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ABSTRACT: A comprehensive quantum mechanical investigation into the antiradical activity of galangin (Glg), a natural flavonoid rec-
ognized for its robust antioxidant and anti-inflammatory properties, is presented. The compound undergoes successive deprotonation at 
C7 (pKa=7.48), C3 (pKa=9.34), and C5 (pKa=12.07). At pH 7.4, the predominant species are the neutral form (54.37%) and the first depro-
tonation product (45.11%), with the dianion present at a minor level (0.51%). According to eH-DAMA results, Glg exhibits improved 
antiradical effectiveness in water compared to apolar solvents. In both solvents, exergonic pathways towards •OOH radicals involve radical 
adduct formation at C2, while the highest propensity for HAT is associated with the C3 hydroxyl. Electron transfer pathways are not 
preferred, as indicated by Marcus’s parabola. The overall reaction rate was established at 3.77 × 103 M-1 s-1 in pentyl ethanoate and 1.69 × 
105 M-1 s-1 in water, considering the molar fractions of individual species and hydroperoxyl radicals at pH=7.4. The magnitude of the same 
reaction rate within the physiological pH range (pH=1.5 – 8.5) is consistently not less than 3.5, gradually reaching a peak value of 5.48 
starting from pH=5. Furthermore, all Glg species readily undergo regeneration mediated by O2•-.

INTRODUCTION 
Oxidative stress is a physiological condition characterized by an 

imbalance between the production of reactive oxygen species (ROS) 
and cellular antioxidant defence mechanisms. ROS, including free 
radicals and other oxygen-derived molecules, are integral to normal 
cellular metabolism and play a crucial role in signalling pathways.1,2 
However, environmental factors or certain pathological conditions 
can lead to their excessive production, causing cellular damage and 
dysfunction.3 The disruption of redox homeostasis has been impli-
cated in various diseases, including neurodegenerative disorders4,5, 
cardiovascular diseases6, and cancer7. Understanding the molecular 
mechanisms underlying oxidative stress is crucial for developing ther-
apeutic interventions to mitigate its adverse effects on cellular func-
tion. 

Antioxidants, a diverse group of molecules, counteract the harm-
ful effects of oxidative stress by neutralizing and scavenging reactive 
oxygen species. These compounds, which include vitamins (e.g., vita-
min C and E)8, minerals (e.g., selenium)8, and phytochemicals (e.g., 
flavonoids and polyphenols)9, act through mechanisms such as do-
nating electrons or hydrogen atoms to stabilize free radicals.10,11 An-
tioxidants play a pivotal role in maintaining cellular redox balance and 
protecting biomolecules, such as lipids, proteins, and nucleic acids, 
from oxidative damage.1,2 Numerous studies12 have highlighted the 
potential health benefits of a diet rich in antioxidants, emphasizing 
their role in preventing or ameliorating oxidative stress-related dis-
eases. 

Galangin (denoted as Glg and depicted in Scheme 1) is a natural 
flavonoid found in various plant sources, including Alpinia officinarum 
and Helichrysum aureonitens, and propolis.13 This bioactive polyphenol 

has attracted scientific interest due to its potent antioxidant and anti-
inflammatory properties. Research have indicated that Glg exhibits 
protective effects against oxidative stress-induced cellular damage by 
modulating intracellular signalling pathways and enhancing the activ-
ity of endogenous antioxidant enzymes. Moreover, galangin has 
shown promise in diverse therapeutic applications, ranging from neu-
roprotection to anti-cancer effects.14–17 The exploration of galangin's 
molecular mechanisms and its potential role in mitigating oxidative 
stress-related disorders underscores its significance in the ongoing 
pursuit of novel and effective therapeutic agents. 

Computational studies on antioxidants have become increasingly 
instrumental in elucidating the intricate molecular mechanisms under-
lying their efficacy. Utilizing advanced computational tools, such as 
quantum chemical calculations, researchers can explore the interac-
tions between antioxidants and reactive oxygen species at the atomic 
level. These simulations provide valuable insights into the thermody-
namics and kinetics of antioxidant reactions, aiding in the identifica-
tion of key structural features that enhance their scavenging capabili-
ties.10,11,18 Furthermore, computational approaches contribute to the 
rational design of novel antioxidant compounds with optimized prop-
erties, guiding the development of potential therapeutic agents.19–21 
By bridging the gap between experimental findings and theoretical 
predictions, computational studies on antioxidants enhance our un-
derstanding of their complex behaviour in biological systems, offering 
a valuable platform for advancing antioxidant research and drug dis-
covery. 

