
 

 

Novel machine learning approach toward classification model of 
HIV-1 integrase inhibitors  
Tieu-Long Phana, b , Hoang-Son Lai Lec, Gia-Bao Truongc, The-Chuong Trinhd, Van-Thinh Toc, 
Phuoc-Chung Van Nguyenc, Thanh-An Phamc, Tuyen Ngoc Truong*c 

HIV-1 (Human immunodeficiency virus-1) has been causing severe pandemics by attacking the immune system of its host. 
Left untreated, it can lead to AIDS (acquired immunodeficiency syndrome), where death is inevitable due to opportunistic 
diseases. Therefore, discovering new antiviral drugs against HIV-1 is crucial. This study aimed to explore a novel machine 
learning approach to classify compounds that inhibit HIV-1 integrase and screen the dataset of repurposing compounds. The 
present study had two main stages: selecting the best type of fingerprint or molecular descriptor using the Wilcoxon signed-
rank test and building a computational model based on machine learning. In the first stage, we calculated 16 different types 
of fingerprint or molecular descriptors from the dataset and used each of them as input features for 10 machine-learning 
models, which were evaluated through cross-validation. Then, a meta-analysis was performed with the Wilcoxon signed-rank 
test to select the optimal fingerprint or molecular descriptor types. In the second stage, we constructed a model based on the 
optimal fingerprint or molecular descriptor type. This data followed the machine learning procedure, including data 
preprocessing, outlier handling, normalization, feature selection, model selection, external validation, and model optimization. 
In the end, an XGBoost model and RDK7 fingerprint were identified to be the most suitable. The model achieved promising 
results, with an average precision of 0.928 ± 0.027 and an F1-score of 0.848 ± 0.041 in cross-validation. The model achieved 
an average precision of 0.921 and an F1-score of 0.889 in external validation. Molecular docking was performed and validated 
by redocking for docking power and retrospective control for screening power, with the AUC metrics being 0.876 and the 
threshold being identified at –9.71 kcal/mol. Finally, 44 compounds from DrugBank repurposing data were selected from the 
QSAR model, then three candidates were identified as potential compounds from molecular docking, and PSI-697 was 
detected as the most promising molecule, with in vitro experiment being not performed (docking score: -17.14 kcal/mol, HIV 
integrase inhibitory probability: 69.81%) 

 

1. Introduction 
According to the UNAIDS 2021 statistics (United Nations 

Joint Programme on HIV/AIDS)1, there were more than 38.4 
million people worldwide living with HIV. Since HIV was first 
discovered in 1980s, the disease has caused about 34.7 million 
deaths. However, there are no specific drugs or vaccines, so 
individuals living with HIV can only be treated with antiviral 
therapy like antiretroviral drug (ARV), suppressing symptoms 
and slowing down the process leading to AIDS. Following 
several HIV-1 treatment regimens, clinical therapy should 
incorporate multiple ARV drugs to ensure the antiviral effect and 
reduce the risk of drug resistance. Therefore, many ARV drugs 
have been studied and developed, including reverse transcriptase 
inhibitors comprising both nucleoside2 and non-nucleoside 
inhibitors3, protease inhibitors4, integrase inhibitors5 and fusion 
inhibitors6. Regarding protein targets, the integrase (IN) enzyme 
stands as a prominent target for medicinal chemistry 
researchers7. This enzyme is produced by a virus with reverse 

transcription, a process in which viral nucleic acids are catalyzed 
to form covalent bonds between its genetic information with the 

DNA (deoxyribonucleic acid) of the host’s infected cells8. Thus, 
inhibition of integrase during strand transfer can prevent viral 
proliferation, and therefore, prolonging the host's lifetime. These 
inhibitory compounds are called integrase strand transfer 
inhibitors (INSTIs), and are often in combination IN inhibitors 
with other HIV medicines to mitigate drug resistance9. 

