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ABSTRACT: A detailed mechanistic study of the Z-selective allylic functionalization via thianthrenium salts is presented. We 
have leveraged kinetic analysis and deuterium labeling to concretely determine each of the elementary steps involved and 
used computational methods to establish a high-resolution mechanistic model to rationalize the observed reactivity and se-
lectivity. We find that the reaction proceeds via a rate- and stereodetermining allylic deprotonation of an alkenylthi-
anthrenium species. The Z-configuration of the resultant allylic ylide is translated into the final Z-allylic amine product 
through a sequence of subsequent fast and irreversible steps: protonation to form a Z-allylic thianthrenium electrophile fol-
lowed by regioselective substitution by the nucleophile. In the stereodetermining deprotonation step, computational studies 
have identified a series of stabilizing non-bonding interactions in the Z-alkene forming transition state that contribute to the 
observed stereoselectivity.

Stereoselective methods to make alkenes have proven 
to be valuable tools for the synthesis of complex mole-
cules.1,2 However, established approaches to prepare al-
kenes are skewed towards E-selective methods and prepa-
ration of Z-alkenes remains generally more challenging. In-
deed, Z-alkenes cannot be generated selectively via thermo-
dynamically-controlled processes since the E-stereoisomer 
is often more thermodynamically favorable due to minimi-
zation of steric interactions.3 This restriction can be circum-
vented by kinetically-controlled processes, but successful 
approaches must either offset the energetic penalty from 
1,3-allylic strain in the Z-alkene-forming transition struc-
ture or introduce new impediments to the E-alkene-forming 
pathway.4 While several Z-selective methods to prepare al-
kenes have been established (e.g. Wittig olefination and 
semi-hydrogenation), the development of new protocols to 
access Z-alkenes remains an area of considerable contem-
porary interest.5–8 As new distinct approaches to synthesize 
Z-alkenes continue to emerge, elucidating the origin of ste-
reocontrol in these processes is of significant importance.9–

14 In addition to establishing a fundamental mechanistic un-
derstanding of these new transformations, identification of 
the factors that control reactivity and selectivity in these re-
actions can, in turn, provide a blueprint for rational im-
provements to reaction conditions.15,16 

Recently, independent reports from our group alongside 
Shu and co-workers introduced a new class of transfor-
mations to prepare an array of Z-alkene products (Figure 
1).17,18 In these methods, alkenes are first transformed into 
thianthrenium electrophiles19–21 which are then treated 
with base and a nucleophile to furnish allylic functionalized 
products with exquisite regioselectivity and surprising Z-
selectivity. More recently, Soós and Varga cleverly exploited 
this allylic functionalization reactivity to introduce a new 
method to prepare Z-enals in the context of natural product 

synthesis.22,23 Taken together, these advances suggest this 
new reactivity manifold will ultimately lead to a general 
platform for formal Z-selective allylic C(sp³)–H functionali-
zation. However, the mechanism of this process remains un-
known. Confoundingly, the minimal mechanistic data pre-
sented to date are consistent with multiple mechanisms be-
cause the focus of the experiments has been establishing ki-
netic competence of thianthrenium species that could po-
tentially interconvert. Consequently, the elementary steps 
of the reaction remain opaque which precludes the elucida-
tion of the origin of stereocontrol.24,25 Overall, we posit that 
constructing a detailed mechanistic model for this transfor-
mation will be a requisite step to translate the reactivity 
into a broadly-applicable strategy in Z-alkene synthesis.  

Herein, we present an experimental and computational 
mechanistic investigation that uncovers the elementary 
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steps involved in transforming thianthrenium salts into al-
lylic amine products using amine nucleophiles. A complete 
mechanism that is consistent with these new experimental 
and computational findings (vide infra) is presented in Fig-
ure 2. The reaction proceeds through an isolable alkenylthi-
anthrenium intermediate B that is generated upon base-in-
duced elimination of dicationic adduct A.17,20,26–28 Next, B 
undergoes an allylic transposition to allylic thianthrenium 
electrophile D via rate determining formation of allylic ylide 
C. These steps are rendered irreversible through rapid and 
exergonic substitution of D by the nucleophile to afford the 
final linear Z-allylic product (P). Below, we will delineate 
the experimental and computational data that lead to the 
conclusion of these outlined elementary steps.  