In this research paper, the focus is on employing quantum me-
chanics to investigate the anti-radical activity of Glg. Drawing from 
the already conducted research it can be postulated that the substance, 
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owing to its recognized antioxidant properties, will demonstrate a ca-
pacity to efficiently neutralize and scavenge reactive radical species, 
thereby mitigating oxidative stress. The computational framework en-
ables an in-depth exploration of the molecular interactions, structural 
determinants, and electronic features governing this efficacy. This re-
search aims to contribute nuanced insights to the realm of antioxidant 
studies, with the potential to inform the development of novel thera-
peutic agents grounded in the molecular attributes of galangin. 

 

 

Scheme 1. Molecular structure of galangin (Glg) with site numbering. 

COMPUTATIONAL DETAILS 
The low-energy ground-state conformer of neutral galangin was 

systematically generated using a robust conformer search procedure 
that combines metadynamic sampling and z-matrix genetic crossing, 
specifically the iMTD-GC method implemented in the CREST driver 
program.22 

Electronic structure calculations in this study were conducted us-
ing the Gaussian 16 (rev. C.01) software package.23 For geometry op-
timizations and frequency calculations, the density functional theory 
(DFT) approach was employed, specifically utilizing the M05-2X/6-
311+G(d,p) level of theory. The M05-2X functional was selected for 
its proficiency in addressing noncovalent interactions, kinetics, and 
thermochemistry. Its reliability is supported by extensive validation 
against barrier heights, conformational energy, and bond dissociation 
energies.24 Moreover, M05-2X has demonstrated efficacy in model-
ling open-shell systems, particularly estimating energies associated 
with reactions involving free radicals.25 It also stand out as one of the 
top-performing DFT approximations, alongside LC-xPBE, M06-2X, 
BMK, B2PLYP, and MN12SX, based on a benchmark study assessing 
rate constant calculations for radical molecule reactions in aqueous 
solutions.26 

Solvation effects were incorporated into the study using the uni-
versal solvation model based on solute electron density (SMD)27 with 
pentyl ethanoate (ε=4.7328) and water (ε=78.3528) chosen to repro-
duce physiological conditions of cellular environments. The choice of 
SMD was grounded in its demonstrated suitability for simulating sol-
vents with varied characteristics and media, whether charged or non-
charged.27 Notably, SMD has proven effective in mixed models and 
has been successfully applied for geometry optimization and vibra-
tional calculations in solution settings. Empirical validation for a wide 
range of solutes and liquid environments further supports its appro-
priateness.29  

Unrestricted calculations were specifically implemented for open-
shell systems in this study. To ensure result accuracy for radical spe-
cies, thorough checks for spin contamination were conducted. In all 

instances, deviations from the ideal value were negligible following 
the annihilation of the initial spin contamination. The identification 
of local minima relied on the absence of imaginary frequencies, while 
transition states were discerned through the presence of a single fre-
quency precisely corresponding to the anticipated motion along the 
reaction coordinate. Additionally, the accuracy of the identified struc-
tures was confirmed through Intrinsic Reaction Coordinate (IRC) 
computations30,31 providing assurance that the calculated transition 
states appropriately linked with the reactants and products of the in-
tended reaction, reinforcing the reliability of the theoretical predic-
tions. 

Acid-Base Equilibria 
To ascertain acid constants for the substances under investigation, 

a parameter-fitted approach was employed as outlined by reference.32 
This method involves computing pKa values utilizing a linear fitting 
expression: 

p𝐾! = 𝑚Δ𝐺"# + 𝐶$ 
 
Here, Δ𝐺"# represents the Gibbs free energy difference between the 
conjugated base and the corresponding acid. The parameters 𝑚 and  
𝐶$ are variable and contingent upon the specific substituents and the 
computational level employed. Only acid-base species with molar 
fractions ( 𝑓% ) exceeding 0.1% were considered for inclusion in the 
study. 

