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Abstract 

Recent developments in artificial intelligence (AI) and machine learning (ML), implemented through 

self-driving laboratories (SDLs), are rapidly creating unprecedented opportunities for the accelerated 

discovery and optimization of materials. This paper provides a joint analysis of SDLs from both academic 

and industry perspectives, highlighting the importance of integrating human intelligence in these systems. 

It discusses the necessity of careful planning in SDL design across physical, data, and workflow dimensions, 

including instrumental setup, experimental workflow, data management, and human-SDL interaction. The 

significance of integrating human input within SDLs, especially as the focus shifts from individual tools 

and tasks to the creation and management of complex workflows, is emphasized. The paper stresses the 

crucial role of reward function design in developing forward-looking workflows and examines the interplay 

between hardware evolution, ML application across chemical processes, and the influence of reward 

systems in research. Ultimately, the article advocates for a future where SDLs blend human intuition in 

hypothesis formulation with AI's precision, speed, and data-handling capabilities. 
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I. Materials Matter 
 

Material discovery has been driving technological evolution since the dawn of times, long predating 

the formal establishment of materials science in 1960s.1 Understanding material properties lays at the cross-

section of scientific fields including biology, chemistry, physics, and engineering.2 Materials discovery and 

optimization comprises the synergy of synthesis and fabrication with the property measurements, whether 

mechanical, chemical, or electrical.1, 2 Traditionally, all stages of this process were ideated and implemented 

by human scientists, with automated approaches used only for well-defined and simple operations.  

The introduction of machine learning (ML) sparked a wave of curiosity among scientists with a new 

perspective on the scientific method – both in the theory and computation domains, and in real-world 

applications. The race to create the next best technological breakthrough became not a matter of human 

tenacity only, but also of utilization of artificial intelligence (AI).3,4 For many decades, computational 

approaches including molecular dynamic simulations or density functional theory (DFT) unlocked 

molecular structures, elastic constants, electron densities, and vibrational properties.5 Combination of 

theoretical computations with ML excels discovery by using known material properties and computed 

possibilities to construct virtually indefinite lists of new materials.6,7 Although this feat has been driving 

much of the excitement over the past two decades, it has a considerable limitation. Namely, the key for 

practical applications is synthesizing materials in a traditional laboratory setting, and scaling from the lab 

to the prototypes and industrial settings. Until very recently, it was the role of the human scientist to bridge 

the worlds of theoretical and experimental science. The process of creating hypotheses, training 

computational models, setting realistic parameters, hypothesizing new discoveries, and conceptualizing and 

operationalizing future innovations can be enhanced by machine learning (ML) and used in laboratory 

synthesis, but it still requires human involvement. 

Demonstrated in Figure 1, the material discovery process typically starts with a conceptual idea that is 

refined into a hypothesis. This hypothesis explores potential experimental routes to achieve specific 

material properties, functionalities, or physical mechanisms. The experiment process is harmonious 

combination of two critical steps - the synthesis of the material and its characterization. This synergy not 

only offers feedback to theoretical models but also paves the way for unexpected discoveries. A broad gamut 

of methods, ranging from solution and solid-state synthesis to physical and chemical film deposition, have 

been developed to design complex materials in laboratories.8-10 Apart from these, tools such as nitrogen or 

argon gloveboxes, wet-lab benches, mass balance, pipettes, etc. are essential components in this process. 

Once material recipes are refined through trial and error, various characterization instruments are used to 

measure and quantify the material properties.  
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 Material characterization is a pivotal component of this process, involving a myriad of methods to 

either confirm or disprove the initial hypothesis. Some examples of characterization techniques are X-ray 

diffraction (XRD), atomic force microscopy (AFM), photoluminescence (PL), and X-ray photoelectron 

spectroscopy (XPS) which are used to assess structural properties, surface properties, electronic structure 

and properties, and surface chemistry of materials.11-13 Furthermore, there are techniques to assess 

mechanical, thermal, magnetic, and optical properties and the study of all these various properties are 

essential in understanding how materials will perform in real-world applications. 

 This comprehensive characterization process is augmented by sophisticated software tool to 

enhance the analysis of data generated. While traditional software such as Origin by OriginLab Corporation 

and Microsoft Excel has been fundamental for basic data organization and analysis since late 1980s, the 

integration of advanced cross-platform software like MATLAB and Python has transformed the landscape 

of materials data analysis.14, 15 These modern tools are instrumental in material science research, particularly 

through their integration of machine learning and advanced optimization algorithms. They enable efficient 

data analysis, handling large datasets, and offer advanced tools for pattern recognition, property prediction, 

and optimize compositions and process conditions. Additionally, both platforms provide powerful 

visualization features for data interpretation and offer flexibility for research customization. Moreover, their 

capacity for simulation and predictive modeling aids in predicting material behavior, enhancing research 

efficiency and innovation in material science. 