Since both dicationic adducts and alkenylthianthrenium 
salts have been established as kinetically competent for al-
lylic functionalization,17,18 our first task was to determine 
which thianthrenium species to employ for our subsequent 
mechanistic studies. To this end, we electrochemically-gen-
erated a pool of metastable dicationic adducts 1 and 2 using 
4-phenyl-1-butene and thianthrene (Scheme 1). Upon treat-
ment with base in the absence of amine nucleophile, we ob-
served rapid and quantitative elimination of dicationic ad-
ducts 1 and 2 to a solution-stable alkenylthianthrenium in-
termediate 3.29 Upon subsequent addition of N-methylben-
zylamine nucleophile, we observed that the conversion of 3 
corresponded to the formation of allylic amine product 4. 
Furthermore, alkenylthianthrenium salt 3 was the only thi-
anthrenium species detected by 1H NMR spectroscopy dur-
ing the allylic amination reaction. No detectable steady-
state concentration of other thianthrenium species was ob-
served (e.g. dicationic adduct A or allylic thianthrenium salt 
D). Crucially, however, these data do not exclude that tran-
sient thianthrenium electrophiles may be generated during 
allylic amination. These observations are consistent with 
the alkenylthianthrenium salt being a convergent interme-
diate as proposed in previous mechanistic hypotheses.17,18 
With these initial mechanistic insights, we opted to skip the 
highly exothermic elimination step (ΔH = –27.0 kcal/mol; 
see Fig. S76) of dicationic precursors to simplify the reac-
tion conditions.30,31 Thus, we conducted our experimental 
investigations using bench-stable alkenylthianthrenium 
salt 3 to streamline subsequent mechanism analyses 
(Scheme 2).  

We next set out to identify the model amine nucleophile 
that would enable the clearest mechanistic analysis. We rec-
ognized that a secondary aliphatic amine, employed in our 
initial disclosure of this reactivity, could complicate kinetic 
analysis by serving as not only the nucleophile but also the 
base.32 Indeed, when alkenylthianthrenium salt 3 was 
treated with N-methylbenzylamine in the absence of exoge-
nous base, we observed allylic amine product 4 in 52% yield 
and 5:1 Z:E (Scheme 2). We hypothesized that an arylamine 
would be an insufficient base for the reaction, deconvolut-
ing the kinetic analysis with respect to the amine 

nucleophile. To test this hypothesis, we treated 3 with N-
methylaniline, with and without amine  base (i-Pr2NEt).17 
These experiments revealed that in the absence of exoge-
nous base, no conversion of 3 was observed. However, in 
the presence of i-Pr2NEt base, we obtained a 57% yield of 
the desired product, 5, with 6:1 Z:E selectivity (Scheme 2). 
Taken together, these results indicate that aniline acts only 
as a nucleophile in this process. Overall, we identified the 
simplest components necessary for a mechanistic study of 
the reaction: alkenylthianthrenium salt, N-methylaniline 
nucleophile,33 and base (i-Pr2NEt).34  

With a model reaction in hand, we set out to elucidate 
the elementary steps of the amination reaction using kinetic 
experiments. We found zero-order dependence of the initial 
reaction rate on the concentration of the N-methylaniline 
nucleophile (Figure 3A). Thus, we conclude that the rate-de-
termining step occurs prior to nucleophilic substitution. 
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Next, kinetic experiments revealed a first-order depend-
ence on the alkenylthianthrenium salt 3 (Figure 3B) as well 
as a first-order dependence on trialkylamine base (i-
Pr2NEt) (Figure 3C). These data are consistent with rate-de-
termining allylic deprotonation of the alkenylthi-
anthrenium salt. Lastly, we questioned if the conjugate acid 
of i-Pr2NEt, which is formed throughout the reaction, plays 
any kinetic role through protonation of a thianthrenium 
ylide intermediate. Thianthrenium ylides have been postu-
lated as key intermediates in both the mechanistic model 
presented herein as well as those previously suggested in 
the literature. When varying the concentration of exoge-
nous i-Pr2NHEtPF6, we observed no impact on the initial 
rate of allylic amine 5 formation (Figure 3D). These obser-
vations are inconsistent with previously proposed mecha-
nisms in which a dicationic adduct is transiently formed 
from alkenylthianthrenium salts followed by nucleophilic 
substitution or elimination.35 The kinetic analyses afford an 
experimental rate constant of 3.7±0.8 x 10-2 M-1min-1 for this 
reaction (see Table S13). Overall, these data support depro-
tonation of the alkenylthianthrenium species being in-
volved in the rate-determining step and exclude an array of 
alternative scenarios (see SI for details).  