Thermochemistry 
The assessment of the thermodynamic feasibility of various pro-

cesses involved analysing the Gibbs free energies of reaction. The en-
ergies of solvated electron and proton were sourced from the study 
by Marković et al.33  

Relative energies, incorporating thermodynamic corrections at 
298.15 K, were calculated with respect to the sum of the isolated re-
actants, all referenced to the 1 M standard state. Additionally, solvent 
cage effects, accounting for entropy loss due to liquid-phase effects, 
were taken into consideration. This correction, following the ap-
proach proposed by Okuno34, integrated the free volume theory35. 
For a bimolecular reaction leading to a single product, the application 
of this correction at 298 K resulted in a reduction of 2.55 kcal mol-1 
in the Gibbs free energy in solution compared to the same reaction in 
the gas phase. Neglecting both the standard state and solvent effects 
simultaneously in the calculation of reaction barriers would result in a 
substantial underestimation of rate constants, approximately by a fac-
tor of 1800, for bimolecular reactions at room temperature.36 This 
highlights the significant influence of solvent effects on both the ther-
modynamics and kinetics of reactions in the solution phase 
 

Kinetics 
Kinetic data were obtained using the QM-ORSA protocol, a vali-

dated method designed for calculating rate constants in solution, 
demonstrating uncertainties comparable to experimental measure-
ments 11,18,36 Detailed information on the computational procedures 
can be found in the respective references. 

The conventional Transition State Theory (TST)37–39 was em-
ployed for rate constant calculations, utilizing harmonic vibrational 
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frequencies and non-symmetrical, unidimensional Eckart tunnelling 
corrections.40 The TST rate constant (kTST) is expressed as: 

 

𝑘&'& = 𝜎𝜅(𝑇)
𝑘(𝑇
ℎ 𝑒)*

+,!
-& .

 
 
Here, Δ𝐺/ represents the Gibbs activation energy, 𝜎 is the reac-

tion path degeneracy41,42, 𝜅(𝑇) is the tunneling correction43, 𝑇 is the 
temperature, and 𝑘( , ℎ and 𝑅 are the Boltzmann, Planck, and ideal 
gas constants, respectively. 𝜎 signifies the number of equivalent reac-
tion paths, and for the studied reactions, 𝜎 = 1 due to the absence of 
rotational symmetry in the transition state geometries.37,39,44 

For Single Electron Transfer (SET) reactions, activation energies 
were determined using Marcus theory.45 The formula for calculating 
ΔG≠ is given by: 

 

Δ𝐺/ =
𝜆
4 61 +

Δ𝐺'0&
𝜆 7

1
 

 
Here, Δ𝐺'0& represents the free energy of the reaction, and λ corre-
sponds to the reorganization energy. In cases of vertical electron 
transfer within a reactant complex, Δ𝐺'0& values were computed be-
tween the reactant and product complexes. Additionally, 𝜆  values 
were determined as the sum of internal (𝜆2) and solvent (𝜆3) reorgan-
ization energies.46 

As some rate constants of radical reactions tend to approach the 
diffusion limit, a correction using the Collins–Kimball theory47 was 
applied. The corrected rate constant (𝑘) is given by: 

 

𝑘 =
𝑘4𝑘&'&

𝑘4+𝑘&'&
 

 
Here, 𝑘&'& represents the thermal rate constant obtained from TST 
calculations, and 𝑘4 is the steady-state Smoluchowski rate constant 
for an irreversible bimolecular diffusion-controlled reaction48. 

The total rate coefficients for the reactions (𝑘535!6) were deter-
mined by summing the contributions from each reaction path (𝑖): 

 

𝑘535!6 =9𝑘2

7

2

 

 
The overall rate coefficients (𝑘389:!66) were calculated by consid-

ering the molar fractions ( 𝑓% ) of the acid–base species involved in 
each chemical route at the pH of interest. 

 
𝑘389:!66 = 𝑓 𝑘535!6 +% 𝑓)𝑘535!6) + 𝑓1)𝑘535!61)%%  

 
The molar fractions are computed from the pKa values of the re-

actants: 

𝑓1); =
1

1 + 𝛽<[𝐻=] + 𝛽1[𝐻=]1
 

𝑓); = 𝛽<[𝐻=]( 𝑓1); ) 
𝑓; = β1[𝐻=]1( 𝑓1); ) 

 
where  

 
β< = 10>?"# 

β1 = 10>?"#=>?"$ 
 

The percent contributions of each reaction mechanism (Γ) are 
then estimated using the formula: 

 

Γ2 = 100 ×
𝑘2

𝑘535!6
 

 
This approach provides a quantitative breakdown of the contribution 
of each mechanism to the total reaction rate, facilitating a more de-
tailed analysis of the reaction network. 

RESULTS AND DISCUSSION 

Acid-Base Equilibria 
In aqueous solutions, the equilibrium between neutral and charged 

species in molecules with acid–base characteristics, governed by the 
pKa-pH relationship, plays a crucial role. This equilibrium significantly 
influences the antioxidant behavior of the substances.49 

Currently, no experimental pKa values for Glg are available, neces-
sitating reliance on the theoretical estimates presented in this paper. 
However, the proposed methodology 32 has been previously validated 
as reliable for polyphenolic compounds, producing results closely 
aligned with experimentally measured values. 

