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ABSTRACT

Discoveries of novel electrolyte-electrode combinations require comprehensive structure-property-interface correlations. Herein,
we present an autonomous millimeter scale high-throughput battery research system (MISCHBARES) operated by hierarchical
autonomous laboratory automation and orchestration (HELAO) which integrates modular research instrumentation and AI
control. This paper will present cathode electrolyte interphase (CEI) formation in lithium-ion batteries at various potentials by
correlating high-throughput electrochemistry and spectroscopy. We believe quality control and complex data analysis to be the
missing puzzle piece towards more complex workflow automation. Auto-MISCHBARES integrates automatic quality control for
both hardware and software to ensure high reliability through an on-the-fly fidelity assessment of each individual experiment.
Data analysis is achieved through our Modular and Autonomous Data Analysis Platform (MADAP) in our presented platform,
which is capable of performing a fully automated analysis of various voltammetry measurements in real-time. Integration of
MISCHBARES and MADAP through HELAO enables versatile and complex active learning workflows in the discovery of new
materials. We demonstrate this integrated workflow for reliable charging/discharging protocols.

1 Introduction
Automated quality control and data interpretation are the missing puzzle pieces towards prolonged walk-away-times in closed
loop experimentation1. Early demonstrations of closed loop experiments included mostly error resilient measurement and facile
data analysis, but the step towards complex and interrelated experimentation necessitates more robust data quality assessment.
The evolution of these automated experiments towards truly autonomous Material Acceleration Platforms (MAPs) require
integration of experimental processes, data management, and strategic decision-making2self-driving laboratories (SDLs)3, 4.
Laboratories such as BEAR5, ARES6, Clio7, equipped with advanced frameworks are instrumental in boosting operational
efficiency and research safety8. These technological leaps not only streamline experimental processes, but also enable scientists
to undertake deeper and more intricate inquiries, accelerating discovery in various scientific domains9, 10. Additionally, the
integration of AI and machine learning (ML) allows for efficient exploration of complex chemical and material terrains10, 11.
SDLs, in particular, show the potential to accelerate research output by up to 30 times9. By automating and digitalizing
processes, these systems increase experimental accuracy and walk away time4.

1.1 The challenge of multifidelity and scability
There is a sprawl of MAPs in various fields12–14 but unique challenges abound to non-aqueous battery research have resulted in
but a few larger MAP efforts15, 16. This complexity arises from the special housing and safety measures necessary to conduct
battery research and a large chemical space for optimizing e.g. electrolytes, electrodes, design, and physical properties17–19.
Significant efforts have been made in each of these areas, in particular, in electrolyte optimization; for instance, Dave et
al.20 developed an autonomous workflow which was able to combine 251 aqueous electrolyte salts for a mixed-anion sodium
electrolyte. This workflow analyzed the ionic conductivity and electrochemical stability in approximately 25 minutes. In
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subsequent work, they extended their study in a non-aqueous system7 and optimized the electrolyte formulation for a single
salt and ternary solvent design at various ratios for Lithium-ion batteries (LiBs) by utilizing a robotic platform. However, the
autonomous investigation on CEI and solid electrolyte interphase (SEI) within MAPs are not extensively explored21–23. This
highlights the ongoing need for innovative approaches in battery research, especially in understanding and optimizing the
complex interactions at these interfaces24, 25. A primary challenge in developing a system capable of providing a multifaceted
solution for the next generation of battery materials19 is the substantial costs involved in integrating a single laboratory with
all the necessary devices26. However, this integration is essential as conducting comprehensive tests, such as correlating
electrochemical and spectroscopic tests, is crucial for achieving multifidelity. Additionally, due to variations arising from
different samples, this correlation and integration within a single lab on a single sample become even more important. This
approach ensures consistency and reliability of results, as it effectively minimizes discrepancies that might occur from diverse
laboratory environments.

1.2 The challenge of Designing an integrative Database solution
To address the challenges of multi-device testing on a single sample, the development of a robust data management is essen-
tial25, 27–29. This system must enable seamless integration and communication across various instruments and bridge physical
and temporal gaps in experimental stages that often exist between disparate experimental phases30, 31. Such advancements
are crucial in SDLs, where progress has been hindered by a lack of a standardized and user-friendly software with intuitive
operational guidelines15. Efficient data management and experimental planning enables rapid processing and interpretation
of high dimensional data, which unravel physio-chemical relations that surpass the analytical capacity of conventional ap-
proaches1, 32, 33. It also facilitates the incorporation of AI agents and Deep Learning (DL) tools, which can further accelerate
exploration in chemical spaces and reduce recourse allocation33–35. This approach is in line with significant scientific efforts,
as demonstrated by Pascazio et al.36 in chemistry and in other domain10, which emphasize the importance of consistent data
quality protocols and data acquisition methods, in compliance with FAIR data principles37.