Machine learning has revolutionized many fields, including 
drug discovery. In this field, AI (artificial intelligence) has been 
used to create predictive models for ADMET, drug response10, 
toxicity11, and anticancer activity12. These models allow virtual 
screening and prediction of compound activity13. Several studies 
have been conducted on building models based on machine 
learning to predict the activity of compounds against IN, 
including those by Kurczyk A et al (2015), Li Y et al (2017), and 
Lucas A et al (2022)14-16. In contrast to traditional QSAR 
models17, which solely focused on linear equations to correlate 
the molecular descriptor with biological activities, the machine 
learning approach enables the implementation of non-linear 
models for QSAR.  

This study aimed to discover promising candidates for 
organic synthesis plans by building computational models and 
used those models to screen the dataset of repurposing 
compounds from DrugBank database for potential IN inhibitors. 
In this study, a novel approach was taken to select fingerprint or 
descriptor using the Wilcoxon signed-rank test18. Likewise, the 
model selection process for determining the optimal model was 
conducted differently from the approach used by Li Y et al. 
(2017)14. The study of Li Y et al. utilized ECFP_4 fingerprint as 
the model input along with Support Vector Machine, Decision 
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Tree, Function Tree, and Random Forest for machine learning 
model. 

2. Methods 
This study was carried out using Python 3.8 with AMD 

Ryzen 9 3900X CPU core consisting of 12 processors, 3.79 GHz 
processor speed, 500 GB memory, 96.0 GB RAM operating on 
Linux 22.04. Molecular descriptor and fingerprint were 
generated via open-source packages, including Padel 2.21 

Descriptor14, RDKit 2020.3.119, Mordred 1.2.020, Map4 1.021, 
and MHFP22. The machine learning model was completed using 
Scikit-learn 1.1.1 library23 with the steps described in the 
diagram below (Fig 1). All stages of the study were conducted 
with the same random state (value = 42) to ensure 
reproducibility. The source code, all datasets, and the results of 
this study are available at: https://github.com/Medicine-
Artificial-Intelligence/HIV_IN_Classification

.  

Figure 1. Model development pipeline includes two stages: dataset selection and model establishment.

2.1. Dataset 

8979 molecules inhibiting HIV-1 integrase were collected 
from the ChEMBL 33 database. Biological activity 
standardization was performed, including target organism being 
“Human immunodeficiency virus 1”, assay type being “B type”, 
and “IC50” value in measurement unit columns, followed by 
canonicalizing SMILES structures. Upon completion of these 
stages, 2834 compounds remained in the dataset for building the 
model. Besides, 15235 structures collected from the DrugBank 
database were prepared for virtual screening, with repurposing 
and repositioning strategies. 

2.2. Optimal dataset selection 

SMILES structures were converted into molecules to 
calculate 16 types of fingerprints or descriptors, called molecular 
features, including 3D-Mordred, RDKit descriptor, Mol2vec, 
MACCS, PubChem, Avalon, ECFP2, ECFP4, ECFP6, RDK5, 
RDK6, RDK7, Cats2D, 2D-Pharmacophore Gobbi (Ph4), 
MAP4, and SECFP (raw_data_features). The data preparation 
process was performed for all molecular features set, including 
target normalization with the threshold of pIC50 being 7 
(meaning active or class 1 if pIC50 is equal or above 7, and 
inactive or class 0 for the counterpart), dataset division (80:20) 
with stratification principle resulted in 1995 compounds in the 
training set and 499 compounds in the external validation set 
with the imbalance ratio of 0.404 between the active and inactive 
classes. 

Then, the data mining process was conducted on the training 
set and applied similar methods for the external validation set. 
First, 1995 compounds with molecular features underwent data 
removal to eliminate duplicate rows and columns, followed by 
missing values handling utilizing KNNImputer from the Scikit-

learn library (only for the 3D-Mordred dataset) before ending up 
with low variance removal using a threshold being 0.05. Next, 
Local Outlier Factor (LOF) was employed with a parameter 
setting of "n_neighbors = 20" to remove outliers in the training 
set and novelty in the external validation set. The final step in the 
data mining process is data normalization using a rescaling 
method, in which MinMaxScaler was applied to map all data into 
the range [0,1]. 

