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Abstract

Molecular spectroscopy studies the interaction of molecules with electromagnetic

radiation, and interpreting the resultant spectra is invaluable for deducing the molec-

ular structures. However, predicting the molecular structure from spectroscopic data

is a strenuous task that requires highly specific domain knowledge. DeepSPInN is a

deep reinforcement learning method that predicts the molecular structure when given

Infrared and 13C Nuclear magnetic resonance spectra by formulating the molecular

structure prediction problem as a Markov decision process (MDP) and employs Monte-

Carlo tree search to explore and choose the actions in the formulated MDP. On the
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QM9 dataset, DeepSPInN is able to predict the correct molecular structure for 91.5%

of the input spectra in an average time of 77 seconds for molecules with less than 10

heavy atoms. This study is the first of its kind that uses only infrared and 13C nuclear

magnetic resonance spectra for molecular structure prediction without referring to any

pre-existing spectral databases or molecular fragment knowledge bases, and is a leap

forward in automated molecular spectral analysis.

Introduction

Molecular spectroscopy is the analysis of the electronic, vibrational, and rotational excita-

tions of the nuclei of molecules as they interact with electromagnetic radiation. It is widely

used as a tool to identify and characterize molecules for quantitative and qualitative analysis

of materials. The spectrum of a molecule is the measured absorption or emission of the inci-

dent electromagnetic radiation. Each molecule produces a unique spectrum for a particular

spectroscopic method, allowing the spectrum to be used as a fingerprint of the molecule.

Infrared (IR) spectroscopy is a spectroscopic technique that sheds light on the vibrational

modes of a molecule that changes its dipole moment.1 These vibrational modes cause the

molecules to absorb electromagnetic radiation in the Infrared spectral region, lying in the

range of wavenumbers 4000− 400 cm−1. Functional groups have unique absorbances in the

region of peaks beyond 1500 cm−1 called the functional group region.2 Peaks with wavenum-

bers < 1500 cm−1 are considered to be in the fingerprint region2 since the elaborate patterns

of peaks here are highly specific to a molecule and are often too complex to interpret.

Nuclear magnetic resonance (NMR) spectroscopy is another widely used spectroscopic

technique to characterize the structure of molecules.3 In NMR spectroscopy, an external

magnetic field is applied to a molecule and the nuclei of some isotopes (e.g. 1H, 13C) absorb

radio waves of specific frequencies to change their nuclear spin. In 13C NMR for example,

any small changes in the local environment of the atom in the molecule cause the 13C nuclei

to absorb radio waves of different frequencies. The relative differences of these frequencies
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against a reference 13C NMR frequency of tetramethylsilane (TMS) are measured in parts

per million (ppm)4 to give the chemical shifts of the nuclei. The spin-spin coupling of the

adjacent protons of the 13C nuclei cause the splitting of the corresponding NMR signal and

allows the calculation of the multiplicity of each peak. This chemical split of each 13C nuclei’s

chemical shift is indicative of the number of directly attached hydrogen atoms. Together,

the chemical shift and chemical split values of a 13C NMR spectrum allow the deduction

of the atom type and chemical environment of each carbon atom, and subsequently the

complete structure of the molecule. The chemical split values however are difficult to obtain

experimentally,5 and are not used by DeepSPInN.

For a structure to be elucidated from molecular spectra, all structural fragments are

identified by interpreting the peaks in the spectra as the first step. These structural fragments

are combined to list the possible molecular structures that can be made. These structures

are then verified by cross-referencing the expected peaks of the functional groups in the input

spectra, or by comparing their predicted spectra with the input spectra. CASE (Computer

Aided Structure Elucidation) programs have evolved a lot since their introduction and have

made good progress for structure elucidation from spectra, but they are still expected to have

a degree of intervention from chemists and spectrometrists.6 These programs also typically

require 2D spectra in addition to any 1D IR, NMR, and MS spectra as the input.7 Even

today, most computational methods to identify a substance from its spectral data rely on

matching against a database of already known spectra or by searching through knowledge

bases of substructures8–16. Such methods restrict their applicability to the cases where the

molecule’s spectra is already stored in the database, or cases where the structural motifs

are adequately represented in the dataset. These database methods are also sensitive to

variations in the experimental conditions while collecting the spectra,14 and might fail if

there are incorrect entries in the database.17

Recently, new methods have made use of Machine learning (ML) algorithms to solve

problems in computational chemistry such as predicting new drug molecules18–20, performing
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Figure 1: The IR and 13C NMR spectra of 3-methyloxane-2-carbaldehyde to highlight the
definitions of a forward problem and its corresponding inverse problem

molecular dynamics simulations21–23, protein stability and binding site prediction24,25, and

predicting physical molecular properties.26–28 Efforts for finding correlations between the

spectral features of molecules and their structural features using ML can be dated back

to the 1990s.29 Interpretation of spectra to understand the complex relationship between

a spectrum and the molecular structure is a difficult task. Recent developments in deep

learning open new avenues to explore the mapping between the molecular structure and the

information-rich spectral data.