1.3 Reliable cognitive computing approaches
In autonomous experimental setups, replicating burdensome human-intensive tasks, such as material sufficiency management
or equipment cleaning, is challenging2, 38. Simultaneously, these ensure the reliability and fidelity of measurements and require
rigorous validation for experimental accuracy and consideration of potential hardware and software flaws39. The integration
of ML and computer vision methods, as proposed in recent studies4, 40, 41, can significantly improve system robustness and is
crucial to monitor parameter validity in real time4. The goal is to achieve data integrity and support AI planners in informed
decision-making. This is particular beneficial for non-aqueous battery systems experimentation in gloveboxes, where assembling
and controlling multiple experiments present complexities that even with human intervention may prove challenging to manage
effectively. These developments, thus, signify a transformative shift in scientific experimentation towards enhanced precision
and reliability40, highlighted by the critical need to recognize and address the technical challenges in experiment-specific
boundaries to ensure results are both comprehensible and reproducible14, 42.

To advance the MAPs and overcome existing constrains9, 10, we introduce the AUTO-MISCHBARES, a reliable open-
source framework designed for fully unsupervised operations. Building upon our earlier work in multithreaded asynchronous
web-based frameworks31, it integrates real-time analysis and feedback, thus enhancing experimental processes. This platform,
features automated capabilities for a range of electrochemical measurements, as showcased in our study of the CEI on battery
electrodes. We conducted sequential measurements by utilizing an open-cell setup43 and characterized them using near-ambient
pressure X-ray photoelectron spectroscopy (XPS). The agnostic nature of our framework ensures its adaptability for diverse
organic and inorganic materials. This platform not only can accelerate research but also facilitates the sharing of validated data,
helping scientist in the efficient extraction and transfer of information within the community38, 44.

2 Results and discussions
2.1 Framework overview
Material acceleration platforms can be developed by integrating four key elements from multiple hubs; The DeviceHub consists
of hardware components responsible for moving and measuring. ServerHub ensures robust operations and communication
workflow through orchestration and API design; The DataHub manages the database environment, and is a key for data integrity
and accessibility; Lastly, the MultiAnalysisHub provides a wide spectrum of analytics, from statistical assessments to computer
vision methods47. The integration of all the Hubs is the precursor of acceleration in material development15, 48 and therefore, by
following this design philosophy, our Auto-MISCHBARES platform is developed to perform fully autonomous electrochemical
measurements and is tailored to study the formation of SEI and CEI. In addition, it can monitor oxidation state changes in
active materials.
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Figure 1. Schematic representation of the experimental management system of Auto-MISCHBARES45. The interface (Supp. 1) allows researchers to formulate a series of
experimental electrochemical protocols, which are then dispatched to a central orchestrator via an Application Programming Interface (API). The orchestrator, serving as a control
system, manages the scheduling, execution, and monitoring of the experimental array by delivering actions to the individual Hubs, which are the granular unit of activity and can
execute actions tasks such as positioning, measurement, real-time analytical processing and provides the basis for live visualization. Upon the completion of individual experiments or
a sequence thereof, the orchestrator compiles and dispatches a comprehensive analytical report to the experimentalist. The DeviceHub features a high-precision robotic manipulator
adept at positioning the Scanning Droplet Cell (SDC) head accurately onto the substrate, where a Hamilton Microlab 600 precision syringe system c delivers electrolyte directly when
contact is established. The Autolab Potentiostat b is employed to perform electrochemical measurements once the system is primed for analysis. Quality control protocols, including
drop and contact detection and chatbot-based communication, facilitate automation and oversight of the experimental processes. Furthermore, experiments proceed in three
automated stages: waste disposal, cleaning, and electrochemical measurement, each executed according to predefined specifications and with real-time plotting provided by a
Bokeh46 visualizer for immediate “at-a-glance” feedback. Post-measurement, the data undergoes immediate analysis via MADAP, which calculates electrochemical markers and
generates corresponding plots for in-depth analysis. This processed data is then systematically cataloged in a Data Management System (DMS), ensuring data provenance, facile
retrieval, and compartmentalization in alignment with the Findable, Accessible, Interoperable, and Reusable (FAIR) principles. It is possible to optimize the subsequent experiment
with active learning (AL) algorithms through the HELAO platform.
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2.1.1 ServerHub
This platform represents an advanced extension of our initial ServerHub, HELAO31. It is capable of executing experiments
both sequentially and in parallel, and allows for the integration of an active learning decision-maker to orchestrate tasks across
instruments. The complete workflow is illustrated in Figure 1a. At the beginning, researchers configure experimental setups and
schedule multiple, dynamic batches of experiments through a user-friendly and modular interface (Supp. 1). The user interface
(UI) is constructed using HTML, and CSS with dynamic functionalities implemented in Node.js and facilitates easy browsing
with a diverse array of electrochemical protocols. This interaction layer is further enhanced by Flask49, a Python-based web
framework, to streamline user engagement. Once single or multiple experimental batches are designed, the configurations are
passed to the Python back-end, requiring no additional user intervention, and are translated to FastAPI requests. The central
orchestrator will then efficiently schedule and manage high-throughput experimentation in an asynchronous manner. After the
execution of all requested experimental batches, the operator receives a response from the orchestrator with a comprehensive
report detailing all experimental steps, their timestamps, and outcomes.