In the next step, feature extraction was conducted with 
feature importance algorithms derived from the Random Forest 
algorithm. Then, 10 different machine learning models were 
applied for all molecular features, including logistic regression 
(Logic), k-nearest neighbor (KNN), support vector machine 
(SVM), random forest (RF), extra tree (ExT), Adaboost (ADA), 
Gradient Boosting (Grad), XGBoost (XGB), CatBoost (Catbst), 
and Multilayer Perceptron (MLP). The Wilcoxon signed-rank 
test conducted a meta-analysis to select the optimal type of 
feature set. This was based on 10-fold internal cross-validation 
repeated three times (3x10 RepeatedStratifiedKFold) with the 
evaluation metric being F1-score. The outcome yielded the 
optimal feature set that best suited the model. 

2.3. Machine learning model development 

The most effective molecular features set selected above 
underwent similar data processing and mining steps but 
experienced a slight difference in the feature extraction stage. 
Instead of just using Random Forest to select essential features, 
eight different methods, consisting of Chi-squared (Chi2), 
Mutual information (Mutual), Random Forest (RF), Extra Tree 
(ExT), Adaboost (ADA), Gradient Boosting (Grad), XGBoost 
(XGB), and Logistic Regression (Logic), were performed to 
compare the performance of these models with baseline model, 
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which was not performed feature extraction. The optimal 
algorithm was then used to reduce the dimension of the data. 

The reduced-dimensional data was performed for model 
selection to select an optimal algorithm for model development. 
Ten different algorithms were selected for this step, including 
logistic regression (Logic), k-nearest neighbor (KNN), support 
vector machine (SVM), random forest (RF), extra tree (ExT), 
Adaboost (ADA), Gradient Boosting (Grad), XGBoost (XGB), 
CatBoost (Catbst), and Multilayer Perceptron (MLP). 3x10 
RepeatedStratifiedKFold cross-validation with Wilcoxon 
signed-rank test24 were also performed for these two stages. 

Moreover, the Tree-structured Parzen Estimator (TPE) 
algorithm from the Optuna library was implemented for 
Bayesian Optimization (BO) to optimize the hyperparameter. 
BO is a global optimization technique that builds a surrogate 
model of the objective function and uses an acquisition function 
to suggest the next sample point25, 26. 

Finally, the applicability domain (AD) of this model was 
developed based on the local density deviation of a given 
compound with respect to its neighbors, from which the local 
outlier factor (LOF) algorithm was implemented to identify 
“novelty” data or data out of the AD. 

2.4. Model evaluation 

The performance of a model can be evaluated by its 
learnability from data and generalizability on unseen datasets, 
performed through internal and external validation, respectively. 
Internal validation (IV) involves cross-validation techniques for 
training models and hyperparameter tuning. External validation 
(EV), on the other hand, utilizes a validation dataset from an 
independent source to assess the model’s performance 
unbiasedly. As such, the results of EV provide crucial evidence 
for the generalizability of a QSAR model27. 

The models' performance in this study were evaluated using 
statistical parameters such as F1-score, average precision, 
precision, and recall. Precision is calculated as the ratio of true 
positive predictions to the sum of true positive and false positive 
predictions28. 

Precision = 	
TruePositive

TruePositive	 + FalsePositive	

Recall is a statistical measure that quantifies the proportion 
of true positive instances that are correctly identified by a 
predictive model28. 

Recall = 	
TruePositive

TruePositive + FalseNegative 

Average Precision (AP) is calculated as the weighted mean 
of precision at each threshold, the weight is the increase in recall 
from the prior threshold29. 

AP = 	7(Recall! − Recall!"#) × Precision!
!

	

The F1-score is calculated as the harmonic mean of 
precision and recall, providing a measure of the trade-off 
between them28. 