Overall, all of these has notably influenced the synthesis, characterization, and analysis landscape 

of complex materials. With over two centuries of relentless synthetic research, the pursuit for 

groundbreaking chemical transformations and novel reactivity has grown progressively challenging and 

crucial. Recent advancements in various areas such as two-dimensional (2D) materials16, perovskites17, 

quantum dots18, transition metal catalysts19, metal-organic frameworks (MOFs)20, and so on, coupled with 

rapid technological progress, have unveiled unprecedented possibilities. There is a growing demand to 

discover new materials rapidly and efficiently with multifunctionality, capable of seamlessly integrating 

various functionalities to meet specific application requirements. To address this challenge, high-throughput 

experiments (HTE), like what is featured in SDLs, have been implemented in the past two decades which 
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has helped significantly in increasing the productivity and speed of research and development (R&D) of 

new materials21-32. 

Figure 1: A schematic that represents the scientific reward system through utilizing prior knowledge, 

hypothesis formulation, experiments, results and analysis, with serendipitous discoveries. Each component 

uncovers multiple pathways towards scientific discovery and can be used infinite times within the cycle. 

 

The recent advancements in AI33-35 and the refined efficiency of ML algorithms36 have significantly 

transformed the landscape of material science research, especially with the emergence of SDLs. These 

SDLs utilize machine learning to autonomously conduct complex experiments, enhancing precision and 

consistency while reducing human error37-40. The integration of AI and ML algorithms enables these labs to 

rapidly process and interpret large datasets, uncovering patterns and insights that might elude human 

analysis. This synergy of automated experimentation and analysis facilitates a dynamic, iterative research 

process. AI-driven systems can adjust experimental parameters in real time, allowing for a more targeted 

exploration of new materials. This approach accelerates the discovery process, particularly in high-

throughput experimentation, and is invaluable in fields like energy storage41, 42 and nanotechnology43, 44, 

where finding the right material is crucial. 

However, despite the exponential growth over the last several years, limitations such as high initial 

investment, difficulty in automating human tasks, and rigid manufacturing of instruments pose significant 

obstacles towards using SDLs.45-46 A pivotal challenge in constructing SDLs lie in creating a platform that 

can independently conduct all experiments, spanning from synthesis to characterization. Automated 

synthesis platforms (ASPs) play a vital role in enabling the capabilities of SDLs47-49. Larger institutions 

have constructed SDLs promising future success, but many are skeptical if the overall benefits outweigh 

the drawbacks for their research applications50. Overall, the motivation to integrate SDLs into materials 
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research are the opportunities for high-throughput data collection, enhanced data reproducibility, reduction 

of time-intensive tasks, faster sample to answer and increased safety51. 

Thus, it is essential to clearly define the role of scientists in the operation of SDLs. This will be 

crucial in guiding the continuous advancement and adaptability of SDLs, ensuring that they are optimally 

leveraged for future scientific applications. We consider what makes SDLs an asset for materials discovery 

and explore the opportunity to allow for both automation and human intervention to co-exist. As scientists 

incorporate more artificial intelligence into their laboratories, humans are the key in determining which 

revelations are worth contributing to the research community. Therefore, we propose that the human-in-

the-loop automated experiments will pave the future for material discovery. 

 

II. Workflow 

In traditional human-dependent laboratories, particularly those focused on materials synthesis, the role 

of scientists and engineers is central and multifaceted, ranging from forming hypothesis, ideation of 

complex workflows, and their orchestration and execution. In emerging areas, human scientist was initially 

wholly responsible even for the design and construction of the experimental apparatus. The design phase 

was critical, as it laid the foundation for successful experimentation. Moreover, this stage also served as a 

significant opportunity for knowledge transfer, with experienced scientists guiding less experienced team 

members, thereby fostering a collaborative and educational environment. 

During the experimental phase, shown in Figure 2, the reliance on human expertise was even more 

pronounced. Scientists were tasked with conducting experiments, a process that involved more than just 

following protocols. It required making informed decisions based on their scientific judgment and 

observations. This phase often involved a lot of trial and error, hypothesis testing, and problem-solving, all 

of which depended heavily on the scientist's experience and intuition. Additionally, peer interaction played 

a crucial role in this phase. Scientists often collaborated, sharing insights and discussing results, which not 

only aided in interpreting data but also in shaping future research directions. The lack of advanced 
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computational tools meant that these scientists had to rely on their collective wisdom to analyze data and 

draw conclusions, making the human element indispensable in the realm of materials science research. 

 

Figure 2: An example diagram demonstrating the workflow of hybrid perovskites formulation from 

synthesis to characterization leading to overall device performance evaluation. 

 

Despite their cost-effectiveness compared to robotic labs, traditional human-dependent laboratories 

have several limitations. The reliance on manual labor made processes more time-consuming, often 

resulting in slower research progress. Human error, variability in experimental techniques, and fatigue could 

also affect the accuracy and repeatability of results. Additionally, these labs cannot simultaneously perform 

multiple tasks or experiments, limiting their throughput and efficiency. Finally, human-operated labs 

necessarily limit environmental conditions to human-friendly and impose stringent limitations on safety. 