The forward problem for molecular structure elucidation can be defined as the predic-

tion of the spectra of a given molecular structure, and the corresponding inverse problem is

generating the molecular structure given the spectra (Figure 1). Although they are compu-

tationally intensive, quantum mechanical methods can be used to obtain various molecular

spectra. Many recent works made progress in solving the forward problem of predicting the

spectra of a molecule where they utilize ML for predicting IR30–34, NMR35–37, UV-visible38,

and photoionization39,40 spectra.

There have been works demonstrating how deep learning can solve inverse problems41 in

various domains. For the inverse problem in molecular structure elucidation, there have been

works that aimed to automate the process of interpretation of IR spectra42,43. Many of them

use only the functional group region of the spectra for their interpretation. Wang et al. 42 use
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a support vector machine to do multi-class classification for spectra from the OMNIC FTIR

spectral library. The trained support vector machine identified 16 functional groups with a

prediction accuracy of 93.3%. Fine et al. 43 introduce a multi-label neural network to identify

functional groups present in a sample using a combination of FTIR and MS spectra. Jonas 44

and Howarth et al. 45 used a deep neural network that works with proton-coupled 13C NMR

to predict the molecular structure. Zhang et al. 46 use ChemTS47 to identify a molecule from

its NMR spectrum using Monte Carlo tree search (MCTS) guided by a recurrent neural

network (RNN). Huang et al. 5 propose an ML-based algorithm that takes 1H and 13C NMR

as input and predicts the correct molecule as the top scoring candidate molecule with an

accuracy of 67.4%. Pesek et al. 48 introduce a rule based combinatorial approach in which

the framework uses 1H and 13C NMR, IR, and mass spectra to elucidate the structure of

an unknown compound and emphasises that the approach does not depend on database

searches. Although this method does not use any spectral databases, it involves a step to

pick 1H NMR peaks and their multiplicities, which is subject to user interpretation and is

heavily dependent on the correctness of the peak-picking step.5 Such knowledge engineering

and rule based approaches would limit the capability of the solution since they inherit the

biases of the rules programmed,14 and might not contain the data for fragments that are

appropriate for the given input spectra.49 This highlights the need for molecular structure

elucidation methods that do not depend on spectral databases, while also not requiring any

knowledge engineering.

Elyashberg and Argyropoulos 6 predict that using deep learning algorithms would improve

the performance and robustness of CASE systems. They also highlight AlphaZero’s success

in mastering games50 as a testament to how deep learning can learn to perform complicated

tasks. A concurrent work51 proposes a transformer model that utilizes IR spectra to achieve

a top-1 accuracy of ∼ 55% on molecules with less than 10 heavy atoms. Another similar

concurrent work52 utilizes both 1H and 13C NMR spectra to achieve a top–1 accuracy of

∼ 70% on molecules with less than 10 heavy atoms. It has recently been shown that a
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Monte-Carlo tree search (MCTS) algorithm can be used for the elucidation of molecular

structure from 13C NMR chemical shifts and splits, achieving a top-1 accuracy of 57.2%53

for molecules with less than 10 heavy atoms on the nmrshiftdb254 dataset that contains

experimentally calculated 13C NMR spectra of 2134 molecules.

In this paper, our main contribution is a framework that utilizes IR and 13C NMR

spectra to accurately identify the molecular structure without any knowledge engineering or

database searches. The proposed framework predicts the connectivity between the atoms,

i.e. predicts the constitutional isomer of the molecular formula that corresponds to the input

spectra. DeepSPInN formulates the molecular structure prediction problem as an MDP and

employs MCTS to generate and traverse a search tree while using a set of pre-trained Graph

Convolution Networks55 to guide the tree search. DeepSPInN is able to achieve an accuracy

of 91.5% on molecules with less than 10 heavy atoms, outperforming previous and concurrent

works on structure elucidation from molecular spectra.

Methods

Dataset

The QM956,57 dataset is a subset of the GDB-1758 chemical universe and consists of 134k

stable small organic molecules with up to nine heavy atoms (CNOF). We first identified

molecules in the QM9 dataset for which IR and 13C NMR spectra were calculated using the

Gaussian 0959 suite of programs. We were able to calculate both IR and 13C NMR spectra for

119,062 molecules. We then chose molecules where the smallest ring (if any ring(s) exist(s))

in the molecule has at least 5 atoms to account for ring strain, and molecules where none of

the atoms have any formal charge. This left us with about 50k molecules to use as the input

data for this work. A train-val-test split of 80-10-20 was used to make the train, validation,

and test dataset of molecules. We used the validation set to choose hyperparameters for

DeepSPInN, which we used for evaluating DeepSPInN on the test set.
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To calculate the IR absorbance spectra, the geometrical optimization and the subsequent

calculation of the vibrational frequencies were done using the B3LYP density functional

methods with a 6-31g(2df,p) basis set in the gas phase. The spectra from these DFT cal-

culations for each molecule is a set of frequency-intensity pairs. These infinitely sharp stick

spectra were broadened to mimic actual gas-phase spectra using a peak broadening function

as described and trained by McGill et al. 60 . This function is a two-layer fully connected

neural network followed by an exponential transform, and takes frequency-intensity pairs

to give a continuous spectrum. Following previous methods that predicted infrared spec-

tra,60 the intensities of the resulting spectra were binned with a bin-width of 2 cm−1 in the

spectral range from 400−4000 cm−1 to accommodate the available datasets of experimental

infrared spectra. This results in the gas-phase IR absorbance spectrum for each molecule

being represented by a 1801-length vector.