F1 − score = 	
2 × Precision × Recall	
Precision + Recall

 

2.5. Molecular docking 

In this study, the structure of HIV Integrase was retrieved 
from the Protein Data Bank (PDB ID: 6PUW)30, and underwent 
the standardization step, including missing residues restoration, 
local energy minimization. Then, MGLTools was utilized to add 
hydrogens atom to structure, including both polar hydrogens and 
non-polar hydrogens, as well as the Gasteiger charges. Finally, 
the gridbox was defined as a cube of 60 × 60 × 60 grid points, 
with coordinates x = 143.399 Å, y = 159.402 Å, and z = 177.382 
Å. 

The performance of the docking model was validated by 
redocking to validate docking power (RMSD ≤ 2 Å) and 
retrospective control (enrichment analysis) to validate screening 
power. DeepCoy was utilized to generate decoy (active: decoy = 
1:50) for the latter step31, and the performance was measured by 
the receiver Operating Characteristic (ROC) curve and Area 
Under the Curve (AUC). Additionally, the Geometric Mean (G-
Mean) was employed to determine the optimal cut-off point for 
the ROC curve32. The G-Mean is a metric measuring the balance 
between classification performance for majority and minority 
classes. 

3. Results 
3.1. Molecular features set selection 

The meta-analysis utilized the Wilcoxon signed-rank test to 
identify the optimal features set. The F1-score was the primary 
metric to compare the performance among 16 molecular feature 
sets. The evaluation results are detailed in S1 Table (Supporting 
information), while the summarized comparison is illustrated in 
Fig 2. 

 

Figure 2. The meta-analysis of 16 types of fingerprints and descriptors utilizing F1-score 
metric 

From Fig 2, the RDK7 fingerprint experienced the highest 
average F1-score in accordance with cross-validation (0.811), 
calculated from 10 models with 300 observations the whole. 
Meta-analysis was also conducted for pairwise comparison 
among fingerprints and descriptors using the Wilcoxon signed-
rank test, illustrated in S2 Table (Supporting information). As 
shown in Fig 3, RDK7 showed a statistically higher significance 
of average F1-score compared to other datasets (p < 0.05). 
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Therefore, RDK7 was selected as the optimal molecular feature 
to develop a machine-learning model. 

 

Figure 3. The heatmap illustrated the Wilcoxon signed-rank test 16 types of fingerprints 
and descriptors for meta-analysis 

3.2. Model selection 

Feature extraction 

In this stage, our main objective was to select the optimal 
subset of RDK7 fingerprint, building the prediction model 
based on two criteria. Firstly, the model used for selection had 
to achieve the highest average F1-score in cross-validation 
with significant differences based on the Wilcoxon signed-rank 
test. Secondly, the model used for feature selection should 
yield the result with the minimum number of fingerprints to 
accelerate the optimization step. Fig 4 illustrates the results of 
internal cross-validation among the fingerprint selection 
methods. 

 

Figure 4. The feature extraction methods comparision for RDK7 dataset 

According to the box and whisker plot in Fig 4, feature 
selection methods were stable except for mutual information, 
Logistics, and AdaBoost returning F1-score outliers after 30 
times cross-validation. While using the Wilcoxon signed-rank 
test for F1-score comparison among 8 models, only the chi-
squared and mutual information gave statistically significantly 
lower results than the baseline model (p < 0.05). Other models 

had no statistically significant difference compared to the 
baseline model, so the feature extraction methods did not meet 
the first criterion. 

On the other hand, the XGBoost and the Logistic Regression 
achieved the highest average F1-score among all the models, 
except for the baseline model. However, according to pairwise 
assessment of these two models (S3 Figure Supporting 
information), there was no statistically significant difference (p 
> 0.05). The second criterion, aimed at reducing computational 
resources by minimizing the number of features, was taken into 
consideration. The XGBoost algorithm had 533 bits, a lower 
number of features than the Logistic Regression algorithm, 
which had 744 bits. Therefore, the XGBoost algorithm was 
selected to reduce the dimension of the RDK7 dataset. The 
results of the features selection comparison are illustrated in S4 
Table (Supporting information). 