2.1.2 DeviceHub
In this study, we define our DeviceHub as an open cell, miniaturized 3-electrode-cell setup. known as the SDC43. This setup
consists of a gold reference electrode (RE) and a platinum counter electrode (CE), both positioned within a movable cell
housing made from polytetrafluoroethylene (PTFE). This housing utilizes electrode spots on a planar substrate functioning as
the working electrode (WE). The electrochemical system is connected to a stepper motor a and a multichannel potentiostat
device b. Additionally, a syringe pump system c is connected via an inlet to the cell. This configuration allows for precise
delivery of the desired electrolyte formulation, as well as enabling accurate positioning over the targeted measurement area on
the WE substrate and the deposition of a single droplet of electrolyte. Upon contact of all three electrodes, the system is ready
to execute the selected protocols (Fig. 1b, Section Setup).

2.1.3 MultiAnalyseHub
A key challenge is maintaining the reliability of results, crucial for managing potential risks since a plethora of variables and
parameters are prone to errors during experimentation2. These include tasks typically simple for humans, such as removal of salt
accumulation, replenishing depleted electrolyte bottles, ensuring electrical connection at the hardware level, and maintaining
safe thresholds for measurement parameters at the software level. Failure to address these aspects could not only lead to
experimental inaccuracies but also in substantial time and resource wastage. The integration of mitigation strategies is a key step
towards realizing a truly autonomous laboratory48. Thus, we enhance our platform by implementing mechanisms for providing
critical feedback and real-time analysis throughout the experimental stages (Fig. 1b, Section Quality Control). This informs
researchers of ongoing progress and potential failures, and enhance trustworthiness of high-throughput experimentation.

The initial quality control (QC) assessment in our system is monitoring material sufficiency at the electrolyte exchange stage
for each measurement. A key component of this process is the Droplet Detection routine, designed to verify proper flushing.
This detection is implemented using OpenCV library50 for computer vision tasks and analyzes a video streams to detect the
presence of a drop51. The algorithm selects a specific region of interest (ROI) in the video frame, converts this segment into
grayscale and applies a Gaussian blur to minimize noise. By continuously calculating the absolute difference between the initial
frame and subsequent frames within the ROI, the system can detect motion. A non-zero sum in the thresholded image within
this area is indicative of a drop’s presence. In addition, visual feedback is provided on the monitor for user verification and
oversight.

Once the electrolyte has been exchanged, there is a chance of residual material remaining attached to the head of the SDC,
which can lead to salt formation, crystallization, or inconsistencies in later measurements. We expand our control protocol
and incorporate a mandatory movement of the SDC head to a wiping pad, ensuring the removal of any leftover electrolyte.
Following this preparation, the stepper motor positions the SDC head over the designated measurement area of the WE.