To analyse the congruence of the simulated and experimental IR spectra, we compare

the simulated and experimental IR spectra of the molecules from our dataset that are also

in the NIST Quantitative Infrared Database61 and present this in the supplementary in-

formation. Due to the shortcomings of the DFT calculations and the peak expansion, the

simulated spectra are not sufficiently similar to the experimental spectra to be considered

as replacements for the experimental spectra. However, they reflect the complexity of ex-

perimental spectra by being able to account for the signatures of functional groups and by

containing realistic peak shapes.60,62 If DeepSPInN performs well by learning to capture

relevant characteristics of simulated infrared spectra, it could similarly interpret and learn

from experimental infrared spectra.

To make a dataset of 13C NMR spectra, the peak positions (chemical shift) were obtained

from the QM9-NMR dataset.63 The QM9-NMR dataset has the gas phase mPW1PW91/6-

311+G(2d,p)-level atom-wise isotropic shielding for the QM9 dataset. These 13C isotropic

shielding (σiso) values were converted to 13C chemical shifts (δiso) through δiso = σreference
iso −

σiso,
64 where σreference

iso is the reference value for tetramethylsilane (TMS), which is a standard
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reference compound. The root mean square error (RMSE) between the 13C NMR spectra

obtained in this way against spectra from the experimental nmrshiftdb254 database for the

common molecules is 2.55 ppm per peak. As a reference, 13C NMR shift values are typically

between 0-200 ppm. The state-of-the-art ML-based 13C NMR shift prediction methods

achieve an RMSE of 1-5 ppm,36,65,66 and DFT calculated 13C NMR shift values have RMSE

values ranging between 2.5–8.0 ppm.67 An RMSE of 2.5 ppm shows great congruence between

experimental 13C NMR and the simulated 13C NMR spectra that we use.

DeepSpInN Framework

The methods section is divided into five parts to explain the proposed framework:

i. description of how molecular structure prediction can be modelled as a Markov decision

process (MDP)

ii. description of how MCTS can be used to generate a search tree of molecules and refine

the policy at each state

iii. explanation of the architecture of the prior and value model used by DeepSPInN

iv. explanation of how 13C NMR split values are used to prune the MCTS search tree

v. description of the training methodology used to train the prior and value model

MDP formulation

The problem of molecular structure prediction can be modelled as a finite Markov decision

process (MDP)68,69 in a way similar to the formulation in Sridharan et al. 53 . An MDP is

defined as a tuple ⟨S,A, {Ps}, R⟩ with states S, actions A, policy {Ps}, and reward function

R.70 The goal is to learn the policies Ps which gives the transition probabilities over the

action space A at a particular state s ∈ S.

8

https://doi.org/10.26434/chemrxiv-2023-drhmj-v2 ORCID: https://orcid.org/0000-0002-1330-8720 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-drhmj-v2
https://orcid.org/0000-0002-1330-8720
https://creativecommons.org/licenses/by-nc-nd/4.0/


Each state s ∈ S consists of a molecular graph m and the target IR spectrum yIR. A

molecular graph represents a molecule where the atoms and bonds are mapped to nodes and

edges in a graph. m also has the information about the target 13C NMR spectrum encoded

as node-wise features. In the initial state, the molecular graph is a null graph with nodes

representing each atom in the molecular formula and no edges. The molecule mols at a state

s is the largest connected component in the molecular graph. The remaining individual

nodes in m might join mols after taking an action a ∈ A. In the initial state, mols is just a

single carbon atom corresponding to any of the nodes in m.

An action a ∈ A adds an edge between two nodes in m, which is equivalent to the

addition of a bond between two atoms. Since the QM9 dataset has molecules that have a

maximum of 9 atoms (number of nodes) and since there are 3 types of bonds (edges), the

action space A has 9 ∗ 9 ∗ 3 = 243 actions. For the molecular graphs to represent chemically

valid molecules, only a subset of these actions can be considered to be valid. If a state has

no valid actions that can be taken to reach any children states, it is a terminal state. In the

action space for a state s, the valid actions are those that satisfy these conditions:

• Out of the two nodes that the action adds an edge between, at least one of the nodes

must belong to the largest connected component (mols) of the molecular graph, i.e.

the current molecule of the state.

• The edge added by the action should satisfy the chemical valency rules of the two

nodes. If all the edges of a node do not satisfy the octet of the corresponding atom

type, it is implicitly assumed that hydrogen atoms contribute to the octet.

