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ABSTRACT: ADME (Absorption, Distribution, 

Metabolism, Excretion) properties are key 

parameters to judge whether a drug candidate 

exhibits a desired pharmacokinetic (PK) profile. In 

this study, we tested multi-task machine learning 

(ML) models to predict ADME and animal PK 

endpoints trained on in-house data generated at 

Boehringer Ingelheim. Models were evaluated both at the design stage of a compound (i.e., no 

experimental data of test compounds available) and at testing stage when a particular assay would be 

conducted (i.e., experimental data of earlier conducted assays may be available). Using realistic time-

splits, we found a clear benefit in performance of multi-task graph-based neural network models over 

single-task models, which was even stronger when experimental data of earlier assays is available. In an 

attempt to explain the success of multi-task models, we found that especially endpoints with the largest 

numbers of data points (physicochemical endpoints, clearance in microsomes) are responsible for 

increased predictivity in more complex ADME and PK endpoints. In summary, our study provides insight 

into how data for multiple ADME/PK endpoints in a pharmaceutical company can be best leveraged to 

optimize predictivity of ML models. 
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INTRODUCTION 

A successful drug needs to combine a range of desirable properties. Of major relevance for both 

efficacy and safety of a compound is its pharmacokinetic (PK) characteristics. The term PK 

comprises how the drug is absorbed, distributed, metabolized, and finally excreted from the 

body, i.e., the ADME properties. To estimate whether a drug might possess a desirable PK 

profile in human, several experiments are typically conducted in a drug discovery project. These 

range from simple physico-chemical measurements (e.g., logD) over in vitro ADME assays (e.g., 

plasma protein binding) to in vivo animal PK studies. Since some of these experiments are either 

expensive and time-consuming, or more importantly require animal experiments and/or (tissue) 

samples from animals / humans, in silico predictions for ADME-endpoints coming from machine 

learning (ML) models gained a lot of attention in recent years.1,2 These models learn from 

existing experimental data by linking chemical features to activities and are referred to as QSAR 

or QSPR models (quantitative structure-activity/property relationship).3 A wide range of 

different chemical descriptors and ML algorithms have been tested for QSAR modeling.4–6 

aiming to predict physicochemical properties and in vitro ADME,7–15 PK in animals,7,9,16,17 or PK 

in humans.18,19  

Traditionally, compounds have been represented with chemical features such as substructural 

fingerprints20 or calculated molecular properties21 and typical learning algorithms like support 

vector machine (SVM)22, random forest (RF)23 and gradient tree boosting (e.g., XGBoost)24 were 

used to train QSAR models. In recent years, deep neural network architectures gained more 

popularity.25 These architectures enable different featurizations of molecules, for instance 

learned representations from chemical graphs (i.e., atoms as nodes, bonds as edges) and have 

been implemented in different modeling toolkits.26–28 Among those, Chemprop has been widely 

used in recent years for ADME and PK prediction10,11,16,19,29,30. Learned chemical representations 

as those from Chemprop may outperform models based on classical chemical descriptors, yet 

this depends on the modelled dataset.31 Moreover, neural networks can be trained on several 

related endpoints at the same time resulting in so-called multi-task models.32 Earlier studies used 

traditional chemical descriptors in combination with multi-task feedforward neural networks and 

they reported a benefit of multi-task models over single task ones.12,14 In the study by Wenzel et 

al., R2 (coefficient of determination) scores for prediction of microsomal clearance (in eight 
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species) on a test set were all improved in comparison to single task models. On the other hand, 

model performance for predicting LogD and Caco2 permeability was worse for multi-task 

models. Two studies from Novartis reported a successful use of multi-task Chemprop models. 