Additional QC is implemented to precisely control the movement of the SDC head and ensure optimal electrical connectivity
with the substrate in the coming measurement. This mechanism is designed to gradually lower the SDC head, performing
the descent in small, constant steps. This approach secures each movement to stay within a defined threshold to prevent
excessive force on the head. For stepwise monitoring of electrical potential, frequent control measurements are integrated
with potentiostatic endpoints of the ServerHub. The data is then used to determine successful contact with the substrate,
indicated by a sharp decay in potential towards zero. If contact is not established within the initial steps, the routine initiates
corrective measures. These include the controlled addition of electrolyte and periodic potential measurements, along with
emergency procedures in place for unresolved non-contact situations. Upon measurement initiation, an established threshold for
experimental procedures prevent overshooting, thus ensuring safety. Throughout the entire QC process, continuous feedback is

ahttps://www.owis.eu/en/
bhttps://www.metrohm.com/de_de/products/a/ut30/aut302n_s.html
chttps://www.hamiltoncompany.com/laboratory-products/microlab-600/syringe-pump
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provided with logging and the option of communication through a Telegram chatbot, which informs the experimentalist at
checkpoints and about potential failures, especially beneficial of unsupervised experimentation.

Our modular and versatile data analysis framework, MADAP52, capable of analyzing a variety of electrochemical protocols,
is integrated into our high-throughput automated workflow. It enables the real-time transformation of raw measurement into
analyzed results for each experiment. The strength of this framework lies in its ability to simultaneously plot the raw and
processed data (Fig. 1b, Section Analysis). It also generates reports and summaries in compliance with FAIR principles,
with protocols formatted JSON and CSV files for individual experiments. MADAP capabilities offer a rapid assessment of
experimental quality and can yield valuable scientific insights3, 47.

2.1.4 DataHub
The provenance of data is central in drawing conclusions from raw data30, 53, 54. This necessitates active tracking of acquisition
and processing. To address the challenge of managing these complexities, our DMS implements a real-time approach in the
context of the DataHub which is backed by our local PostgreSQL Database, designed to dynamically handle meta, raw, and
analyzed data. It consists of several interconnected tables that capture specific details of the experiments. The experiments
table forms the core of the database, stores essential metadata, such as material, date, and operator information (Fig. 1b,
Section DMS). This is complemented by the users table, which details the researchers involved, ensuring traceability and
accountability. The motor-positions table logs the specific operational data such as precise motor positions for the SDC
head, adding further detail to the experimental records. Each type of electrochemical measurement in the database features
paired procedure and raw tables. The procedure tables encapsulate the unique parameters and settings of every measurement,
while the raw tables record granular empirical data. Key metrics, provided by MADAP and passed to HELAO, support
the facilitation of ML algorithm usage when handling large data volumes through web server communication. Robust data
integrity is ensured through primary and foreign keys, enabling complex queries that link procedures raw data, and experimental
metadata. Additionally, the database incorporates sequences for auto-generating Unique Identifiers (UIDs), streamlining data
entry and retrieval. This cohesive database system adheres to FAIR principles37, to establish the integrity of experimental data
while enhancing its accessibility, usability and interpretability55. This infrastructure minimizes human error in automated
settings and is engineered to facilitate the correlation of electrochemical and spectroscopic tests, offering a unified platform for
comprehensive multi-modal data analysis.

The integration of the four key hubs defines our robust Auto-MISCHBARES platform45, 51, streamlining sequential
experimentation through unified process control, scheduling, feedback, and advanced real-time data management, encompassing
measurement, validation, and analysis. Its modular design and multiple unit-tests ensure ease of expansion and adaptability for
users.

2.2 Experimental procedure
Our platform is designed for investigating the formation of the CEI, which is influenced significantly by the type of active
material, the inactive components of the composite electrode, and the electrolyte formulation56, 57. Crucially, it eliminates the
need for cell disassembly for ex-situ measurements, thus minimizing the risk of mechanical alterations. To demonstrate the
reliability and reproducibility of our proposed framework, we investigate the evolution of CEI in lithium iron phosphate (LFP), a
well-studied cathode material used in commercial batteries58–60. We used 1 M LiPF6 solution in a mixture of ethylene carbonate
(EC):ethyl methyl carbonate (EMC) in a 3 : 7 weight ratio as the electrolyte (E-lyte, Germany). The entire setup was maintained
in a nitrogen-filled glovebox. It is important to note that electrolyte evaporation can occur due to the open-cell-setup. This poses
challenges for long-term cycling tests, however, it offers distinct advantages for a variety of short-term measurements, which
would otherwise require extensive assembly, disassembly, and electrode post-treatment. We designed our high-throughput
sequential experimentation protocol using cyclic voltammetry (CV) tests, which are stopped at different potentials during the
second cycle to analyze features related to redox reactions, and repeated the procedure two times. Our novel approach to
cathode electrode preparation involved screen-printing onto the substrate. This method minimizes material usage and precisely
defines the active material area. For each experiment, the SDC head is positioned at the predefined measurement spot, where
it dispenses a droplet of electrolyte, and ensures electrical connection before performing CV. Upon completing a series of
experiments, it is necessary to remove the excess LiPF6 salt residue, a byproduct of electrolyte evaporation, from the electrodes.
This is achieved by depositing a droplet of propylene carbonate (PC) on each measurement spot, allowing it to soak for three
minutes to dissolve the salt, and then aspirating it using the SDC head. This cleaning process is repeated three times. Once
the cleaned sampled are dried, they are transferred for ex-situ XPS analysis to characterize the synthesized CEI at different
potentials and identify the formation stages of its components.