The absence of advanced analytics and AI-driven insights meant that complex data analysis and pattern 

recognition were more challenging and slower, potentially overlooking critical insights that automated 

systems might capture more readily. Consequently, while cost-effective, these labs faced significant 

constraints in terms of speed, efficiency, and the capacity for handling complex and large-scale data 

analyses. The advances in the physical sciences, achieved through the synergy of theory and physical 

experiments, have paved the way for the integration of AI and ML methods to accelerate materials 

discovery.  

Platforms for accelerating materials discovery aim to go beyond traditional human-led science but 

face several challenges. The first is to create automated hardware platforms capable of execute 

experiments.52-54 The second is to build data flow and management systems that will optimize the sharing 
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of data across platforms and AI/ML models.55-58 The third is to design and operationalize the workflows 

running the hardware that will incorporate data with theory based on known physical laws, but also allow 

for learning from human intuition and experience in the decision-making process.53, 54, 59 The key aspect of 

the workflow design is the need to define the target, whether it is materials optimization or physics 

discovery. The lesson of the past decade is that scaling experiments or computation individually by orders 

of magnitude or accelerating data acquisition is insufficient to expedite materials discovery and 

operationalization. 

 

III. Automated Labs on the Physical Plane 

HTE in materials science, also known as high-throughput materials discovery or combinatorial 

materials science, started gaining traction in the late 1990s and early 2000s. These approaches were by the 

success of high-throughput screening in the pharmaceutical and biotechnology industries, where this was 

used to speed up drug discovery by allowing for the rapid screening of thousands of compounds to identify 

potential drug candidates.60-63 Automation, infused with robotics, was introduced to enhance the screening 

process. Custom-designed systems, compatible with multi-well plates, were employed to facilitate the 

simultaneous handling and assessment of numerous samples, thereby significantly ramping up the 

throughput. By leveraging automation, high-throughput screening could effectively process, for instance, 

up to 10,000 fermentation broths per week, a dramatic increase in capacity compared to 800 samples per 

week at the maximum capacity of the preceding methodologies. Since then, automated high-throughput 

screening signified a pivotal shift towards accelerated, efficient, and large-scale screening processes in drug 

discovery in pharmaceutical industry, overcoming the inadequacies of the previous labour-intensive and 

time-consuming practices.60, 61, 64, 65, 66 

Inspired from this, researchers in the realm of materials science have adapted the high-throughput 

screening concepts in experiments to accelerate the discovery and development of new materials with 

desirable properties. High-throughput synthesis (HTS) has enabled researchers to rapidly synthesize vast 

arrays of materials and efficiently explore a broad landscape of materials. At the core of HTS is the use of 

automated, parallel processing techniques that allow for the simultaneous synthesis of a multitude of 

different materials under various conditions. Some of the notable HTS methods are combinatorial physical 

vapour deposition (PVD)25, 67, 68, combinatorial chemical vapor deposition (CVD)25, 68, robot-assisted 

material synthesis23, 42, 68, 69, inkjet printing70, additive manufacturing30, 71-73, high-throughput spark plasma 

sintering31, microfluidic synthesis67, 68, 74, combinatorial flow synthesis31, 75, laser scanning ablation76, 

combinatorial hydrothermal synthesis77, and rapid microwave-assisted synthesis78. Among these few 
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methods are in true sense combinatorial method of synthesis, for e.g., combinatorial PVD, combinatorial 

CVD, microfluidic synthesis, combinatorial flow synthesis, and laser engineered net shaping. In the rest of 

the methods, the compositions of the materials in the library are either directly or indirectly defined by 

human.  

Automated characterization techniques are pivotal in complementing high-throughput synthesis by 

providing fast and efficient analysis of large volume of samples. These techniques enable rapid assessment 

of the physical, chemical, and structural properties of materials, facilitating the identification of materials 

with targeted properties/performance. Some of the key automated characterization techniques include high-

throughput X-ray diffraction79-81, automated spectroscopy techniques81, automated electron microscopy82-

84, automated scanning probe microscopy techniques59, 82, 83, 85, and high-throughput optical, electrical, and 

magnetic properties measurements79, 86-88. Automation of experiments for materials discovery is beneficial 

in terms of cost cutting per experiment, eliminating human error and repetition of menial tasks, and 

generating significant amounts of data spread over vast composition and processing parameter space.   