The prediction of brain penetration could be improved (R2 0.52 vs 0.39) when trained together 

with several auxiliary tasks for in vitro permeability and lipophilicity29. In the second study, 

microsomal stability in several species was predicted with multi-task Chemprop showing 

benefits for all endpoints in comparison to the tested single task model (XGBoost and single-task 

Chemprop).10 The focus of a different study was the prediction of in vivo rat PK parameters 

(AUC0-24, F, CL, Cmax, t1/2 and Vss).
30 They tested several algorithms (including single-task and 

multi-task Chemprop) and used in vitro ADME properties (predicted or measured) as input to the 

models. In this scenario, the multi-task Chemprop models trained on all in vivo parameters 

overall showed no clear benefit compared to single-task Chemprop models trained on the 

parameters individually, demonstrating that a benefit of multi-task modeling is not guaranteed in 

all situations. More studies are required to fully understand the benefits and limitations of multi-

task QSAR models. 

In the present study, we investigated multi-task modeling on in-house in vitro ADME and in vivo 

PK datasets in comparison to single task models in a realistic setting with a prospective 

validation scheme. We also tested whether experimental data of early conducted assays (e.g., rat 

microsome stability) can boost the performance when predicting related, but more complex 

endpoints like in vivo clearance in rats. Some details on the order how experiments are typically 

conducted (i.e., screening cascades), are provided below. Moreover, we analyzed which auxiliary 

assays are most useful in a multi-task model to improve the performance for other tasks. Our 

study demonstrates how multi-task modeling can be successfully used for ADME and PK 

prediction in drug discovery. 
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MATERIAL AND METHODS 

Study overview 

For this study, we used data for 28 endpoints (physicochemical properties, in vitro ADME and in 

vivo PK) from Boehringer Ingelheim’s internal compound database. An overview of included 

endpoints is provided in Table 1. The endpoints were assigned to four sequential tiers (Tier 0 to 

Tier 3) to reflect the order, in which the assays typically are carried out in drug discovery 

projects in so-called screening cascades. For these screening cascades, some best practice exists, 

e.g., that in vitro experiments are performed before in vivo experiments to ensure tolerability of 

administered doses in PK studies. Another example is that in vitro ADME assays are executed 

first e.g., for the first PK or PD species and human, and only if deemed meaningful are profiled 

for other preclinical species.  

The assays in Tier 0 (logD at pH 2 and 11) are part of the purification process of compounds. 

Assays in Tier 1 are cost-effective and straightforward tests that enable the evaluation of a large 

quantity of compounds in a high-throughput manner. These include aqueous solubility, as well as 

metabolic stability in liver microsomes. Endpoints of Tier 2 include more complex in vitro 

assays: metabolic stability in hepatocytes; binding to plasma protein; permeability and efflux in 

the Caco2 cell line. Tier 3 contains in vivo PK evaluations in rat or mice from single compound 

and/or cocktail studies with up to 5 compounds: total clearance (i.v. dosage); volume of 

distribution at steady state (i.v. dosage); and bioavailability. Note that this a generic description 

of a typical screening cascade, and in practice individual projects may deviate from it (e.g., not 

all assays from one tier are necessarily conducted at the same time).  

Endpoints in different tiers may relate to the same physiological processes, with different level of 

biological complexity. For example, microsomal stability only represents metabolism by specific 

metabolizing enzymes (such as hepatic CYP enzymes), whereas hepatocytes also include 

transporter-mediated uptake into the hepatocytes as well as phase-I and phase-II metabolism and 

additional soluble enzymes (e.g., aldehyde oxidase). In contrast, the in vivo clearance provides a 

holistic evaluation by also comprising potential extra-hepatic metabolism as well as renal 

excretion. In vivo endpoints, such as bioavailability can even be considered an interplay of 

multiple in vitro ADME characteristics, i.e., the permeability and solubility impact the absorbed 

https://doi.org/10.26434/chemrxiv-2024-pf4w9 ORCID: https://orcid.org/0009-0007-9021-3999 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-pf4w9
https://orcid.org/0009-0007-9021-3999
https://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

 5 

fraction from the gastro-intestinal tract, and the hepatic metabolism impacts the hepatic first 

pass. Therefore, the assumption is that in silico predictions for later stage in vitro or in vivo 

experiments will improve when including prior in vitro endpoints. 