The first dissociation constant corresponds to the deprotonation 
of the phenolic OH located at C7 (pKa1=7.48), followed by C3 
(pKa2=9.34), and finally C5 group (pKa3=12.07). The hydroxyl group 
at C7 exhibits the highest propensity for deprotonation, consistent 
with previous observations.50–53 Additionally, the intramolecular hy-
drogen bonding with the carbonyl residue at C4, involving the acidic 
hydrogens of C3 and C5 groups, stabilizes the system, reducing the 
tendency for dissociation54. Therefore, the proposed deprotonation 
pathway is deemed reasonable. 

As indicated by the graph depicting molar fraction as a function 
of pH (Figure 1), the species with the largest population at pH=7.4 
comprises the neutral form ( 𝑓% = 54.37%) and the product of the 
first deprotonation ( 𝑓)% = 45.11%).  Although the dianion is pre-
dicted to exist only to a minor extent under the same conditions, its 
population is not negligible G 𝑓1)% = 0.51%H and should be duly 
considered. 
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Figure 1. Molar fractions of galangin species plotted as a function of 
pH. 

 

Relative Reactivity 
The ionization potential (IP) and bond dissociation energy (BDE) 

were systematically computed using the ΔSCF framework to con-
struct the electron and hydrogen-donating ability map for antioxi-
dants, known as eH-DAMA.55 eH-DAMA visually represents the like-
lihood of molecules as hydrogen and electron donors, reflecting their 
capabilities in hydrogen atom transfer and electron transfer mecha-
nisms. The most effective radical scavengers are anticipated to be lo-
cated in the bottom-left quarter. This approach provides a compre-
hensive exploration of the molecule's reactivity for comparison pur-
poses. 

All undissociated hydroxyl groups within the molecule, potentially 
acting as hydrogen donors (H•), were considered. The dominant acid-
base species of Glg at physiological pH, along with two antioxidant 
references (Trolox and α-tocopherol) and the H2O2/O2•− pair repre-
senting the potential oxidant target, were included in this map 

The lowest BDE and IP values for the galangin species were esti-
mated as (91.9 kcal mol-1, 5.9 eV) in pentyl ethanoate (H3GlgPET), 
and (91.3 kcal mol-1, 5.0 eV), (88.0 kcal mol-1, 4.4 eV), (90.6 kcal mol-
1, 3.5 eV) for the neutral (H3Glg), monoanionic (H2Glg–), and dian-
ionic (HGlg2–) species, respectively. Unfortunately, comparative data 
in the literature are sparse. In our previous paper54 employing the 
B3LYP/6-31+G(d,p)/PCM level of theory, H3Glg was associated 
with a slightly different BDE value of 86.9 kcal mol-1. However, the 
IP outputs remained coherent. In another study, Lewandowski et al.56 
reported intrinsic reactivity indices of 78.7 kcal mol-1 and 4.83 eV, 
obtained through computations under the B3LYP/6-
311++G(d,p)/PCM regime. The observed inconsistency is not sur-
prising, given B3LYP's known limitations in such studies, in contrast 
to the level of theory chosen here57,58. Furthermore, determining IP 
is highly reliant on the chosen functional and basis set, emphasizing 
the need for methodological consistency for accurate and meaningful 
comparisons in reactivity studies.58 

Figure 2 illustrates two eH-DAMA maps, one in a nonpolar en-
vironment (upper, for pentyl ethanoate) and the other in a polar en-
vironment (lower, for water). These maps include reference 

substances (α-tocopherol, Trolox, ascorbic acid) and various flavo-
noids (isorhamnethin, scutellarein, apigenin, pinocembrin)50–53 
marked for comparative purposes. 

In a nonpolar medium, H3GlgPET shows promise for deactivating 
free radicals through electron transfer compared to pinocembrin and 
apigenin. However, based on BDE, all other reductants, except pino-
cembrin, are projected to undergo hydrogen atom transfer more read-
ily. Notably, the BDE value is on the margin of the box drawn by the 
H2O2/•OOH pair, suggesting that the hydrogen atom transfer pro-
cess might not be particularly effective 

Transitioning to a polar environment, the substance's activity im-
proves significantly, observed in a simultaneous decrease in BDE and 
IP values. In this environment, any Glg species demonstrates the ca-
pability to reduce the reference oxidant. Also, consecutive deproto-
nations significantly impact the IP value. Interestingly, the pattern is 
similar to that of pinocembrin, but the additional hydroxyl group at 
C3 and a double bond between C2 and C3 influence the reactivity in-
dices, causing a notable shift towards the zone corresponding to more 
active antioxidants. While neutral and monoanionic species may not 
be more effective antiradical agents than Trolox anion and ascorbate, 
the dianionic form is likely to exhibit an outstanding propensity for 
electron transfer. 