• The action should not create a self-loop since atoms do not form bonds with themselves.

• The action does not add an edge between two nodes that already belong to the same

cycle.

• The action does not create a cycle whose length is less than 5, since rings with less

than 5 atoms have high ring strain if they have double or triple bonds.
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The reward function R returns a non-zero reward for all terminal states and a zero

reward for all non-terminal states. For the terminal states, the reward is a function of the

spectral distance between the input IR spectrum and the IR spectrum of mols as predicted

by Chemprop-IR.60 Chemprop-IR is an extension to the Chemprop71 architecture and uses

a Directed Message Passing Neural Network72(D-MPNN) to predict the IR spectrum of

an input molecular graph. R is the Spectral Information Similarity60 (SIS) metric which

is calculated by rescaling the spectral divergence between two IR spectra found by their

Spectral Information Divergence73 (SID). The reward function R is given by:

R = SIS(A,B) =
1

1 + SID(A,B)
=

(
1 +

∑
i

(Ai ln
Ai

Bi

+Bi ln
Bi

Ai

)

)−1

where A and B are two IR spectra.

Generating and exploring the search tree with MCTS

With this MDP formulation, we can use search algorithms to build a tree of state-labelled

nodes.74,75 We can build such a tree by repeatedly starting at the root state and reaching

children states by taking any of the valid actions at each state. We use MCTS to estimate

the optimal policy for the modelled reinforcement learning (RL) task.76

Starting from a root node, MCTS has 4 stages - selection, expansion, roll-out, and back-

propagation (see Figure 2). In the selection stage, the algorithm chooses actions with proba-

bilities proportional to their UCT74 (Upper Confidence Bound applied to trees) values, until

it reaches a leaf node. The UCT value of an action a at state s is given by

UCT(s, a) = Q(s, a) + cpuct · πa
s ·
√∑

bN(s, b) + 1

N(s, a) + 1

where Q(s, a) is the expected reward of taking action a from state s, cpuct is a parameter to

balance exploration and exploitation in the tree search, πa
s is the probability of taking action

a from state s according to the policy returned by a prior model, N(s, a) is the number of
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Figure 2: MCTS progresses in 4 stages to generate the search tree. a) Selection: starting
from the root node of the tree, choose actions based on the UCT values b) Expansion:
when the tree search reaches a leaf node, add a new child state to the tree c) Rollout:
calculate the expected reward of the new child state through a series of random roll-outs d)
Backpropagation: update the UCT values of all ancestors of the new child state

times action a has been taken from state s, and
∑

bN(s, b) is the number of times state s

has been reached.

In the process of traversing the search tree according to the UCT values, the algorithm

would reach a point where taking an action a from state s would lead to a state s′ that does

not exist in the search tree. This leads to the expansion stage of MCTS where the new state

s′ is added to the search tree.

Once a new child node s′ is added in the expansion stage, the rollout stage is used to

evaluate the value of s′. An ideal way to calculate this value is to calculate the expected

reward by a series of random rollouts. Due to the computational complexity of calculating

the expected reward in the ideal way, we approximate the value using an offline-trained value

model.50,77 The value of s′ is recursively back-propagated through all its parent nodes till

the root node to update the ancestors’ values and visitation counts. If s is a terminal state

that already exists in the tree, the reward of s is back-propagated to update the values of

all ancestor nodes. A state s is considered to be terminal if it has no valid actions, or if its

reward exceeds a particular threshold (explained in the Supplementary Information). All 4

MCTS stages are repeated nmcts number of times which is a hyper-parameter of DeepSPInN.
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Figure 3: A prior model and a value model are used with the MCTS algorithm to get the
probabilities over the action space and to predict the value of a particular state. An MPNN
uses the initial node-wise features that contain the 13C NMR spectrum to give node-wise
embeddings after three message passing steps. The prior model uses the pair-wise node
embeddings and the IR spectrum to predict the probability of each pair of nodes having a
single, double, or triple bond between them. The value model uses the sumpooled node-wise
embeddings and the IR spectrum to predict the value of a particular state.

After nmcts repetitions of the above 4 MCTS stages, a true action is taken according to the

final policy at this state.

Description of the prior and value model

To featurize the built molecule at each state, both the prior and value model use a Message

Passing Neural Network55,78 (MPNN) that run for three time steps (see Figure 3). Consider

a molecular graph G(V,E) where each node has initial node features xv,∀v ∈ V . Each xv is

a vector of length 88 and contains the chemical description of the atom and the 13C NMR

peak of the atom corresponding to node v as listed in Table 1. Each node v also has hidden

features hv that are initialized to xv, with the MPNN updating these hidden features in

each time step of the forward pass. All edges in the molecular graph have edge features

evw,∀v, w ∈ V as listed in Table 1. The forward pass of an MPNN has T message passing

1Used only for the experiment with proton-coupled 13C NMR spectra
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Table 1: Featurization of nodes and edges in the molecular graph