 Next, we conducted deuterium labeling experiments to 
support the rate-determining allylic deprotonation of the 
alkenylthianthrenium species by the base. As expected, a 
primary kinetic isotope effect (KIE) of 7.46±0.53 was ob-
served in a two-pot competition experiment between 3 and 
3-d2 (Scheme 3A). This large primary KIE was consistent 
with the KIE of 7.31±1.26 obtained in a one-pot competition 
experiment (Table S18). These results support that allylic 

C(sp3)–H/D bond breaking is involved in the rate-determin-
ing step for the transformation of alkenylthianthrenium 
salts into allylic functionalized products.36 These KIEs com-
bined with reactant orders are inconsistent with rate-deter-
mining conjugate-addition-type mechanisms, which have 
been observed with alkenylthianthrenium salts in other 
synthetic context (see SI).37,38 To probe the irreversibility of 
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this key allylic deprotonation step, the reaction was con-
ducted with an excess of deuterium oxide as a deuterium 
source (Scheme 3B).39,40 We reasoned that an irreversible 
allylic deprotonation would give no deuterium incorpora-
tion into the corresponding alkenyl position of the allylic 
amine product. Experimentally, no deuterium was detected 
in the site of initial C(sp3)–H bond breaking, consistent with 
the allylic deprotonation being irreversible in the presence 
of a nucleophile (Scheme 3B). Furthermore, this result is in-
consistent with a Curtin-Hammett scenario involving rapid 
and reversible isomerization between the alkenylthi-
anthrenium salt and an allylic thianthrenium tautomer.41  

Having identified the rate-determining step, we next 
probed each subsequent elementary step to establish a 
complete mechanistic picture. First, to validate the for-
mation of the ylide D intermediate, we examined the allylic 
amine product formed with the addition of deuterium oxide 
to the reaction conditions. The site that corresponds to the 
proposed allylic thianthrenium ylide intermediate exhib-
ited 53% deuterium incorporation (Scheme 3B).42 This ca. 
50% value corresponds to incorporation of a single deu-
teron and is consistent with irreversible ylide C protonation 
due to fast nucleophilic substitution of the resultant allylic 
thianthrenium electrophile D. To further support this pro-
posal, we subjected α-deuterated alkenylthianthrenium salt 
3-d to the amination conditions (Scheme 3C). Allylic amine 
product 5-α-d derived from deuterium-labeled alkenylthi-
anthrenium salt 3-d shows no deuterium depletion at the 
corresponding position. Taken together, these results are 
consistent with transient formation of a non-stabilized al-
lylic thianthrenium salt43 followed by rapid and irreversible 
trapping of this species by the amine nucleophile.  

The elementary steps outlined thus far in this mechanis-
tic study invoke the substitution of an allylic thianthrenium 
electrophile despite no observation of branched allylic 
amines that are common side products for allylic halide sub-
stitution reactions.44,45 Notably, transformation of thi-
anthrenium salts under these conditions is consistently re-
gioselective for linear products, with only isolated excep-
tions with thianthrenium salts derived from sterically hin-
dered alkene precursors.46 To evaluate whether substitu-
tion behavior of the proposed allylic thianthrenium species 
is consistent with these observations,47 we conducted dis-
persion-corrected density functional theory (DFT) calcula-
tions. These calculations indicated that the Z-allylic electro-
phile undergoes substitution with high regioselectivity for 

SN2 over SN2’ (Figure 4, ΔΔG‡ = 3.2 kcal/mol).48,49 These 
computational data are consistent with the experimental 
observations and, accordingly, support the intermediacy of 
an allylic thianthrenium intermediate.  