 

 

 

Figure 2. Electron and Hydrogen Donating Ability Maps for Anti-
oxidants including galangin species. 
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Understanding the reaction mechanisms is crucial for rationalizing 
the reactivity of chemical compounds, particularly in the context of 
antiradical activity. Three primary pathways govern the antiradical ac-
tivity of a substance: 

• single electron transfer (SET): 
HnAi + Rj → HnAi+1 + Rj-1 

• formal hydrogen atom transfer (f-HAT):  
HnAi + Rj → Hn-1Ai + HRj 

• radical adduct formation (RAF): 
HnAi + Rj → [HnA–HR]i+j 

The evaluation of free radical scavenging activity focuses on the 
reactions of Glg species with the hydroperoxyl radical •OOH. Despite 
the widely recognized hydroxyl radical, •OH, as the primary initiator 

of oxidative damage, it high reactivity results in swift rapid reactions 
with molecules in its proximity before an antioxidant can effectively 
intercept it. The extended half-lives of peroxyl radicals, including 
•OOH, offer antioxidants a window of opportunity to successfully in-
tercept them.2 This characteristic not only aids the in exploring trends 
in radical scavenging efficiency but also underscores the crucial role 
of peroxyradicals as essential reaction partners for polyphenolic anti-
oxidants.59 Additionally, •OOH has been proposed to play a pivotal 
role in the toxic side effects associated with aerobic respiration.60 

 
Figure 3 present the Gibbs free energies (ΔG) for each reaction 

pathway in lipid and aqueous solutions. 

 
Figure 3. Gibbs free energies of reaction (ΔG, in kcal mol-1, at 298.15 K) for the modeled pathways. 

In the lipid solution (H3GlgPET), only two chemical pathways 
were identified as exergonic: HAT from the phenolic hydroxyl group 
at C3 (-0.8 kcal mol-1) and RAF at C2 (-2.2 kcal mol-1). For H3Glg, 
both HAT from the C3 hydroxyl group and RAF at C2 are equally 
exergonic, with esteemed values of -3.5 kcal mol-1. As subsequent 
deprotonation occurs, these values decrease further, reaching -7.1 kcal 
mol-1 for HAT and -4.9 kcal mol-1 for RAF in H2Glg–. In the case of 
HGlg2–, which lacks the C3 hydroxyl group, a ΔG value of -4.9 kcal 
mol-1 is obtained. The pronounced feasibility of hydrogen atom trans-
fer from C3, compared to other hydrogen-donating sites, can be at-
tributed to the greater degree of delocalisation of the spin density cre-
ated compared to instances of C5 or C7 radicals.54 Considering the 
acidic nature of these residues, exergonicity is also somewhat triggered 
with the polarity of the solvent and subsequent deprotonations.49  

A particularly unique aspect is the favourable thermochemistry of 
the radical adduct formation route involving position C2. The Gibbs 
free energies remain constantly negative, with an exceptional low 
value observed for HGlg2– (-18.2 kcal mol-1), nearly four times lower 
than for H2Glg–. This intriguing behaviour is noteworthy, especially 
when contrasted with the sizably endergonic nature of nearly all other 
RAF pathways. This suggests that the ability to intercept 

hydroperoxyl radical could be a subject of debate from the thermo-
chemical standpoint, highlighting the unique and favourable charac-
teristics of the discussed route. 

Last but not least, the ΔG values of 33.8 kcal mol-1 and 18.8 kcal 
mol-1, associated with the SET mechanism from H3Glg and H2Glg– 
species, respectively, may initially suggest an unfavorable nature of the 
process. However, caution should be exercised in dismissing these 
values outright. Electron transfer pathways may play a significant role 
in overall antiradical activity, potentially surpassing other channels. 
The efficacy of the mechanism hinges strongly on the established re-
organization energies. To systematically explore this relationship, 
Marcus theory has been applied, calculating activation energies as a 
function of established reorganization energies and free energies, 
graphically represented in the Marcus parabola depicted in Figure 4. 