Node Feature Description

Element Type one-hot of [C,N,O,F]
Hybridization one-hot of [sp, sp2, sp3]
Implicit Valency one-hot of [0,1,2,3,4]
Radical Electrons one-hot of [0,1,2]
Formal Charge one-hot of [-2, -1, 0, 1, 2]
13C NMR split one-hot of [0,1,2,3] 1

13C NMR shift
a gaussian with σ = 2 centered at
the chemical shift value discretized into 64 bins

Edge Feature Description

Bond Type one-hot of [single, double, triple, aromatic]
Bond Conjugation boolean of whether the bond is conjugated
Presence in a Ring boolean of whether the bond is in a ring

time steps and a final gathering step. The message passing steps use a message function

Mt to form messages from the hidden features of neighbouring nodes N(v) and the features

of their corresponding edges. An update function Ut updates the hidden features of a node

based on its current hidden features and the messages it received from its neighbouring

nodes.

mt+1
v =

∑
w∈N(v)

Mt(h
t
v, h

t
w, evw)

ht+1
v = Ut(h

t
v,m

t+1
v )

After T message passing steps, a gathering function GT uses the initial node features xv and

the final hidden features hv to give the node-wise features Fv.

Fv = GT (xv, h
t
v)

In DeepSPInN, Mt and Ut are fully connected neural neural networks, and GT is an element-

wise addition operation.
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Using the node-wise features from the MPNN, the prior model generates all possible pairs

of nodes and concatenates the node-wise features of all these pairs of nodes to get pair-wise

features. yIR is compressed into 100-length vectors by passing through a two-layer fully

connected neural network to give y′IR and is appended to all these pair-wise features. The

product of this concatenation is passed through another two-layer fully connected neural

network Prmodel to predict the probabilities of a bond of each of the three types (single,

double, triple) existing between the pair of nodes. The prior model works as follows

Pbond = Prmodel ([Fv, Fu, y
′
IR]) , for each pair of nodes u, v ∈ V

where, “[ ]” represents a concatenation operation, Prmodel is the prior model, and Pbond is

a 3-tuple giving the probabilities of nodes u and v having a single, double, and triple bond

respectively.

The value model first performs a sum-pooling operation on the node-wise features ob-

tained from the MPNN. It then appends the compressed IR spectrum to the sum-pooled

feature vector of the molecule and passes this through a two-layer fully connected neural

network Vmodel to predict the value of this state. The value model works as follows

Vs = Vmodel

([∑
i

Fi, y
′
IR

])

where,
∑
i

Fi is the result of the sum-pooling operation of all node-wise features in the

molecular graph.

Training Methodology

The prior and value model are trained on a set of experiences generated from a guided

tree search on the molecules in the training dataset. These experiences are generated by

building and exploring the search tree with MCTS, but with a modified reward function.

Since the target molecule is known while training, the reward function is replaced with a
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binary function that returns a value depending on whether the molecule built at the current

state is subgraph isomorphic to the molecular graph of the target molecule. The reward for

taking an action a from state s to reach state s′ is:

r(s, a) =


1 if S(mols′ ,moltarget)

0 otherwise

where mols′ is the molecular graph of the molecule at state s′, moltarget is the molecular graph

of the target molecule, and S(mols′ ,moltarget) is RDKit’s79 substructure search that does a

subgraph isomorphism check and returns a boolean value.

The policies and values of each state in the trees built during the training period are

stored and are used to train the prior and value models. We use the Adam optimizer80 with

a learning rate of 1e− 5 to train the models. The entire training took about 45 hours on a

system with a Intel Xeon E5-2640 v4 processor and a GeForce GTX 1080 Ti GPU.

Choosing the hyperparameters nmcts and number of episodes

We test multiple values of the nmcts hyperparameter and the number of episodes for each set

of input spectra to choose the best values. Each episode builds the MCTS tree from scratch

by going through all four phases of MCTS nmcts times and returns a final molecule. All the

unique candidate molecules from these episodes are then ranked using the reward function

as a scoring function. To choose the best hyperparameters, we consider the Top N metrics

where each Top N metric denotes whether the target molecule was present in the top N

ranked candidate molecules.

For the nmcts hyperparameter, we test the values 200, 400, and 800 on the validation

set where each set of input spectra goes through a maximum of 40 episodes. The Top N

metrics for each value of nmcts is shown in table 2. Across the various nmcts values, the

Top 1 (%) accuracy increases as nmcts increases. There is a stark increase in the Top 1

(%) accuracy between nmcts = 200, 400, but there is only a marginal difference between
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nmcts = 400, 800. This shows that increasing nmcts further will result in diminishing increase

in performance while taking a disproportionately greater amount of time as shown in figure

5b. We use nmcts = 400 to show the best results of DeepSPInN, and nmcts = 200 to run

various experiments in a reasonable time. To choose the number of episodes, we analyse the

number of episodes that are taken when a molecule is correctly predicted. For the correctly

predicted molecules, the right molecule was found within 10 episodes 86% of the time. The

right molecule was found 99.9% of the time when DeepSPInN is run for 32 episodes, which

we found to be the ideal number of episodes for running further experiments. Further

information regarding this is provided in the supplementary information.