Featured in Figure 3, the emerging paradigm in materials discovery is to achieve a fully automated 

workflow, or “closing the loop”, by seamlessly integrating all stages from material synthesis and 

characterization to data analysis and decision-making into a continuous, computer-controlled feedback loop 

with advance automation.54,89 Some proof-of-concept SDLs demonstrated by different laboratories around 

the world are Hitosugi-Shimizu lab in Japan,90 Cronin91 and Cooper92,93 labs in United Kingdom, Swiss 

CAT+ in Switzerland94, Ada95 in Canada, Hippalgaonkar96 lab in Singapore, as well as A-Lab,97 

Abolhasani98, Ahmadi99, Buonassisi81, Fenning100, Amassian72, Brown101, and Coley75 labs in United 

States. These labs showcase the integration of robotics, AI, and machine learning in materials science to 

automate and optimize the process of materials synthesis, property evaluation, and discovery. This 

illustrates a future where much of the labor-intensive and repetitive tasks in scientific research are handled 

by intelligent, autonomous systems and how these technologies are transforming traditional research 

methodologies, enabling rapid, high-throughput experimentation with minimal human intervention. 

The evolution of automation platforms and the growing accessibility of ML techniques have indeed 

been pivotal in the emergence and advancement of SDLs and near-complete automation in scientific 

research. This trend is reflected in the research works of Macleod95, Seifrid102, Steiner91, and Chatterjee103, 

wherein they demonstrate the impressive capabilities of automated systems in optimizing material 

properties, synthesizing complex compounds, and enabling multistep chemical processes with minimal 

manual intervention. Macleod's work in autonomously optimizing optical and electronic properties of thin-

film materials, through adjusting film composition and processing conditions, exemplifies the effectiveness 
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of SDLs in material property refinement for specific applications95. This kind of optimization, driven by 

machine learning and automated processes, represents a significant leap in the field of materials science, 

especially for clean energy technologies. Seifrid's research, focusing on the balance between manual and 

automated synthesis, highlighting the necessity of human oversight  as automation evolves in materials 

science102. This balance is crucial, especially in overcoming the limitations of fully automated systems. 

However, there is difficulty in automating a streamline of instrumental analysis due to the specific 

operational requirements of each instrument45. Integration of ML needed in SDLs is crucial for interpreting 

data trends across multiple platforms, enhancing the analytical capabilities of these systems. 

The expanded vision of materials science research involves not just automating individual 

laboratories but also linking them in a networked manner to share data, resources, and insights. This could 

potentially elevate the efficiency and effectiveness of research by leveraging shared technical resources 

(both experimental and computational) and datasets, thus accelerating the discovery and development of 

new materials. Such interconnected labs, as envisioned in the HELAO-async framework implemented via 

the Python asyncio package 104, PyLabRobot open-source framework 105, 106, and ORCESTRA based on 

Pachyderm for data orchestration 107, would not only handle labor-intensive and repetitive tasks but also 

foster a more collaborative and integrated approach to scientific research. The HALEO-async framework 

is designed to facilitate coordination among multiple research workflows, particularly in materials science 

and chemistry experiments. It utilizes asynchronous programming to manage and orchestrate laboratory 

automation, enabling adaptive experiments that are more efficient and flexible. PyLabRobot is an open-

source framework, based on Python, designed to provide a hardware-agnostic interface for programming a 

diverse range of liquid-handling robots. It enables seamless and flexible control over robotic laboratory 

equipment, facilitating automation in various scientific experiments and research settings. ORCESTRA is 

a cloud-based platform that facilitates the automated and reproducible processing of biomedical data, 

providing tools for integrating and analyzing diverse molecular and clinical datasets. It leverages 

Pachyderm orchestration tools to manage data workflows, ensuring transparent and traceable data 

processing and analysis. 
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Figure 3: The diagram on top represents classical research. The diagram on bottom showing the 

interconnecting relationship between different instrumentation to computers for data acquisition 

(cloudification) and researchers for experiment workflows. Instrumentation and data shown: OT2 liquid 

handling robot, X-Ray diffraction, scanning electron microscope, atomic force microscope, time-of-flight 

secondary ionization mass spectrometer. 

 

These research works represent the cutting-edge efforts in orchestrating complex research 

operations across multiple laboratories, highlighting the potential for increased efficiency, collaboration, 

and innovation in materials science research. Through the integration of automation, advanced computing 

resources, AI, and data management tools, these frameworks aim to facilitate more seamless, collaborative, 

and efficient research processes, paving the way for a new era of interconnected scientific exploration for 

new materials. 

 

V.        Automated Labs of the Data Plane 

While the independent SDLs outlined above demonstrate the potential scientific impact for autonomous 

workflows, there is a forward-looking vision for coupling labs and resources across labs and institutions.  

This approach allows for collaborative efforts with more sophisticated toolsets to interrogate materials and 
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enables more theory guided approaches. However, the desire to unify SDLs into scientific ecosystems poses 

new sets of challenges. 