The obtained high reorganization energies suggest a wide spread 
of the parabola's arms, indicating substantial structural changes during 
SET reactions. Additionally, the λ values imply that activation ener-
gies change more gradually as ΔG varies, suggesting a less pronounced 
impact on ΔG≠ is expected. The parabola's apex is approximately -
25.0 kcal mol-1, and all computed ΔG values reside on the descending 
arm, with the lowest at 6.0 kcal mol-1 (HGlg2–). These findings 
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support the assertion that Glg species likely do not act as electron 
donors to •OOH, disregarding the potential significance of the SET 
pathway in overall antiradical activity, except for HGlg2–. 

 

Figure 4. Gibbs free energies of activation (ΔG≠) as a function of 
Gibbs free energies of reaction (ΔG). λ represents reorganization en-
ergies for the given species. The squares correspond to the pair of 
values. All values are in kcal mol-1, at 298.15 K 

Kinetics 

Not all pathways identified as endergonic in the previous section 
were excluded from the kinetic calculations. While it is not expected 
that the experimentally observed products will result from these reac-
tions, their significance may still be valid. This is especially true if sub-
sequent processes are sufficiently exergonic, providing a driving force, 
and if the initial step itself is associated with a low activation energy. 
An example of this scenario can be the formation of radical-ionic spe-
cies, as they are prone to engage in rapid protonation/deprotonation 
equilibria. In the complex nature of biological systems with a diverse 
array of reacting substances, such situations may easily occur in phys-
iological environments.1,61 Consequently, the kinetic analysis encom-
passes pathways labelled with positive, albeit low (≤10.0 kcal mol-1), 
values of ΔG, recognizing their potential relevance in the overall re-
action network. In contrast, electron-related processes adhere to Mar-
cus theory, making them all worth investigating..46,62,63 

Yet, before delving into the kinetic considerations, another crucial 
aspect must be addressed. The •OOH/O2•- radical pair exists as part 
of an acid–base equilibrium with a pKa of 4.8. In an aqueous solution 
at pH=7.4, the molar fraction of •OOH is only 0.0025 due to this 
equilibrium. The superoxide anion radical,, O2•-, functions as a nucle-
ophile and mild reducing agent, exerting minimal impact on biological 
targets.64,65 Therefore, its protonated form is considered a primary 
contributor to oxidative damage, despite its significantly lower molar 
fraction.66 Consequently, to accurately replicate data under these con-
ditions, this aspect must be taken into consideration and is hereafter 
referred to as k•OOH. 

The exploration of viable mechanisms is elucidated through the 
determination of rate constants and branching ratios. The pertinent 
transition state structures are depicted in Figures 5-8, accompanied 
by the corresponding thermochemical data detailed in Table 4. 
 

  
HAT-C3 HAT-C7 

 
 

RAF-C2 RAF-C3 

Figure 5. Optimized geometries of the transition states in lipid solu-
tion. Distances are reported in angstroms. 

The provided kinetic and branching ratios for the reactions in lipid 
media underscore the significance of the hydrogen atom transfer 
mechanism. To be more precise, the observed reactivity is predomi-
nantly associated with the hydroxyl group at C3. The notably high rate 
constant of 3.77 × 103 M-1 s-1 results in a nearly unary branching ratio, 
emphasizing its prevalence in scavenging the •OOH radical. In con-
trast, the contribution of the remaining pathways, including HAT 
from C7 and RAFs at C2 and C3, to the overall activity in lipids is not 
greater than 0.12%. Thus, at least in this medium, the hydroxyl moiety 
is identified as responsible for the antioxidant behaviour of the inves-
tigated compound. 

 

 

 
RAF-C2 RAF-C3 

   
HAT-C3 HAT-C5 HAT-C7 

Figure 6. Optimized geometries of the transition states of neutral 
species in aqueous solution. Distances are reported in angstroms. 

In an aqueous solution at physiological pH, the chemistry involved 
in the peroxyl radical scavenging activity of Glg becomes significantly 
more complex. According to the overall calculated rate constants, Glg 
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is predicted to react with •OOH at a rate of around 1.69 × 105 M-1 s-

1. This is the sum of individual contributions from H3Glg (6.46 × 103 

M-1 s-1), H2Glg– (5.11 × 104) and HGlg2– (1.31 × 1010). Nonetheless, 
while the ktotal values are generally plausible, with none dropping be-
low 103 M-1 s-1, the small fraction of •OOH present at this pH 
(∼0.25%) and the varying molar fraction of each species notably in-
terfere with the final outcome. 

