reevaluation and correction of the molecular formula annotations. For example, identifying53

the most abundant fragment, typically the base peak that signifies the most stable fragment, is crucial54

for ascertaining a compound’s molecular formula. However, precise molecular formula determination55

based solely on mass is arduous, as multiple molecular formulae can be assigned within a 2 millidalton56
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Figure 1: Discrepancy between spectral and structural similarities in EI-MS data analysis. (a) A repre-
sentative molecule querying against the reference spectra in the NIST main library, the candidate was
retrieved at rank 1 exhibited a spectral similarity of 0.89. This is in contrast to the structural similarity
score of 0.20 if compared to the structure of the query molecule. (b) Correlation scatter plot for the
top-1 hits from a 10K mass spectra dataset. The data emphasizes the need for reevaluation of library
search hits when structural similarity is a basis in the elucidation process.

window, which falls within the instrument’s inherent measurement error [37]. Therefore, additional data1

should be integrated into the analysis like fragmentation patterns. This process involves generating all2

possible fragments for a given mass that could explain the observed data. Here, we adopted the CFM-EI3

fragmentation to explore all candidate fragment ions.4

In Figure 2a, the workflow of fragment ions collection is depicted. In our analysis, we exclusively5

focused on experimental EI-MS data extracted from the The National Institute of Standards and Tech-6

nology (NIST) commercial mass spectral library (version 20), consisting of 350,643 spectra for 306,8697

compounds. Employing CFM-EI [31, 38], we cataloged an extensive fragmentation of super small (≤3008

Da) 93,324 NIST molecules. Developed as an extension of Competitive Fragmentation Modeling (CFM),9

CFM-EI has been tailored to predict EI-MS spectra, and its superior performance over other established10

tools like MetFrag [39] and Mass Frontier [40] in compound identification tasks has been demonstrated11

by the developers. The CFM-EI estimates the likelihood of any given fragmentation event occurring,12

thereby predicting those peaks that are most likely to be observed.13

3
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Figure 2: Fragmentation and multi-step complexity reduction plan for EI-MS data interpretation (a)
Schematic representation of the data processing workflow, beginning with EI-MS data selection from the
NIST Main Library, focusing on compounds with Mw ≤ 300 Da, followed by fragmentation prediction
using CFM-EI, and subsequent ion collection. The bottom panel illustrates the initial reduction applied
to the pool of fragment ions via similarity thresholding using the Tanimoto coefficient at ECFP2 level.
(b) Frequency-based filtering of atom types (depicted as SMARTS [34]), followed by the process of
customizing atomic environment representations to suit analytical needs. The spider chart and adjacent
table detail the modifications to AE mappings and the criteria for isotopic abundance-based intensity
cutoffs, essential for elements such as S, Cl, and Br.

At its core, it utilizes a probabilistic generative model to simulate the fragmentation process in the1

mass spectrometer, scrutinizing and breaking down each bond in a molecule in a breadth-first manner2

to explore all possible fragment states. It assigns a ’break tendency’ value to the transition from one3

fragment state to another, calculated based on the chemical characteristics of the bond undergoing4

fragmentation. The algorithm then focuses on fragments with a high likelihood, allowing it to generate5

further derivatives and, ultimately, the predicted spectrum. It is important to note that CFM-EI is not6

an actual simulation of the fragmentation process but rather an annotated interpretation of the spectrum,7

where each peak is labeled with corresponding molecular fragments. Considering there are more than a8

hundred peaks on average in experimental EI mass spectra, in-silico fragmentation represent the same9

spectra data with 27 in-silico peaks on average. In our case, CFM-EI process yielded a staggering10