For SDLs, researchers grapple with diverse formats and metadata associated with various theoretical 

and experimental generators. The challenge lies in envisioning multi-modal workflows that seamlessly 

integrate data from diverse sources. These challenges are compounded by the fact that state-of-the-art data 

sources were developed in isolation and many tool vendors do not provide adequate application access for 

autonomous control and data extraction. This necessitates the development of instrument wrappers and 

containerized data packages, sets of datasets from different generators, containing comprehensive metadata 

for reproducibility. Such metadata extends beyond provenance and must encompass data reduction and 

analysis methods encountered at different stages of the workflow. These data packages should be 

comprehensive as to not rely on human intuition gained from years of experience to fill gaps but 

accommodate independently developed early-stage machine agents with complementary capabilities. 

Managing the flow of data and command-and-control messages poses a challenge in a landscape where 

unique facilities operate independently. Developing microservices that can interoperate with different 

institutional entities is essential for ensuring standardized communication across varied hardware and 

infrastructure. For example, there currently exists over 300 workflow solutions, highlighting the need for a 

holistic approach within a federated or hybrid onprem/cloud scientific framework.108 These microservices 

must harmonize goals for security and intellectual property while respecting individual institutional policies 

and protocols. 

A vision for a unified data flow revolves around a seamlessly connected scientific data ecosystem, 

where scientific instruments, robot-controlled laboratories, and computing resources intertwine. This vision 

is being pursued at national laboratories as exemplified by the Interconnected Science Ecosystem 

(INTERSECT) at Oak Ridge National Laboratory109, Superfacility at Lawrence Berkeley National 

Laboratory110 and Globus at the University of Chicago and Argonne National Laboratory111, but there is a 

need to extend this vision to connect with university and industrial SDLs.  This interconnected future 

envisions autonomous experiments and self-driving laboratories guided by AI algorithms, reducing human 

intervention through machine-in-the-loop intelligence. To realize such a vision, a comprehensive federated 

hardware/software standard, inspired by System of Systems (SoS) design patterns and microservice 

architectures, is needed to orchestrate autonomous processes and foster standardized communication.112-114 

Such a SoS ecosystem must embody five key characteristics: operational independence of systems, 

managerial independence of systems, geographical distribution, emergent behavior, and evolutionary 

development.113 
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The deployment of AI/ML workflows in experimental campaigns will create a seismic shift in data 

collection. The massive datasets required for training AI/ML agents result in data that human agents may 

typically discard becoming valuable datapoints, which must be cataloged and maintained. As data volumes 

surge, laboratories globally must explore innovative approaches to scientific data management within the 

broader context of scientific ecosystems. Such scientific data ecosystems must adhere to FAIR (findable, 

accessible, interoperable, and reusable) principles,115, 116 ensuring the findability, accessibility, 

interoperability, and reusability of data, fostering scientific reproducibility and simplifying experiment 

replication.117 The FAIR-principled scientific data ecosystem introduces a paradigm shift from system-

centric to data-centric perspectives. Automating this approach streamlines data management tasks, allowing 

scientists to concentrate on analysis and discovery within an open scientific ecosystem. The broad vision 

of a scientific data ecosystem makes it an attractive solution compatible across various facilities and 

domains. Its adherence to FAIR principles ensures the development of uniform APIs for cross-facility 

implementation and autonomous workflow use cases spanning edge to exascale computing platforms. 

A federated hardware/software framework and the scientific data ecosystem represent significant 

strides toward the laboratories of the future. The former, propelled by intelligent systems and autonomous 

experiments, aims to redefine scientific exploration, while the latter, through FAIR data principles, seeks to 

transform how data is managed and shared. Together, they propel scientific discovery and innovation, 

ushering in a new era of collaborative and intelligent scientific ecosystems. The convergence of intelligent 

systems paints a promising picture of a future where scientific exploration is not only advanced but also 

accessible and reproducible across diverse domains. 

 

VI.     ML for Automated Labs 

The utilization of ML in automated laboratories is revolutionizing the approach to materials discovery. 

yet this integration is not without its challenges. Traditionally, molecular and materials discovery follows a 

linear process – beginning with theoretical screening, followed by synthesis and characterization, often 

without a feedback mechanism.118, 119 This method, however, is evolving with the integration of ML 

techniques in automated labs, facilitating a more dynamic and responsive approach. The primary challenge 

in this domain is navigating the high-dimensional and often intractable search spaces corresponding to 

compositions, processing parameters and histories, or molecular structures. These spaces are defined by 

their dimensionality, the properties of the parameter space, and the characteristics of the functions targeted 

for discovery. The dimensionality, completeness, and differentiability of these spaces offers a systematic 

guide to discerning problems that are suitable for classical ML methods and those that require more 
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innovative strategies. Furthermore, the practical aspect of accessing specific points in the search space is 

critical in the context of chemical optimization. 

The first key parameter is the dimensionality, or the number of independent degrees of freedom, of the 

search space. For example, a ternary phase diagram represents a two-dimensional search space, while a 

synthesis process that varies temperature over time would possess an infinite-dimensional parameter space. 