Table 2: Top N metrics for varying nmcts values with 40 episodes on the validation set

IR+13C NMR

nmcts 200 400 800

Top 1 (%) 86.47 91.42 91.56
Top 3 (%) 87.05 92.13 92.49
Top 5 (%) 87.20 92.19 95.57
Top 10 (%) 87.39 92.33 96.07

Results

To rigorously evaluate DeepSPInN, we present the results of a few experiments in the follow-

ing subsections. The first subsection compares the performance of DeepSPInN for different

nmcts values. The next subsection compares the final rewards for correctly and incorrectly

predicted molecules. In the following subsection, the time taken to predict the molecules for

different nmcts values is analyzed. In the subsequent subsection, performance of the model

is discussed when only one of IR or 13C NMR spectrum is given as the input. The final

subsection describes and presents the results of an experiment to check the generalizability

of DeepSPInN.
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Table 3: Top N metrics for varying nmcts on the test set

IR+13C NMR

nmcts 200 400

Top 1 (%) 86.91 91.46
Top 3 (%) 87.54 92.16
Top 5 (%) 87.60 92.22
Top 10 (%) 87.62 92.24

Performance of DeepSPInN for varying nmcts values

Table 3 compares the results for different values of nmcts when given both IR and 13C NMR

spectra. For nmcts = 400, DeepSPInN correctly identifies the target molecule ∼ 91.5% of

the time as the top candidate molecule. Even with nmcts = 200, DeepSPInN is able to

outperform the previous MCTS-based structure elucidation method53 that has a best Top

1 (%) accuracy of ∼ 60% compared to DeepSPInN’s Top 1 (%) accuracy of ∼ 86.9% for

nmcts = 200.

Even within each nmcts value, the Top N (%) metrics increase marginally starting from

Top 1 (%) to Top 10 (%). The increases across the Top N (%) metrics are due to an

imperfect scoring function being used to rank all the candidate molecules. If the correct

target molecule is not ranked as the top candidate molecule, it would contribute to one of

the Top N (%) metrics. Still, we observe that the scoring function proposed in DeepSPInN is

significantly better than the one used in Sridharan et al. 53 since they report great differences

across the Top N (%) metrics. DeepSPInN does not show such great differences in the

Top N metrics, illustrating that the scoring function used here performs better in ranking

the candidate molecules. In DeepSPInN, if the correct molecule is found to be one of the

candidate molecules, it is almost always ranked as the top candidate.
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Comparison of rewards for correctly and incorrectly predicted molecules

Figure 4 contains the histograms of the rewards for the cases when DeepSPInN was and was

not able to predict the correct molecule as the top candidate. The histogram of the rewards

for the correctly predicted molecules has a very narrow distribution and has an average

reward of 0.975. It is also left-skewed with most of the correctly predicted molecules receiving

a higher reward when compared to the incorrectly predicted molecules. The histogram of the

rewards for the incorrectly predicted molecules has a broader distribution with an average

reward of 0.808. 88.56% of the correctly predicted molecules had a reward ≥ 0.95 while

only 8.9% of the incorrectly predicted molecules had a reward ≥ 0.95. DeepSPInN would

allow researchers to use the final reward as a confidence measure of the correctness of the

prediction. When DeepSPInN gives a final reward ≥ 0.95 for a set of input spectra, the

top candidate is the target molecule 99.9% of the time. The top candidate molecules even

for these incorrectly predicted molecules are structurally similar to the correct molecule,

with the average Tanimoto similarity between the correct molecule and the top candidate

molecule being 0.954 for the test set.

Analysis of the time taken for the predictions

Figure 5a shows the distribution of times taken for DeepSPInN to predict candidate molecules

for input IR and 13C NMR spectra for different values of nmcts. For nmcts = 400, the average

time taken is 77 seconds with 95% of the test molecules taking less than 130 seconds. Figure

5b shows the distributions of times taken by IR-and-NMR-trained, IR-trained, and NMR-

trained models to predict candidate molecules for nmcts = 200. The NMR-trained model has

the fastest average prediction time of 24 seconds, while the IR-trained model has the slowest

average prediction time of 82 seconds. The IR-and-NMR-trained model has an average

prediction time of 49 seconds. The NMR-trained model is the fastest because the model is

smaller due to the IR spectrum compression neural networks being removed. The IR-trained

model is the slowest since DeepSPInN has to explore more of the search tree in each episode,
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Figure 4: Histogram of the rewards of molecules that had the correct and incorrect structure
as the top ranked candidate molecule for nmcts = 400

when compared to the IR-and-NMR-trained model that also has the 13C NMR shift values

as the input.