2,524,662 fragments, of which 858,499 were distinct, indicating a dataset expansion by more than 911

times. For instance, at an m/z value of 150, our dictionary contained 5,677 potential ion fragments12

expressed as SMILES.13

To address the amplified complexity, we first applied a structural pairwise similarity cutoff to reduce14

redundancy among ion fragments. We utilized Tanimoto metric with Morgan fingerprint, configured15

with a radius of 1 and a bit vector length of 1024. Formally, letting I be the collection of ions, where16

each ion i ∈ I is associated with a mass-to-charge ratio (m/z) that belongs to the integer domain, we17
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define a function Tc(i, j) to compute the Tanimoto coefficient between any two ions i, j ∈ I. Then, for1

all pairs (i, j) where i, j ∈ I and i ̸= j, if sim(i, j) ≥ 0.80, we removed either i or j from I. For m/z2

value of 150, from nearly 16 million pair comparisons, we identified 280 pairs above the threshold of 0.83

and eliminated 241 of them. Our observation reveals that highly similar ions were not as common as4

anticipated, particularly at lower mass-to-charge ratios. We were able to discard only two ions out of5

377 fragments for m/z at 70.6

Closer inspection of ion structures showed the presence of atom-type level intricacies on the fragment7

dataset. We filtered specific atom types and corresponding ions, guided by their frequency of occurrence.8

This elimination was absolutely necessary and, concomitant with the inspection, allowed us to scrutinize9

for further refinement possibilities. As depicted in generalized SMARTS notations [34] in Figure 2b,10

our attention was particularly on singletons, doubletons, and those with less common features such as11

aromatic phosphorus and selenium, heavy metals, and ions predisposed to negative charges, exemplified12

by [[O-];!R;D1]. Consequently, from the initial dataset of ≈ 900,000 ions, we purged 200 atom types13

that were present in 8,685 ions.14

Figure 3: Quantitative analysis on mass-to-fragment mapping. The plot illustrates the number of frag-
ments per m/z value before and after the application of our reduction procedure, showing an average
complexity reduction of approximately 34.0 percent across the spectrum. For m/z at value 150, starting
with 5,677 fragments, the complexity was reduced up to 38.3 percent.

We have represented fragment ions by their constituent atomic environments (AE), a method whose15

representational effectiveness and applicability in AI models were demonstrated in our previous stud-16

ies [41–43]. Our dataset curation adhered to specific rules aimed at maintaining informational balance in17

AE representation, including avoiding heavy atom connections, preserving ring structures and aromatic-18

ity, and neutralizing positive charges. This curation is depicted in the spider graph (see Figure 2b) for19

the most common elements in the consolidated 217 reduced AE (RAE) mappings derived from an initial20

broader set. For instance, 19 nitrogen-centric AEs were collapsed into 9 RAEs through this protocol.21

The chemical elements covered by our fragment dataset are limited to C, N, O, S, P, Si, B and halogens,22

but enough to cover more than 94% of druglike molecules based on the ChEMBL database [44, 45].23

Lastly, our isotopic abundance evaluation, especially for elements like chlorine, bromine, and sulfur,24

necessitated an adjustment in peak cutoff values regarding the peak density. We implemented an intensity25

cutoff of 0.1 if they were present in the mass spectra, compared to a standard cutoff of 0.4. While these26

elements’ isotopic patterns aren’t always observable, when available, they offer substantial insight. In27

Figure 2b, we summarize the abovementioned multi-step complexity reduction process. After the whole28

reduction procedure, we quantified the so-called complexity reduction, average number of fragments per29

m/z, as 34.0 percent (see Figure 3). In the subfigure of Figure 3, the initial count of 5,677 fragments at30

5

https://doi.org/10.26434/chemrxiv-2024-vrqzf ORCID: https://orcid.org/0000-0002-9088-0915 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-vrqzf
https://orcid.org/0000-0002-9088-0915
https://creativecommons.org/licenses/by-nc-nd/4.0/


m/z value of 150 was reduced by about 38.3 percent.1

Figure 4: Schematic of the transformer model for converting EI-MS spectral data into structural in-
formation. Peak intensities are encoded as logRanks and combined with m/z values as inputs to the
transformer encoder. The decoder then predicts structural content as blocks of reduced atomic envi-
ronments (RAEs). The model accuracy is showcased in the histogram, where the average Tanimoto
coefficient (Tc) of 0.73.