Another essential element is the completeness of the parameter space, referring to whether all combinations 

of parameters represent physically realizable scenarios. In natural search spaces like concentrations and 

temperatures, parameter spaces are typically complete. However, in contexts like phase compositions, the 

space can be incomplete, as not all compositions are physically possible. This aspect is particularly critical 

when applying machine learning to large dimensional spaces, necessitating dimensionality compression 

techniques such as variational autoencoders (VAEs).120, 121 The use of molecular encodings like SMILES 

and SELFIES exemplifies this, with SMILES providing an incomplete representation where not all strings 

correspond to real molecules, while SELFIES offers a complete mapping.122 

Similarly, the differentiability of the function to be optimized is a crucial consideration. Physical 

properties like phase transition temperatures or band gaps might be differentiable over certain 

compositional spaces but become discontinuous across phase boundaries 123. Even in simple systems, the 

numerous phases and boundaries present significant challenges for optimizing material properties.  

Additionally, practical factors such as experimental budget and synthesizability must be considered. 

It's often infeasible to experimentally realize a physically possible point in the search space, due to 

constraints in synthesis steps or costs. Moreover, the interplay of theory and experiment in materials and 

molecular discovery is pivotal. Computational methods, while leveraging prior knowledge to predict 

specific material properties, must integrate past experimental and theoretical insights. This iterative balance 

between theory and experiment influences the predictability of models and guides new compound 

discovery. From a machine learning standpoint, fully realizing this co-navigation of theory and experiment 

is an aspirational goal, given the immense dimensionality and the non-differentiable nature of the chemical 

space, which complicates the application of traditional optimization strategies. 

 

VII.     Human in the Loop 

In the evolving landscape of self-driving labs, especially in materials synthesis, the collaboration 

between human researchers and robotic systems is vital. Human researchers contribute their skilled 

expertise and nuanced understanding to laboratory, excelling in tasks that require meticulous attention and 
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precision, such as solving unexpected reactions, separation of materials, precise layering of materials to 

create advanced nanocomposites, and so on. Their role is particularly crucial in processes that demand a 

depth of knowledge, intuition, and adaptability.52 

On the other hand, robots are increasingly playing a crucial role in performing repetitive and data-

intensive tasks. Their involvement is particularly noteworthy in elementary steps where performance can 

be significantly enhanced through automation. For instance, operations such as pipetting42 and material 

depositions90 are areas where robots now demonstrate superior performance due to their precision and 

consistency. These tasks, often repetitive and requiring exactness, benefit from the robotic systems' ability 

to execute with minimal error over extended periods. However, this robotic automation is not yet universal 

across all laboratory processes. Many complex tasks still heavily rely on the expertise and adaptability of 

human researchers which includes processes that need nuanced decision-making, real-time adjustments 

based on sensory feedback, and intricate handling of materials. 

Moreover, humans excel in innovative problem-solving, especially in areas like materials synthesis, 

which presents its own set of unique challenges. Where a machine might be stumped by an unexpected 

issue, a researcher can think laterally, drawing from diverse experiences to explore new methodologies or 

craft custom solutions allowing them venture into uncharted territories of material development and unlock 

potential breakthroughs. In essence, while machines and systems might be limited to the data and algorithms 

they've been provided, human ingenuity can introduce fresh perspectives, ensuring continual advancement 

in materials development. A human researcher, with their adaptive problem-solving skills, can quickly 

identify anomalies, adjust the synthesis parameters, or modify the process to mitigate these issues. 

Additionally, if an instrument malfunctions during an experiment, a human can often troubleshoot and fix 

the issue on the spot or find alternative ways to continue the work.  

This adaptability extends to the data analysis post-experimentation. Human researchers can provide a 

depth of judgment and perspective to enable AI to adeptly interpret complex data, identifying subtle patterns 

or anomalies, and making strategic decisions along with human intervention that align the scientific process 

with broader research goals and real-world applications. Translational AI aims to blend the strengths of 

human scientists with ML solutions to enhance the entire experimental cycle, from synthesis to imaging.124 

This approach involves not just leveraging AI for data processing but also for strategic planning and 

decision-making, guided by human insights. By capitalizing on recent investments in educational systems 

and infrastructures, such as collaborations with national labs and industrial partnerships, the aim is to forge 

a new paradigm in AI-driven experimental science that will propel fields like materials science into a new 

era of innovation and discovery. 
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Machine learning, particularly reinforcement learning (RL), has shown significant promise in 

controlled simulations but often encounters challenges in real-world scenarios, where reward functions are 

complex and not easily defined.125, 126 This is particularly evident in fields where experiments are guided by 

long-term objectives, such as combating climate change or developing new energy technologies, rather than 

immediate outcomes. In these contexts, human expertise becomes crucial for designing reward functions 

that align with such nuanced real-world goals, such as combating climate change or developing new energy 

technologies, where the true impact of research may only be discernible over extended periods.127 