 

  
HAT-C3 HAT-C5 

  

RAF-C2 RAF-C3 

Figure 7. Optimized geometries of the transition states of anionic 
species in aqueous solution. Distances are reported in angstroms. 

The acid−base equilibria of the investigated Glg species exert a 
significant influence on the kinetics of their reactions with peroxyl 
radicals, thereby impacting their capability as hydroperoxyl radical 
scavengers. Evidently, the anti-•OOH activity increases with the de-
gree of deprotonation, particularly pronounced for the single electron 
transfer mechanism, as expected. Furthermore, in the case of HGlg2–
, some RAF pathways, e.g., at C2, C3 and C4, reach magnitudes of 8–9, 
and f-HAT from the C5 hydroxyl groups appears to be limited solely 
by diffusion. This rapid shift in the reaction rates underscores the 
consequences of considering even those species seemingly present in 
negligible populations under the studied conditions. 

 

 
  

RAF-C2’ RAF-C4’ RAF-C6’ 

   
 

RAF-C2 RAF-C3 RAF-C4 RAF-C8 

Figure 8. Optimized geometries of the transition states of dianionic species in aqueous solution. Distances are reported in angstrom. 

In comparison, when reacting with •OOH, H3GlgPET is approxi-
mately 140 times less efficient antioxidant ɑ-tocopherol67. However, 
its capability to scavenge hydroperoxyl radicals in this medium is no-
tably better than apigenin53 (6500 times greater rate constant) and 
quite similar to that of scutellarein51 (around 4 times greater). Shifting 

to a water solvent, while Glg (koverall = 1.69 × 105)  is notably less 
efficient as a scavenger than ascorbate 36 (koverall = 1.00 × 108), it ac-
tually outperforms Trolox68 (koverall = 8.96 × 104). In both media, Glg 
exhibits much better antiradical activity than pinocembrin, other 
closely related flavonoid.50 

Table 4. Gibbs free energies of activation (ΔG≠, kcal mol-1), rate constants (k, M-1 s-1) and branching ratios (%) of the reactions between galangin 
species and hydroperoxyl radical in lipid and aqueous Solution. 

 H3GlgPET H3Glg H2Glg– HGlg2– 
 ΔG≠ k % ΔG≠ k % ΔG≠ k % ΔG≠ k % 

f-HAT     
C3 16.7 3.77 × 103 99.89 15.4 6.42 × 103 99.30 13.8 5.04 × 104 98.64   
C5   24.1 1.28 × 10-1 0.00 22.3 2.88 × 100 0.01 0.0† 8.29 × 109† 63.17 
C7 19.8 1.73 × 100 0.05 22.0 6.95 × 10-1 0.01     

RAF         
C2 17.8 8.04 × 10-1 0.02 15.6 3.33 × 101 0.52 14.2 3.27 × 102 0.64 2.3 2.50 × 109 19.03 
C3 17.3 1.75 × 100 0.05 16.2 1.13 × 101 0.18 14.1 3.64 × 102 0.71 3.5 1.83 × 109 13.97 
C4       5.9 2.74 × 108 2.09 
C8       12.3 6.59 × 103 0.00 
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C2’       15.0 7.11 × 101 0.00 
C6’       14.6 1.42 × 102 0.00 

SET   34.1 5.89 × 10-13 0.00 19.1 6.51 × 10-2 0.00 6.0 2.28 × 108 1.74 
ktotal 

3.77× 103 
6.46 × 103 5.11 × 104 1.31 × 1010 

k•OOH 8.81 × 100 5.78 × 101 1.69 × 105 
koverall 1.69 × 105 

† the reaction has been found to be barrierless 
 
Continuing the elucidation on the topic, a comprehensive graph 

depicting the impact of pH on the overall and species-specific total 
rate constants is provided (Figure 9). It encompasses the pH range 
of 1.5 to 8.5, corresponding to the acidity found in the stomach and 
the slight alkalinity present in the small intestine. 

 

Figure 9. Dependence of kinetics on pH for the reactions between 
galangin species and hydroperoxyl radicals in aqueous solution. 

The observed sum of reaction rates is primarily constituted of two 
forms — H3Glg, for pH values lower than around 5.0, and HGlg2– 
for the remainder. The H2Glg– appears to be of less significance. 
Generally, the log(koverall) value remains stable at the outset in the 
most acidic environments. Starting from pH~3.5, it slightly drops, 
and a basin can be clearly observed between the pH values of 4.5 and 
6, with the minimum at around 5, associated with log(koverall) = 3.52. 
Thereafter, a relatively quick increase in anti-•OOH activity is ob-
served, resulting from the growing concentration of HGlg2– and its 
particular feasibility to intercept the radical. 
 