With a complete sequence of elementary steps estab-
lished,50 we wanted to build and validate a computational 
model of the process with the ultimate goal of identifying 
the stereodetermining step. Our computational studies pre-
dict that the allylic deprotonation has the highest energetic 
barrier, consistent with experimental data that assign this 
as the rate-determining step (Figure 5). After deprotona-
tion, the subsequent elementary steps are each downhill in 
energy and ultimately rendered irreversible by highly exer-
gonic nucleophilic displacement of the allylic thianthrenium 
intermediate. Notably, consistent with experimental obser-
vations, these calculations indicate that the deprotonation 
to form the allylic thianthrenium ylide occurs with Z-selec-
tivity (ΔΔG‡ = 2.3 kcal/mol, see SI for details). While the 
computational model appears to identify ylide formation as 
stereodetermining, we recognized that this would be an un-
usual scenario because it requires that the allylic anion is 
configurationally stable. However, in stark contrast to the 
low rotational barriers of simpler allylic anions, our calcu-
lations predict an unsurmountable barrier (~56 kcal/mol, 
Fig. 5 inset) for Z/E-isomerization of the allylic thi-
anthrenium ylides. This high rotational barrier precludes 
isomerization between C_Z and C_E at room temperature 
(Figure 5). The origin of this high barrier is the direct con-
sequence of localized alkene and ylide character as opposed 
to the anion being fully delocalized through the π-system 
(see Fig. S71). Overall, these data indicate that allylic depro-
tonation of the alkenylthianthrenium species sets the stere-
ochemistry of the final allylic functionalized product. This 
stereodetermining step is a rare example of Z-selective 
deprotonation that enables Z-alkene synthesis.  

To establish the origin of Z-selectivity, we next took a 
closer look at the stereodetermining allylic deprotonation 
step (i.e. formation of C_Z and C_E intermediates). Given 
that the key deprotonation step is highly endergonic (~15 
kcal/mol uphill in energy), we reasoned that, according to 
Hammond’s postulate, the energy of the late transition state 
would be controlled more by the factors influencing the al-
lylic ylide stability than the alkenylthianthrenium starting 
material. As shown in Figure 5, calculations show a slight 
preference for the Z-isomer (~0.4 kcal/mol) of the allylic 
thianthrenium ylide in comparison to the E-allylic ylide.51 
This energetic preference for the Z-isomer reflects the con-
formational preference of simpler, freely-rotating allylic an-
ions, which have an established preference for the Z-confor-
mation.52–57 Previous studies into allylic anion systems have 
put forward various explanations for this preference based 
on either electrostatic considerations58 or non-bonding in-
teractions,59–62 although other possibilities have not been 
ruled out.63 Regarding the formation of allylic thi-
anthrenium ylides, natural bond orbital (NBO) analysis of 
the competing allylic deprotonation transition states 
(TS1_E and TS1_Z) revealed that the Z-forming transition 
state has more overall stabilizing interactions than the E-
forming transition state (see Fig. S75). Specifically, we iden-
tified several C–H σ to C–C σ* or C–C π* non-bonding inter-
actions that are present only in the transition structure that 
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leads to the Z-allylic ylide. Furthermore, the resultant Z-al-
lylic ylide product still possesses the majority of these NBO 
interactions. This suggests that the kinetic selectivity for Z-
allylic ylide formation is tied to the factors that influence 
stability of the Z-allylic thianthrenium ylide. 

In conclusion, we have outlined a detailed mechanistic 
model of the Z-selective allylic functionalization in the con-
text of amine nucleophiles and thianthrenium salts derived 
from aliphatic alkenes. For the first time, the elementary 
steps of this reaction and the corresponding energetic land-
scape have been elucidated. Upon rate- and stereodeter-
mining allylic deprotonation of the alkenylthianthrenium 
salt, a Z-allylic thianthrenium ylide is generated. In contrast 
to all-carbon allylic anions, the allylic thianthrenium ylide 
stereochemistry is locked by a prohibitively high barrier for 
C–C double bond rotation. Protonation of the Z-allylic thi-
anthrenium ylide affords an allylic thianthrenium electro-
phile that is regioselectively substituted by a nucleophile. 
We anticipate these findings can lead to design of allylation 
methodologies that improve the selectivity for other al-
kenes and nucleophile classes. More broadly, this study un-
covered a new mechanism to enforce Z-selectivity in alkene 
synthesis that relies on key stabilizing interactions rather 
than steric clashes.  
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