In Figure 4, the dynamic interaction between scientists and the experimental process is key to refining 

ML applications, especially when leveraging the adaptability of large language models (LLMs) like 

ChatGPT,128 Copilot,129 Tabnine,130 and Gemini131, to enhance these workflows. These LLMs can assist in 

optimizing experiment designs by suggesting viable parameters and material compositions, thus navigating 

vast databases to pinpoint promising research avenues.132 Additionally, they are instrumental in analyzing 

complex data, identifying patterns and key insights, thereby focusing researchers' attention on the most 

pertinent findings.133 Moreover, the iterative learning process inherent in scientific research is enhanced by 

LLMs, which adapt and refine their outputs based on the feedback from experimental results. This 

continuous interaction facilitates the improvement of experimental designs and theoretical models, making 

them more aligned with the intricacies of material behaviors and properties. 

 

Figure 4: A diagram highlighting the process of human-in-the-loop discovery with the reward system 

interacting on material synthesis and characterization methods. Characterization methods listed: mass 

spectrometry, x-ray diffraction, and atomic force microscopy. Each aspect plays a role in the myopic 

workflow with synthesis that finally leads to reward. 
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Ultimately, the integration of human intelligence with domain-specific ML models is proposed as a 

pathway to develop robust workflows that can navigate the complexities of real-world scientific challenges. 

This approach not only harnesses the computational power of ML but also incorporates the critical, nuanced 

understanding and creativity of human expertise, essential for tackling long-term, complex scientific 

objectives. 

 

I. Hypothesis generation: Large Language Models (LLMs) like GPT-4, while not fully replicating the 

enigmatic nature of human creativity, have emerged as powerful tools in guiding and augmenting human 

creative processes, particularly in hypothesis generation. The exact nature of human creativity remains a 

complex and largely uncharted territory; however, LLMs, with their vast repository of knowledge and 

advanced pattern recognition capabilities, can significantly aid in navigating this realm.134 They excel in 

quickly assimilating and synthesizing information from a multitude of sources, enabling them to suggest 

diverse and innovative hypotheses.135 This is particularly useful in rapidly evolving or interdisciplinary 

fields, where new insights are constantly emerging. By analyzing existing data and trends, LLMs can 

identify potential areas of exploration that might not be immediately apparent to human researchers. Their 

ability to process and integrate cross-disciplinary knowledge allows them to propose hypotheses that bridge 

different areas of study, thereby fostering novel perspectives and approaches. While they do not replace the 

intrinsic creativity of the human mind, LLMs serve as a complementary tool, expanding the horizons of 

human thought and enabling a more rapid exploration of new fields and ideas. Their role in hypothesis 

generation is thus not just as an automated generator of ideas, but as a catalyst that enhances and directs 

human creativity towards unexplored possibilities. 

 

II. Reward engineering: Machine learning methods are progressively considered as a part of real-

world technological solutions, including workflows for materials synthesis and optimization, computation, 

imaging, and characterization. However, methods such as reinforcement learning (RL) that had been shown 

to be highly effective in simulated environments such as computer games or simulations, are often 

inadequate for real-world applications. One of the key elements of RL is a reward function that is made 

available for the algorithm during the training.136-138 However, for many real-world problems the reward 

functions available at the end of experimental campaign (or after several steps) are absent; rather the 

experiments motivated by the long-term objectives. Designing reward function that adequately represents 

real-world objective and does not lead to reward hacking is a challenge. Similarly, very often experimental 
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results can contribute to multiple objectives, with fundamental scientific research being the most notable 

example of such activity. 

 As an example of such a problem, consider climate change, the problem motivating multi-billion-

dollar investments over the globe. Minimizing climate change is a very long-term objective. The lower rank 

objectives are the development of solar and wind energy and associated grid-level storage and effective 

energy transport methods, along with the technologies for direct carbon capture. The even lower rank 

objectives are the development of cheap, environmentally friendly, and stable chemistries for grid storage. 

None of these objectives can be translated into a reward for an experimental campaign. Rather, these 

objectives serve as a motivation for experiment planning – and reward is often a short-term battery 

performance or observation of specific mechanism in microscope136, 137 that can suggest potential ways to 

improve the battery materials.  

 We pose that discovery of the short-term rewards that can be used for hypothesis making to guide 

experimental research, and as rewards functions to guide and ascertain the success of experimental 

campaigns is the missing link required to connect ML to real-world applications. As potential pathways to 

address this challenge, we can consider: 

1. Literature mining towards building the directed acyclic graphs (DAGs) connecting experimental 

outcomes (rewards) and objectives (motivation) 

2. Technoeconomic analysis of past publications outcomes 

3. Crowdsourcing to the community of experts (a.k.a. “what would be the potential of high 

temperature conductivity to change the world” to “how does the phase separation in cuprates affects peak-

effect and losses”) 

 With this, we aim to create the capability to separate the specific objective into the probabilistic 

graph of short-term reward functions that can guide experiment planning and establish measures of success. 