Our model operates on the principle of interpreting each peak not as a unique fragment, but as an2

assembly of RAEs. This allows for a granular breakdown of each fragment into its constituent atom-3

types. Figure 4 demonstrates our method of translating spectral data into structural information using a4

transformer model [46, 47]. Peaks are assigned a logRank, a logarithmic intensity measure ranging from5

1 to 7. This system, adapted from the work of Cao and Guler [14], is designed to minimize parameter6

counts and prevent overfitting, offering a more refined approach than traditional intensity rankings.7

Inputs to the transformer model consist of m/z values, intensity indicators (’i’), and their corresponding8

logRanks. Target data is represented by blocks of RAEs, which are groupings of atom types that make9

up the observed fragment ions, as illustrated in the output token form. The PyTorch machine learning10

library was used for constructing and training the transformer model [48, 49].11

The heart of the model is the transformer decoder, which takes the encoded context and predicts12

output probabilities for each input token, essentially ’decoding’ the tokens that carry both mass and13

intensity information into the AE blocks. These generated blocks undergo post-processing—aggregated,14

decomposed, and organized into a set—to construct an atom-type fingerprint that predicts the molecular15

structure. We assessed the model’s accuracy by computing the similarity between predicted content and16

the actual structure. The histogram reveals the predictive accuracy as an average Tc of 0.73, a robust17

indicator of similarity, considering that Tc of 0.35 was significant with a p-value less than 0.01. The18

results of this model provided the foundation for refining spectral similarity rankings through in-depth19

analysis at the atomic level.20

Figure 5 illustrates the holistic nature of this model as it collects information from each peak and col-21

lectively elucidate the structural content. Since atom types are conserved across fragments (environments22

may change due to bond breaking), the model assesses the frequency of each RAE within the spectrum.23

For example, in Figure 5, predicted atom types that are recurrent across multiple fragments for the given24
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Figure 5: Visualization of how the model synthesizes information from individual peaks to predict
structural content. The figure depicts 17-peak in-silico spectrum of a query molecule alongside predicted
atom types with their occurrence. Color coding indicates RAEs common to both the query molecule
and fragments (Red) and those unique to fragments (Purple).

in-silico spectrum with 17 peaks are shown. An atom type supported by a majority of fragments would1

be deemed highly probable to be part of the true structure. Conversely, an atom type supported by only2

a few fragments would raise doubts about its presence, potentially pointing to an incorrect annotation.3

By exploiting the interconnectedness and richness of fragment ions, the output of the model can be seen4

as a probabilistic representation of the molecular content, where the likelihood of each RAE’s presence5

is quantified. The results allow us to fine-tune spectral similarity rankings, suggesting targeted additions6

or removals of atom-types for improved accuracy.7

Three possible cases were identified through review of the results, as shown in Figure 6. In the first8

case, the query molecule N#CCN=C=S was matched with a top-1 hit that exhibited a spectral similarity score9

of 0.831. The identified RAE content of the top-1 hit, comprising ’[CH3]’, ’[S]’, ’[CH2]’, ’[C]’,10

’[CH]’, did not include nitrogen. This was in contrast to our model’s prediction, which included nitrogen,11

corroborated by multiple peaks and specifically indicated by ’[N]’: 4. In the second case, the library12

search for the the molecule CCCCCCCCC(C)NCCCC yielded a top-1 candidate with a spectral similarity score13

of 0.869. The RAE content of the top-1 hit encompassed a variety of atom-types, including ’[CH3]’,14

’[C;R]’, ’[CH2]’, ’[C]’, ’[O;R]’, ’[N]’, ’[CH2;R]’, and ’[CH;R]’, indicating the presence of15

an oxygen atom within a ring structure ’[O;R]’. Our model, however, did not predict oxygen and16

instead assigned scores to other atom types: ’[CH3]’: 21, ’[CH2]’: 24, ’[NH2]’: 6, ’[C]’: 2,17