Machine learning model selection 

Ten different machine learning models were employed, and 
internal cross-validation along with the Wilcoxon signed-rank 
test was utilized to identify the most efficient machine learning 
model based on two criteria. The first criterion focused on 
selecting the model with an average F1-score derived from 
cross-validation that was significantly higher than the other 
models. As for the second criterion, the model with an average 
precision (AP) derived from cross-validation showed 
significantly higher performance compared to the other models 
and required a shorter training time. 

 

Figure 5. The machine learning algorithms comparision for RDK7 dataset utilizing F1-
score 

Based on the box and whisker plot in Fig 5, XGBoost (0.842 ± 
0.039), and CatBoost (0.842 ± 0.044) achieved the highest 
average F1-score. However, when the Wilcoxon signed-rank 
test was applied, these differences were not statistically 
significant (p > 0.05) compared to Logistic Regression, 
Random Forest, Gradient Boosting and Multilayer Perceptron 
(Fig 6). 
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Figure 6. The Wilcoxon signed-rank test compared 10 machine learning models using 
F1-score 

We continued to use average precision (AP) to evaluate 
model performance (Fig 7). Two models including XGBoost 
(0.929 ± 0.029), and CatBoost (0.927 ± 0.030) remained the best 
performers. In this case, XGBoost showed significant difference 
when being compared to most of the others (p < 0.05). In 
addition, XGBoost had a shorter training time than CatBoost. 
Thus, in terms of the second criterion for this step, XGBoost 
model was selected for the optimization. 

 

Figure 7. The machine learning algorithms comparision for RDK7 dataset utilizing 
average precision score 

Machine learning model optimization 

In the study, hyperparameters were optimized using 
Bayesian Optimization through 1000 trials. After analyzing the 
results, it was found that the highest average F1-score across all 
trials in the cross-validation was 0.854. Therefore, the 
hyperparameters associated with this trial were selected to be 
used for the XGBoost model. The results of this step were shown 
in S5 Table (Supporting informaiton). 

The results derived from the cross-validation and external 
validation were consistent. This external validation result was 
highly generalizable and can be applied in virtual screening. 

 
Figure 8. The internal cross-validation results of the model, both before and after hyperparameter optimization, (A) Average precision, (B) F1-score, (C) Recall. 

 
Evaluating the generalizability of the model 

The external validation dataset (20%) divided from the beginning was used to evaluate the generalizability of the model. The 
results were illustrated in Table 1. 

Table 1. Internal and external validation results for the Gradient Boosting model 

 

Cross-validation External validation 

AP F1 Recall AP F1 Recall 

Baseline 0.929 ± 0.030 0.842 ± 0.038 0.835 ± 0.045 0.921 0.856 0.878 

Optimize 0.928 ± 0.027 0.848 ± 0.041 0.855 ± 0.052 0.921 0.889 0.921 
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According to Fig 8, the CV-recall values are significantly 

higher after optimization compared to the default 
hyperparameter model, with a p-value ≤ 0.01. However, the 
average CV-AP and CV-F1 scores do not show a statistically 
significant improvement after optimization, with p-values of 
0.33 and 0.06 respectively.  

Compared with the study of Lucas A et al., a state-of-the-art 
machine learning model targeting HIV integrase utilizing 
Mordred descriptor, our model could not outperform in external 
validation, with F1-score being 0.89 lower than the 0.93 of their 
study. However, our model development procedure is more 
rigid, with several decision-making stages, supported by the 
Wilcoxon signed-rank test of cross-validation. Moreover, our 
study performed cross-validation in the development pipeline for 
selection and optimization. At the same time, external validation 
was conducted in the final stage to prove the generalization of 
the machine learning model. The applicability domain was also 
investigated to remove five substances in the external validation 
set to ensure the interpolation of our model (Fig 9). From Fig 9, 

the red point was detected as a novelty, or outside applicability 
domain, which was far from the training set (grey points). This 
could solve the problem of sparse space in the bounding box 
approach. 

 

Figure 9. Application of LOF in applicability domain. The grey, blue, and red points 
describes the training set, external validation set in and out the applicability domain. 