Naturally, these reward functions will be probabilistic, and the value of real-world experiment can affect 

(much) more than one objective. For example, mechanisms of metal-air interactions can be used both for 

corrosion mitigation and for design of metal-air batteries. The important element of this approach is that 

humans are part of the theory-experiment loop – and hence the structure of the rewards can be amended via 

human feedback on the observations (much like science works now).  

 Notably, the LLMs are often capable of making the connection between high- and lower-level 

objectives (e.g. prompts “what should I study with microscope to understand plasticity” gives very plausible 

answers). Presumably, complementing LLMs with models trained on domain-specific literature can both 
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allow systematic developments of such workflows and their integration across multiple domains following 

common rewards.135 

 

Homo ludens: We pose that the future of materials synthesis lies in a harmonious blend of human 

expertise and technological advancement. While ML and automation are transforming this field, the 

indispensable role of human insight, creativity, and strategic thinking cannot be replaced. The most effective 

and innovative outcomes in materials synthesis will emerge from workflows that skillfully combine the 

strengths of both humans and machines. This integration is imperative because the reward functions, which 

drive workflow development, must originate from human objectives and goals. Additionally, humans can 

collaborate with AI in refining hypotheses and recognizing serendipitous experimental findings, a 

partnership that helps mitigate potential misalignments between ML-generated workflows and human 

intentions. This collaborative dynamic raises a compelling question: What is the optimal form of human-

in-the-loop technology, tailored to human preferences and capabilities? 

 The response to this question varies with the complexity of the workflow. In the case of automated 

microscopy, for instance, it involves fine-tuning reward functions and exploration policies.83 Given the 

limited range of operations in microscopy, the resulting meta-controls are relatively straightforward, albeit 

unfamiliar to traditional microscopists, indicating a novice user as the target audience. In contrast, materials 

discovery presents a more formidable challenge due to the complexity, branching, and interconnectivity of 

workflows. 

 Looking ahead 10-20 years, as workflows intertwine across multiple fields, the situation grows 

even more complex. Human actors will likely struggle to fully grasp these workflows, which span diverse 

domains and physical locations. Similarly, ML alone may not suffice, as these workflows amalgamate 

elements of the physical world that are partially unknown, and sustainable systems will require not just 

prediction and experimentation, but also tool-making – with the tools themselves possessing partially 

unknown properties. 

 Shown in Figure 5, a paradoxical yet intriguing possibility is conceptualizing human-in-the-loop 

R&D as a Massive Multiplayer Online Role-Playing Game (MMORPG). In this framework, activities like 

magic, forging, and potion making symbolize real-world processes in physics, engineering, and chemistry, 

with AI acting as an advanced intermediary, connecting humans to remote-controlled and automated 

research and manufacturing tools. 
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 In the interim, and on a more pragmatic note, gamifying human-in-the-loop ML presents an 

engaging user experience (UX) concept. Gather.Town has already experimented with this idea for virtual 

meetings, but the potential for further development is vast. Thus, the future might well embrace the concept 

of Homo Ludens – humans engaged in playful yet productive interaction with technology. 

 

 

Figure 5: An example of gamification used for designing scientific workflows based on role-playing games. 

 

VI. Summary 

In conclusion, advancing towards complete automation in SDLs is a complex process that requires 

a collaborative approach by combining the expertise of various professionals from diverse fields such as 

materials science, instrumentation, mechatronics, software development, and data science139. This 

interdisciplinary teamwork is critical to overcome the substantial challenges with achieving seamless 

operational flows in automation, which are often impeded due to procedural errors and system stoppages92, 

140. While SDLs offer remarkable efficiency and data generation capabilities, the essential role of human 

researchers remains irreplaceable, underscoring the need for their continued involvement in guiding and 
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overseeing these automated systems. Collaboration between academia and industry, combined with the 

integration of AI algorithms, holds the promise to overcome challenges in achieving seamless operational 

flow in automation. By leveraging diverse expertise and advanced technologies, such a partnership could 

drive innovation, streamline processes, and enhance the efficacy and reliability of automated systems.  

 We pose that the future of materials synthesis lies in a harmonious blend of human expertise and 

technological advancement. While ML and automation are transforming the field, the value of human 

insight, creativity, and strategic thinking remains irreplaceable. The most effective and innovative outcomes 

in materials synthesis will emerge from workflows that skillfully combine the strengths of both humans and 

machines. This integration is imperative because the reward functions, which drive workflow development, 

must originate from human objectives and goals. Additionally, humans can collaborate with AI in refining 

hypotheses and recognizing serendipitous experimental findings, a partnership that helps mitigate potential 

misalignments between ML-generated workflows and human intentions. This collaborative dynamic raises 

a compelling question: What is the optimal form of human-in-the-loop technology, tailored to human 

preferences and capabilities. 
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