’[CH]’: 12, ’[NH]’: 1. The absence of ’[O;R]’ in our prediction suggested that oxygen, especially18

within a ring, may not be a part of the molecule’s true structure.19

The third case examined was an organosulfur compound CN(C)C(=S)NC(=S)N(C)C. The top-1 hit20

included silicon and oxygen within the following content ’[CH3]’, ’[Si]’, ’[O]’, ’[N]’. In contrast,21

our model featured sulfur at five peaks (’[S]’: 5 ) and omitted silicon suggesting that sulfur is likely22

a part of the actual structure, while silicon is a result of an erroneous annotation. These examples23

highlighted the potential of our method to refine structural hypotheses by enabling the inclusion of24

atom-types that are supported by the model and the exclusion of those that are not. The content25

generated by our model introduces an additional layer to refine spectral similarity results to further26

increase the identification rates.27

There are several limitations of this study. Our model was trained on spectra of super small molecules28
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(Mw ≤ 300 Da). This focus inherently introduces a limitation: relaxing the molecular weight cut-1

off beyond 300 Da tightens the trade-off, as it amplifies the complexity of mass-to-fragment mapping.2

Consequently, while the model exhibits robust performance within its specified domain, its applicability3

to larger molecules or to more complex scenarios like MS/MS tandem mass spectra is currently limited.4

Furthermore, our fragment dataset, confined to elements C, N, O, S, P, Si, B, and halogens, provides5

sufficient coverage only for drug-like small organic molecules. Despite these limitations, the model6

finds strength in the sufficient number of peaks present in idealized in-silico spectra and fragmentation7

patterns. Peaks below 300 Da provides adequate information to refine library search rankings once8

assessed collectively because there are several dozens of peaks contributing to the overall structure in EI-9

MS. In inference mode, especially with larger spectra, the model relies on the lower end of the spectrum10

for structural content prediction.11

3 Conclusion12

Mass spectral reference libraries provide a means of identification for compounds. In EI-MS data, where13

the molecular ion peak is typically missing, conducting a thorough library search becomes even more14

important. In addition to the absence of a direct correlation between spectral similarity and structural15

similarity, the inherent complexity of mass spectra introduces a significant challenge for structure eluci-16

dation, specifically for accurate peak annotation. In this work, we have introduced a follow-up analysis to17

library search, employing atomic environments, CFM-EI fragmentation tool, neural machine translation,18

and structural similarity concept. This approach aims to refine cosine similarity rankings of unknown19

EI-MS data, offering a holistic solution to the challenges of structure elucidation. To achieve this, we20

utilized reduced atomic environments (unconnected, stand-alone substructures) to represent fragment21

ions. Additionally, we used CFM-EI, an approach that models how a molecule might fragment within22

the collision cell of the mass spectrometer.23

In many instances of EI-MS data, peaks are not uniquely identifiable, leading to ambiguity in struc-24

tural elucidation. We developed a multi-step plan reducing the one-to-many (mass-to-fragment) mapping25

complexity. Subsequently, we trained a transformer model to predict the structural content of unknown26

peaks using their mass and intensity information. Each peak, through its assigned AE blocks, contributes27

to a unified understanding of the compound’s structure at the atomic level. The interconnectedness of28

fragment ions is crucial because it implies that the peaks corroborate each other’s content. The outcomes29

of the model undergo post-processing to yield scores for each atom-type, thereby facilitating targeted30

corrections to the results of the library search. Tests on EI-MS data from the NIST database have31

demonstrated that predicting the structural content in conjunction with spectral hits helps to reduce32

this uncertainty, narrowing down the range of potential candidates for consideration.33
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Figure 6: Case studies illustrating the refinement of hit lists using our model’s predictions. (a) The
top-1 library hit for a query molecule lacks nitrogen, whereas our model predicted its presence within
four peaks. (b) In the case of a larger organic molecule, the model predicts a rich content of carbon and
nitrogen atoms, unlike the top-1 hit which includes oxygen—a discrepancy in the analysis. (c) For an
organosulfur compound, the spectrum reveals sulfur atoms as predicted by our model, whereas silicon,
present in the top-1 hit, is absent, indicating a potential annotation error.
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