Regeneration 

Once an antioxidant neutralizes a free radical, it typically loses its 
scavenging ability. However, in biological systems, antioxidants can 
be regenerated to their pristine form with the help of other antioxi-
dants like glutathione, vitamin C, or vitamin E. Nonetheless, in an 
oxidatively stressed environment, their concentrations may be de-
pleted. The superoxide anion radical (O2•–) , which is present in abun-
dance at physiological pH (99.75%), is a strong reductant that might 
also be capable of mediating the renewal process. 

The information presented in Table 3 illuminates the regeneration 
dynamics of Glg species, offering crucial insights into the energetics 
and kinetics of their interactions with hydroperoxyl radicals. Remark-
ably, irrespective of the protonation state and the involved residues, 
the regeneration process proves to be feasible, as indicated by con-
sistently negative Gibbs free energies. While the viability experiences 

a gradual decrease with each successive deprotonation step, the pro-
cess remains favourable, with none of the values reaching an ender-
gonic state. Furthermore, the calculated activation energies, capped at 
3.6 kcal mol-1 (notably in the cases of C5 of HGlg2– and SET from 
H3Glg–), suggest rapid reactions limited by diffusion. This implies 
that, if left unintercepted by the surrounding environmental factors, 
these reactions could perpetuate a self-sustaining cycle of regenera-
tion and scavenging activity. The significance of this is further under-
scored by the consistently strongly negative energies of protonation 
from the solvent for all species, emphasizing the likelihood of suc-
cessful regeneration and sustained antiradical efficacy. 

Table 3. Gibbs free energies of reactions (ΔG, kcal mol-1), Gibbs free 
energies of activation (ΔG≠, kcal mol-1), rate constants (k, M−1 s−1), 
and Gibbs free energies of protonation (ΔG+, kcal mol-1) at 298.15 K 
for the regeneration process. 

 ΔG ΔG≠ k ΔG+ 
H3Glg     

C3 -20.1 1.3 4.00 × 109 -32.6 
C5 -29.6 0.8 3.96 × 109 -32.8 
C7 -34.2 0.7 3.98 × 109 -29.2 

SET -49.2 3.6 3.98 × 109  
H2Glg–     

C3 -13.9 0.7 3.45 × 109 -35.1 
C5 -21.3 0.1 3.83 × 109 -39.1 

SET -34.2 1.0 3.98 × 109  
HGlg2–     

C5 -7.5 3.6 3.09 × 109 -43.8 
SET -14.2 1.6 3.98 × 109  

CONCLUSIONS 
This research has provided valuable insights into the acid–base 

equilibrium and antioxidant behaviour of galangin in physiologically 
important environments. The determination of pKa values through 
theoretical estimates, validated by previous studies, revealed a step-
wise deprotonation process with distinct preferences for specific hy-
droxyl groups. The molar fraction analysis highlighted the prevalence 
of the neutral and first deprotonated forms at physiological pH, sim-
ultaneously emphasizing the need to consider even minor populations 
of charged species. 

The eH-DAMA facilitated a comprehensive exploration of Glg's 
reactivity, particularly in nonpolar and polar environments. The com-
puted IP and BDE values indicated Glg's potential as a radical scav-
enger, with variations depending on the medium. 

Further exploration into reaction mechanisms elucidated the cru-
cial role of the hydroxyl group at C3 in the scavenging activity of Glg 
through hydrogen atom transfer. The kinetic analysis emphasized the 
predominance of this mechanism in lipid media, showcasing its sig-
nificant contribution to the overall antioxidant activity. In aqueous 
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solutions, the complexity of the reactions with hydroperoxyl radicals 
was evident, with Glg demonstrating notable efficiency as a scavenger 
under physiological conditions. 

The study also shed light on the regeneration dynamics of Glg, 
highlighting the feasibility of its renewal after neutralizing free radi-
cals. The calculated activation energies suggested rapid and diffusion-
limited reactions, emphasizing the potential for a self-sustaining cycle 
of regeneration and sustained antiradical efficacy. 

In summary, this research not only contributes to the understand-
ing of Glg’s acid–base equilibrium and antioxidant behaviour but also 
underscores the importance of considering environmental factors and 
reaction pathways in evaluating the overall efficacy of polyphenolic 
antioxidants in diverse physiological conditions. Further experimental 
validations and applications of the proposed methodology can en-
hance our knowledge of these complex systems, offering valuable im-
plications for antioxidant research and drug development. 
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