2.2.1 Reproducibility towards electrode fabrication
In our setup, electrodes were fabricated through screen-printing to ensure reproducible dimensions and alignment on a
predefined grid. This method effectively decouples the electrodes from the electrolyte spreading area, thereby minimizing cross-

5/14

https://doi.org/10.26434/chemrxiv-2024-rb9j7-v3 ORCID: https://orcid.org/0000-0003-3996-4213 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-rb9j7-v3
https://orcid.org/0000-0003-3996-4213
https://creativecommons.org/licenses/by/4.0/


Figure 2. a) Spatial distribution of the integrated relative Fe signal intensity from screen printed electrodes, as measured by X-ray Fluorescence (XRF). The Fe signal is
integrated over a circular area of 1.8 mm in diameter at each measurement point, with color coding indicating the intensity percentage. Set 1 and Set 2 refer to two different batches
under which the electrodes were tested, showcasing potential variability in Fe distribution across the samples. b) Averaged XRF spectrum representing cumulative signals from one of
the screen-printed spots, highlighting characteristic X-ray peaks. Peaks are labeled with corresponding elemental symbols, with prominent feature for Fe observed at around 6.4 keV.
Other elements such as Cr and Ni are represented at their respective energies, illustrating the composition of the samples. c) Histogram representing the distribution of Fe intensity
percentages across the measurement points. The distribution shows a rightward skew, with a predominant concentration of data points on the lower side of the Fe intensity scale.
Despite the skew, the bulk of the data clusters around a central peak, suggesting an underlying normal distribution tendency with some deviations, possible due to variations in the
screen-printing process or material heterogeneity.

contamination risks associated with electrolyte dispersion on the substrate. Additionally, this technique significantly reduces
waste of active material. Unlike other coating methods such as doctor blading, which produce cut-out waste, screen-printing
only coats the specific spots required for measurements.

The electrodes were coated as circular points with a 1.5 mm diameter, arranged in an 11x11 square grid with each point
spaced 4.9 mm apart. Details can be found in Section 3 of the supplementary materials. To evaluate the uniformity of the
coating, these electrodes were analyzed using XRF. Figure 2a illustrates the distribution of Fe signal intensity across the
grid, with the colorbar reflecting the relative Fe content as determined by the integrated signal at each point. As a direct
measurement of the active material mass on this type of coating is challenging, the Fe signal in XRF images was used as a proxy
for estimating Fe distribution and the active material content. By weighing the Al-foil before and after coating and drying, an
average active material mass of 0.0218 mg was calculated. The Fe count per second (CPS) is centered around a central peak,
indicating an underlying normal distribution with a maximum spread of ±6.5%, as depicted in Figure 2c. Our two distinct
sets of measurements are represented by red and blue markers in Figure 2a. The color distribution across the grid indicates a
uniform Fe coating, although some areas exhibit higher or lower concentrations. This is crucial for evaluating the consistency
of the screen-printing process. The XRF spectrum of a representative coated point is shown in Figure 2b and features Fe
peaks at 6.41 keV and 7.06 keV. While the spectrum is primarily characterized by Fe, minor peaks for Cr and Ni indicate their
subordinate presence. Additional elements including P and Al, with peaks at 2.02 keV and 20.19 keV respectively, are also
identified. The peaks, with lower CPS, are detailed in Supp.3. In the electrochemical procedures, such as galvanostatic cycling,
this data can be utilized for setting the correct current to achieve the desired C-rate during charging and discharging protocols.
For CV, as employed in this study, the information is essential to normalize the obtained current response.