Importance of having both IR and 13C NMR spectra as input

To compare the distinguishing ability of IR and 13C NMR and to compare the utility of

having both IR and 13C NMR spectra as the input, we performed ablation studies where

we ran the model with either one of the spectra as the input for nmcts = 200. Table 4

shows the Top N metrics for the models that received both IR and NMR, only IR, and only

NMR spectra as input. The IR-and-NMR-trained model has a Top 1 accuracy of 86.9%

while the IR-trained and NMR-trained models have a Top 1 accuracy of 73.15% and 29.37%

respectively. All Top N metrics for the IR-and-NMR-trained model are greater than the

models that work with either one of the spectra. This implies that the model is able to

learn complementary information from both the spectra and subsequently performs better
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(a) Histograms of the time taken to predict
each molecule when given both IR and 13C
NMR spectra for varying nmcts values

(b) Histograms of the time taken to predict
each molecule when given either IR or 13C
NMR spectra for nmcts = 200

Figure 5: Histograms of time taken to predict each molecule when given both IR and 13C
NMR spectra or either one spectrum

than the models with either one of the spectra as the input. Among the models that work

on either one of the spectra, the IR-trained model performed significantly better than the

NMR-trained model in all the Top N metrics.

Generalizability of DeepSPInN in understanding the action space

To understand how well DeepSPInN generalizes learning about the actions, the prior and

value models were first trained on all molecules with less than 8 heavy atoms. It was then

tested on a subset of molecules with 8 or more heavy atoms using these prior and value

models. Table 5 shows the Top N metrics for this subset of test molecules, and the Top

N metric for 8-atom molecules and 9-atom molecules in this subset. DeepSPInN achieves a

Top 1 accuracy of 68.52% even when all the test molecules have more heavy atoms than the

molecules that DeepSPInN was trained on. The Top 1 accuracy on molecules with 8 and 9

heavy atoms is 89.88% and 64.63% respectively. The decreased accuracy when compared to
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Table 4: Performance of IR-and-NMR-trained, IR-trained, and NMR-trained models for
nmcts = 200

IR and NMR Only IR Only NMR

Top 1 (%) 86.91 73.15 29.37
Top 3 (%) 87.54 73.31 37.99
Top 5 (%) 87.60 73.32 39.76
Top 10 (%) 87.62 73.32 40.66

Table 5: Training on molecules with ≤ 7 atoms and testing on molecules with ≥ 8 atoms
for nmcts = 200

≥ 8 atom molecules 8-atom molecules 9-atom molecules

Top 1 (%) 68.52 89.88 64.63
Top 3 (%) 68.92 90.14 65.05
Top 5 (%) 69.0 90.27 65.12
Top 10 (%) 69.06 90.27 65.19

the original model might be because there were very few molecules for training the prior and

value models in this experiment. When DeepSPInN is trained on molecules with ≤ 7 atoms,

it might perform worse on bigger molecules since they have more combinations of functional

groups in each test molecule than it has seen in the molecules used for the training. We

study whether DeepSPInN is able to predict some functional groups better than the others

by calculating the Top N for molecules that contain various functional groups. More details

and results of both these experiments are available in the Supplementary Information.

Conclusions

DeepSPInN predicts the molecular structure when given an input IR and 13C NMR spectra

without searching any pre-existing spectral databases or enumerating the possible structural

motifs present in the input spectra. After formulating the molecular structure prediction

problem as an MDP, DeepSPInN employs MCTS to explore and choose the actions in the

MDP. After building a null molecular graph from the molecular formula, DeepSPInN builds
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the molecular graph by treating the addition of each edge as an action in the MDP with

the help of offline-trained GCNs to featurize each state in the MDP. DeepSPInN is able to

correctly predict the molecular structure for 91.5% of input IR and 13C NMR spectra in an

average time of 77 seconds for molecules with < 10 heavy atoms.

DeepSPInN currently works on molecules that have less than 10 heavy atoms and future

work could extend DeepSPInN to work on bigger molecules, or perhaps introduce other ap-

proaches that can easily be extended to bigger molecules. Since the number of molecules

increases exponentially as the number of heavy atoms increase, future work could try to have

a subset of molecules for different number of heavy atoms rather than trying to exhaustively

train on all possible molecules of greater sizes. DeepSPInN currently requires the molecu-

lar formula to be inferred from another chemical characterization technique apart from the

input spectra. Removing this requirement is an aspect that can be explored in the future.

We demonstrated the capability of our method to effectively learn to characterize simulated

IR and 13C NMR spectra, which reflect the complexity of experimental spectra. This paves

the way for future works to build datasets of experimental spectra and validate our method

on them. Additionally, it will be interesting to see if DeepSPInN’s accuracy improves with

the addition of other spectral information such as UV-Vis spectra and mass spectra. We

believe that DeepSPInN is a valuable demonstration of how machine learning can contribute

to molecular structure prediction, and that it would help spur further research in the appli-

cation of deep learning in high-throughput synthesis to enable faster and more efficient drug

discovery pipelines.
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(54) Kuhn, S.; Schlörer, N. E. Facilitating quality control for spectra assignments of small

organic molecules: nmrshiftdb2 – a free in-house NMR database with integrated LIMS

for academic service laboratories.Magnetic Resonance in Chemistry 2015, 53, 582–589.