3.3. Molecular doking 

The model evaluation was conducted based on redocking 
data collected from Autodock-GPU [33]. Based on the largest 
cluster of the redocking procedure, which comprised 
approximately 20% of all generated conformations, the RMSD 
value of the best-docked conformation (the most negative) did 
not exceed 2 Å (0.63 Å), which is illustrated in Fig 10A.  

According to the AUC-ROC curve in Fig 10B, the AUC 
value was 0.876 for the most negative conformation 
(ad_gpu_min) with the G-mean value reaching 0.841. The 
docking threshold extrapolated from the G-mean was -9.71 
kcal/mol.

 

Figure 10. The results of redocking (A) and retrospective control (B) evaluation. The retrospective control was conducted utilizing four types of conformations, including the most 
negative (ad4_gpu_min), the most positive (ad4_gpu_max), the median (ad4_gpu_median), and mean (ad4_gpu_mean) of docked conformation distribution.

3.4. Virtual screening process 

15235 substances from DrugBank were screened through 
medicinal chemistry filter, obtained 8333 structures. These 
structures then underwent further screening using a 2D-QSAR 
classification model, resulting in 44 compounds that were 
identified as active. Next, these 44 compounds underwent 
molecular docking, resulting in the discovery of 3 compounds, 
including two medicines and one hit (PSI-697). The results of the 
virtual screening process were shown in Fig 11. 
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Figure 11. The results of virtual screening process  

In general, the results obtained from the molecular docking 
process showed that all three compounds in Fig 12 formed 
electrostatic interactions with both Mg2+ ions. This is the first 
and highly important pharmacophore characteristic shared by all 
currently available INSTIs on the market. Additionally, all three 
selected conformations formed hydrogen bonds with the 
sidechain carbonyl group of Asp64, while fitting within the 
binding pocket between the two subunits of HIV integrase 
(matching the binding site of Bictegravir in the initial protein-
ligand complex with PDB ID 6PUW). 

 

Figure 12. The binding modes of three potential candidates from the QSAR model. 
Blue: Elvitegravir (-17.32, 98,82%). Red: Dolutegravir (-11.42, 98,63%). Green: PSI-697 (-

17.14, 69,81%). 

Regarding PSI-697 (green) in Fig 13, the binding mode was 
similar to Bictegravir, but the docking score was more negative, 
with the figures being –17,14 kcal/mol and –11 kcal/mol, 
respectively. This could be explained by the hydrogen bonds 
with sidechain of Glu152, which was observed in complex of 
Bictegravir and protein. Moreover, the docking score of PSI-697 
was also approximately equal to Elvitegravir (-17,32 kcal/mol). 
The HIV integrase inhibitory probability of PSI-697 from the 
QSAR model was also good, with the figure being around 69%. 
As a result, PSI-697 was the most promising candidate targeting 
HIV integrase for both inhibition and binding ability. 

 

Figure 13. Bictegravir (red) and PSI-697 (green) in the active site. 

4. Conclusion 
Our study introduced a novel approach to machine learning, 

where decision-making stages were made based on statistical 
tests. We utilized 16 different molecular fingerprints and 
descriptors, and employed the Wilcoxon signed-rank test of 
cross-validation to determine the optimal one for feature and 
model selection. The LOF algorithm was implemented to 
establish the applicability domain, outperforming the bounding 
box technique in sparse areas. 

The RDK7 fingerprint proved the most suitable, and 
XGBoost was the best model. External validation yielded 
impressive results with an F1-score of 0.889, average precision 
of 0.921, and recall of 0.921. These findings are highly 
generalizable and valuable for the virtual screening of potential 
HIV-1 integrase inhibitors. 

The repurposing structure library was screened, resulting in 
the identification of one potential compound. We recommend the 
synthesis and biological activity testing of this potential 
compound. 

Data availability 
The source code, notebooks, and all datasets are available 

at: https://github.com/Medicine-Artificial-
Intelligence/HIV_IN_Classification_ML 
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