2.2.2 Reproducibility at electrochemical level
Electrochemical data that derived from the automated experiments orchestrated with Auto-MISCHBARES platform demon-
strated high reliability, with no observable failures or hardware errors that could compromise the results. All the measurements
are stored on-the-fly in our DMS. The CV profiles of LFP electrodes, cycled between 1.8 V and 4.7 V at a scan rate of 5 mV/s
are presented for two identical experimental sets for comparison, as shown in Fig. 3a and Fig. 3b. The scan rate selected for our
study was an order of magnitude higher than typically reported for battery electrodes61. This choice aimed to mitigate issues
associated with electrolyte evaporation in our open setup. Such evaporation could disrupt electrical contact between the WE
and the RE during measurement and increase salt concentrations in electrolyte62. However, these effects were minimized by
using a fast scan rate and routine flushing of the SDC head with fresh electrolyte after each measurement. The high scan rate
can cause the change of slope in current density for CV measurements63.
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Figure 3. Demonstration of the second cycle of CV profiles derived from high-throughput experimentation utilizing Auto-MISCHBARES. Experiments were applied within a
voltage range between 1.8 V and 4.7 V at a scan rate of 5 mV/s, starting from the open circuit potential (OPC) in the anodic direction. The CV curves reveal distinct redox peaks and
the anodic peaks align closely at approximately 3.8 V while the corresponding cathodic peaks are positioned near 3.15 V, indicating similar consistent electrochemical response with
a high degree of overlap across all measurements. a) illustrates the first set and b) the second, with each set consisting of six different experiments. For comparative analysis, CV tests
that conclude at the same stop potential between the two batches, are color-matched. The exact termination potentials, corresponding to either the anodic or cathodic directions, are
denoted in the legend.

In both sets of experiments, anodic and cathodic peaks were observed at approximately 3.8 V and 3.15 V, respectively, with
a characteristic pair of redox peaks around 3.47 V corresponding to the charge-discharge reaction of Fe2+/Fe3+. In the first set,
a minor anodic peak at 4.4 V was also detected, the origin of which remains unclear but aligns with findings reported by Chen
et al.64. Our observed peak values, including anodic ones at 3.7 V, cathodic ones at 3.25 V, and half-wave potentials of 3.4 V
at a scan rate of 0.1 mV/s, closely match those documented in their study. It is also important to mention that the reference
potential was calibrated against a 5 mM ferrocene solution prior to experimentation.

In the first set of experiments, a slight shift in anodic peaks was observed, while the cathodic peak potential remained
constant. The slight increased peak to peak separation, suggests lower reversibility65, 66, likely due to the higher scan rate61, 63

used in our measurements. However, the experiments were able to replicate features documented in related literatures64, 65. The
growing asymmetry in peaks, observed as measurements progressed, can be attributed to increasing conductivity constrains64,
a result of SEI growth at the CE and the RE, as these were not exchanged between measurements. In the second set of
experiments, consistency was observed across all CV tests, with only minor variations in samples 4 and 5. The half-wave
potential and peak separation showed a slight shift towards higher values. These changes in polarization might be partially
attributed to the distance between the WE and the RE67, or to an uneven substrate. Despite these complexities, the overall
results from the SDC demonstrated a high degree of reproducibility across both sets of experiments. The synthesized CEI
outcomes from these data are suitable for further exploration using ex-situ techniques.

2.2.3 Reproducibility at spectroscopic levels
Upon completing both sets of electrochemical experiments, the electrodes were rinsed with a PC solution, using SDC system
to remove any residual dried electrolyte. After drying, an ex-situ XPS analysis was performed on the initial experimental set
to evaluate the development of the CEI. This analysis identified various species and functional groups, as demonstrated in
Figure. 4a across all panels, which presents the spectra from sample 1 (S1) of this set. The C –– C peak, representative of the
conductive carbon at the electrode surface, was selected as the reference with a relative concentration of 1. All subsequent
signals are scaled and normalized to this benchmark.