(55) Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; Dahl, G. E. Neural Message

Passing for Quantum Chemistry. CoRR 2017, abs/1704.01212 .

(56) Ruddigkeit, L.; van Deursen, R.; Blum, L. C.; Reymond, J.-L. Enumeration of 166

Billion Organic Small Molecules in the Chemical Universe Database GDB-17. Journal

of Chemical Information and Modeling 2012, 52, 2864–2875, PMID: 23088335.

(57) Ramakrishnan, R.; Dral, P. O.; Rupp, M.; von Lilienfeld, O. A. Quantum chemistry

structures and properties of 134 kilo molecules. Scientific Data 2014, 1, 140022.

(58) Ruddigkeit, L.; van Deursen, R.; Blum, L. C.; Reymond, J.-L. Enumeration of 166

Billion Organic Small Molecules in the Chemical Universe Database GDB-17. Journal

of Chemical Information and Modeling 2012, 52, 2864–2875.

(59) Frisch, M. J. et al. Gaussian 09, Revision A.1. 2016; Gaussian Inc. Wallingford CT.

(60) McGill, C.; Forsuelo, M.; Guan, Y.; Green, W. H. Predicting Infrared Spectra with Mes-

sage Passing Neural Networks. Journal of Chemical Information and Modeling 2021,

61, 2594–2609.

(61) P.M., C.; F.R., G.; G.C., R.; W.J., L. The NIST Quantitative Infrared Database.

Journal of Research of the National Institute of Standards and Technology 1999, 104,

59–81.

(62) Wallace, S.; Lambrakos, S. G.; Shabaev, A.; Massa, L. On using DFT to construct an

IR spectrum database for PFAS molecules. Structural Chemistry 2022, 33, 247–256.

(63) Gupta, A.; Chakraborty, S.; Ramakrishnan, R. Revving up 13C NMR shielding predic-

tions across chemical space: benchmarks for atoms-in-molecules kernel machine learning

30

https://doi.org/10.26434/chemrxiv-2023-drhmj-v2 ORCID: https://orcid.org/0000-0002-1330-8720 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-drhmj-v2
https://orcid.org/0000-0002-1330-8720
https://creativecommons.org/licenses/by-nc-nd/4.0/


with new data for 134 kilo molecules. Machine Learning: Science and Technology 2021,

2, 035010.

(64) Mehring, M. High resolution NMR spectroscopy in solids ; Springer Science & Business

Media, 2012; Vol. 11.

(65) Rull, H.; Fischer, M.; Kuhn, S. NMR shift prediction from small data quantities. Journal

of Cheminformatics 2023, 15, 114.

(66) Guan, Y.; Shree Sowndarya, S. V.; Gallegos, L. C.; St. John, P. C.; Paton, R. S. Real-

time prediction of 1H and 13C chemical shifts with DFT accuracy using a 3D graph

neural network. Chem. Sci. 2021, 12, 12012–12026.

(67) Lodewyk, M. W.; Siebert, M. R.; Tantillo, D. J. Computational prediction of 1H and

13C chemical shifts: a useful tool for natural product, mechanistic, and synthetic or-

ganic chemistry. Chem Rev 2011, 112, 1839–1862.

(68) Silver, D. et al. Mastering the game of Go with deep neural networks and tree search.

Nature 2016, 529, 484–489.

(69) James, S.; Konidaris, G.; Rosman, B. An Analysis of Monte Carlo Tree Search. Proceed-

ings of the Thirty-First AAAI Conference on Artificial Intelligence. 2017; p 3576–3582.

(70) Sutton, R. S.; Barto, A. G. Reinforcement Learning: An Introduction, 2nd ed.; The

MIT Press, 2018.

(71) Yang, K.; Swanson, K.; Jin, W.; Coley, C.; Eiden, P.; Gao, H.; Guzman-Perez, A.;

Hopper, T.; Kelley, B.; Mathea, M.; Palmer, A.; Settels, V.; Jaakkola, T.; Jensen, K.;

Barzilay, R. Analyzing Learned Molecular Representations for Property Prediction.

Journal of Chemical Information and Modeling 2019, 59, 3370–3388.

(72) Dai, H.; Dai, B.; Song, L. Discriminative Embeddings of Latent Variable Models for

Structured Data. CoRR 2016, abs/1603.05629 .

31

https://doi.org/10.26434/chemrxiv-2023-drhmj-v2 ORCID: https://orcid.org/0000-0002-1330-8720 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-drhmj-v2
https://orcid.org/0000-0002-1330-8720
https://creativecommons.org/licenses/by-nc-nd/4.0/


(73) Chang, C.-I. An information-theoretic approach to spectral variability, similarity, and

discrimination for hyperspectral image analysis. IEEE Transactions on Information

Theory 2000, 46, 1927–1932.
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