Within the C1s region (Fig 4a, Panel I), a variety of carbon-containing species were identified. Peaks at 284.3 eV and
284.8 eV correspond to sp2 (C=C) and sp3 (C-C) carbon bounds, respectively. Additional peaks at higher binding energy,
such as 286.3 eV, 288.8 eV, and 290.7 eV, were assigned to C – O, carboxyl (O – C –– O), and carbonates CO3 groups. In other
samples of this set, a C –– O signal was also detected near 287.8 eV (Supp.7 and Supp. 9). These signals are complemented by
corresponding peaks in the O1s region, with a major contribution from C – O bonds, centered at 532.4 eV (Fig 4a, Panel II). In
the F1s spectrum (Fig 4a, Panel IV), the residuals from the LiPF6 salt is discernible at 688.0 eV. The remaining salt from the
rinsing process suggests a need for further investigation by utilizing EMC or dimethyl carbonate (DMC) to potentially enhance
the efficiency of the washing procedure, due to their higher LiPF6 and lower LiF solubility. In the O1s region, fluorophosphates,
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Panel I Panel II

Panel III Panel IV

Figure 4. Characterization of the synthesized CEI from Auto-MISCHBARES on screen-printed electrode using ex-situ XPS analysis. In all Panels, a) present the XPS spectra
of CEI from sample 1 (S1) in the first experimental series, obtained during the second anodic scan at the stopping potential of 3 V from the CV test. These spectra reveal the diverse
chemical composition of this layer, with peaks corresponding to various functional groups and compounds: Panel I) C1s spectrum with multiple peaks indicative of carbon-based
species, including C – C, C – O, and contributions from other carbon-oxygen groups. Panel II) The O1s spectrum with a peak for C – O bonds. Panel III) The Li1s region with
presence of lithium-containing compounds depicted by LiF peak, originating from the decomposition of LiPF6. Panel IV) The F1s region characterized by peaks associated with
fluorinated compounds. Each chemical state identified is denoted by a distinct color in the spectra. The overlaid black line represents the envelope of the aggregated measured data,
indicating the sum of contributions from all fitted peaks. The bottom bar charts b) provide a comparative analysis of the evolution of XPS signals for various species, observed from
the first set and aligned by sequence of appearance in the CV tests, illustrating the binding energy signatures of specific chemical states within the CEI with relative concentration at
these regions. The C –– C peak intensity is set as a reference with the relative concentration of 1, representing the conductive carbon additive at the electrode surface, with other species
normalized to this reference. The relative concentration of C – O in the C1s region shows a significant increase from sample 2 (S2) to sample 4 (S4), followed by a decrease in sample
5 (S5). In contrast, the LiF signal in the Li1s and F1s regions decreases up until S4 and then exhibits a sharp increase from S4 to S5. The behavior for LixPFyOz species in the O1s
and F1s regions follows a similar pattern to that of the C – O group.
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Figure 5. Representation of the XPS spectra in the C1s region for all samples from the first set of high-throughput experimentation (a-f). The key potentials at which
measurements were paused during the second cycle of CV test are depicted in g. During the anodic scan (a-d), an increase in the intensity of signals from organic species, such as
C – O, is observed, indicative of the evolving composition of the CEI. During the cathodic scan (e-f), this intensity decreases significantly.

as degradation products of LiPF6 observed at 534.0 eV, with corresponding signals at 686.6 eV in the F1s region. The signal
for LiF, indicating the presence of fluorinated and lithiated species, is evident at 684.8 eV in the F1s and 55.6 eV in the Li1s
region (Fig 4a, Panel III). The similarity between the C – O and LixPFyOz compounds reflects the dynamic alterations of the
CEI composition throughout the electrochemical cycling process.

Figure 4b for all panels, illustrate the evolution of the XPS signals across all the samples of this series. During the anodic
scan of the CV measurement, an increase in the intensity of signals from organic species, such as C – O is observed in both C1s
and O1s regions. These signals are attributed to the decomposition products of the electrolyte and contribute to the formation of
the outer layer of the CEI. Notably, the increase in these signals becomes apparent in S3, at 4.3V , coinciding with the peak of
the anodic feature and subsequent potential elevation, consistent with findings reported by Kühn et al.56. In contrast, during
the cathodic scan, the intensity of these species decreases significantly from 4.6 V to 3.7 V. This pattern further supported by
Figure. 5, exhibiting the C1s trends across all samples. The observed increase in organic species during the anodic scan is
indicative of a thickening of the CEI, presumably due to electrolyte decomposition at elevated voltages, which is supported by
several studies68–71 and evidenced by the reduced LiF signal from S1 to S4 (Fig. 4b, panel IV). During discharge, the cathodic
scan shows an increasing LiF signal, suggesting the reformation of LiF, along with a decrease in C – O species72. At last,
the XPS analysis validates the electrochemical data at every potential, pinpointing key regions within the CV profile. This
correlation further enhances the integrity of our designed Auto-MISCHBARES workflow, contributing to the robustness and
advancement of MAPs.

3 Conclusions
A critical question that arises with high-throughput platforms is whether they truly accelerate processes or inadvertently cause
deceleration. Answering this, requires considering three key aspects: reliability, time efficiency, and reproducibility. Regarding
reliability, Auto-MISCHBARES, represents a significant advancement in laboratory automation and scientific experimentation
by integrating a comprehensive array of key components for robust, sequential experimentation. It covers a wide range of
functionalities, from configuring and scheduling experiments to robust online control assessment, and provides real-time
feedback on critical failures and experimental progress. Encompassing computer vision and statistical tools, the platform not
only ensures the reliability of outcomes but also streamlines tasks to minimize researcher intervention and reduce human errors.
Its real-time measurement capabilities, enable live visualization and can further optimize the workflow, from data acquisition
to comprehensive analysis. The structured PostgreSQL database environment within the platform efficiently manages data
formats, strengthen data correlation across multiple measurements and lays the ground for transfer learning. In our SDC system,
the modifications to mechanical integrity are minimal as opposed to coin cell setups where disassembly can lead to the breaking
of coatings at the edges of the electrodes, and sometimes even cause the coating to stick to the separator. Our SDC system is a
more reliable and less intrusive approach to cell handling and is suitable for applications in electrochemical studies.

To establish time efficiency, our hierarchical framework demonstrates significant advantages due to its uninterrupted
operational capabilities, which minimize the need for manual cell exchanges. For instance, considering our study scenario
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where our substrate consists of 121 electrode spots, each requiring a one-hour CV test. In this case, our Auto-MISCHBARES
platform, using the SDC head, would complete the measurements in 121 hours, with an additional 10 hours for rinsing, and
moving for a total of 131 hours. On the contrary, the traditional manual approach would require extra time for cell assembly
and disassembly, which takes an experienced researcher an additional 24 hours. Assuming an 8-hour workday without breaks,
the manual process would span several days. Additionally, considering the limitation of processing only about 10 coin cells
simultaneously due to channel availability in the cycler, this manual approach could extend the duration even further. While the
measurement times are similar between our platform and manual methods, our framework’s ability to operate continuously
substantially enhances the time efficiency. As demonstrated in our previous study31, the capability of our framework for
parallelization across multiple SDCs as well as its integration with AL frameworks can further accelerate the process.

To address the final aspect of reproducibility, our platform proves validity in both electrode fabrication and electrochemical
measurements. The use of screen-printing to create miniaturized, defined areas of measurements not only saves materials
but also facilitates automated ex-situ analysis. This is attributed to the precisely arranged grid of measurement positions
established by the screen-printed mask on the substrate. Further enhancements in future studies can be achieved by integrating
XRF measurement results into the platform, allowing for the identification of mask defects and the selection of points with
minimal deviation, thus reducing issues related to electrode thickness variation. Such variations can also effect the distance
between the WE and RE, potentially leading to deviations in measurements63. These challenges can be further minimized by
directly coating onto the substrate holder and avoid the use of a bendable foil for electrode fabrication. The consistency of
our high-throughput electrochemical protocols, along with their correlation with XPS results that aligned with findings in the
literature, further underscore the reproducibility and fidelity of our system. Auto-MISCHBARES enables in-depth investigation
into the synthesis of SEI/CEI, especially for post-lithium battery materials, an area that still holds vast potential for exploration.

Integrating the comprehensive capabilities of our platform, we establish a trustworthy foundation with online analytical
characterization, robust data fidelity and management systems. This integration facilitates the incorporation of ML and AL
algorithms, enhancing decision-making and accelerating material optimization. Our hierarchical web server framework, which
has been previously integrated with AL, now allows for further integration with more complex experimental planning algorithms
such as Chimera73 and Griffyn74. Additionally, for future study, the inclusion of cutting-edge approaches such as large language
modeling (LLM) can further assist researchers13, steering us towards the ultimate goal of a fully reliable material acceleration
platforms. Our user-friendly framework, committed to digitalization and technological integration, represents a crucial step
towards the development of fully autonomous laboratories, which can significantly expanding the scope of scientific exploration.

4 Code availability
Data, supporting the findings of this study, are available online at https://doi.org/10.5281/zenodo.10444324. The MISCHBARES
framework45 can be cloned from https://github.com/fuzhanrahmanian/MISCHBARES. In addition, videos recorded from our
fully autonomous workflow51 can be accessed at https://doi.org/10.5281/zenodo.10445749.
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