The goal of this study was to train ML models that make best use of all available data. It was 

tested how multi-task models trained on several related endpoints at the same time compare to 

conventional single task models in a realistic setting in a pharmaceutical company. We employed 

temporal splitting (based on registration date, i.e., the date the compound is added to the internal 

database) to enable a realistic evaluation of the models. For multi-task models we further 

distinguish between performance at the design stage and at the testing stage of compounds. 

Figure 1 illustrates how the different scenarios relate to a typical workflow in a drug discovery 

project. The DMTA cycle is an established framework in drug discovery which states that new 

compounds are designed by chemists, synthesized, tested, and analyzed with insights then 

motivating new designs. With evaluation at design stage, we mean the compound is still virtual 

and no experimental data is available for it. Hence, the respective ML model can only be trained 

on data for previously synthesized compounds. As mentioned above, a screening cascade defines 

in which order different experiments are conducted for a compound. In practice, this means that 

experimental data of earlier tiers may be available when experiments of later tiers are conducted. 

Multi-task models may incorporate this information to make better predictions (for details see 

the description of the ML methods). Further details on the splitting strategy to reflect the 

described scenarios are given in the section "Model evaluation" below. 
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Table 1 Overview of included endpoints. 

Tier Endpoint Data points (train-val-test) unit 

0 
LogD at pH=2 (LogD2) 119k-28k-39k - 

LogD at pH=11 (LogD11) 126k-26k-34k - 

1 

High-throughput solubility at pH=2.2 (HTSol2.2) 86k-5k-4k µmol/L 

High-throughput solubility at pH=4.5 (HTSol4.5) 112k-7k-8k µmol/L 

High-throughput solubility at pH=6.8 (HTSol6.8) 112k-7k-7k µmol/L 

Metabolic stability in human liver microsome assay (hLM) 125k-8k-9k %QHa 

Metabolic stability in rat liver microsome assay (rLM) 65k-5k-7k %QHa 

Metabolic stability in mouse liver microsome assay (mLM) 49k-6k-8k %QHa 

2 

Binding to human plasma protein (hPPB) 13k-2k-3k %bound 

Binding to rat plasma protein (rPPB) 10k-2k-1k %bound 

Binding to mouse plasma protein (mPPB) 5k-1k-1k % bound 

Metabolic stability in human hepatocyte assay with 0% serum 

(hHEP0) 
1k-<1k-<100 %QHa 

Metabolic stability in human hepatocyte assay with 5% serum 

(hHEP5) 
4k-<1k-2k %QHa 

Metabolic stability in human hepatocyte assay with 50% serum 

(hHEP50) 
5k-<1k-<1k %QHa 

Metabolic stability in rat hepatocyte assay with 0% serum 

(rHEP0) 
<1k-<100-<100 %QHa 

Metabolic stability in rat hepatocyte assay with 5% serum 

(rHEP5) 
9k-1k-<1k %QHa 

Metabolic stability in rat hepatocyte assay with 50% serum 

(rHEP50) 
5k-<1k-<1k %QHa 

Metabolic stability in mouse hepatocyte assay with 0% serum 

(mHEP0) 
<1k-<100-<100 %QHa 

Metabolic stability in mouse hepatocyte assay with 5% serum 

(mHEP5) 
4k-<1k-1k %QHa 

Metabolic stability in mouse hepatocyte assay with 50% serum 

(mHEP50) 
5k-<1k-<1k %QHa 

Permeability in Caco2 cell line (Caco Perm) 17k-4k-4k 10-6 cm/sec 

Efflux ratio in Caco2 cell line (Caco Efflux) 15k-3k-4k Efflux ratio 

3 

In vivo clearance in rat (rCL) 10k-<1k-<1k mL/(min*kg) 

In vivo clearance in mouse (mCL) 4k-<1k-<1k mL/(min*kg) 

Volume of distribution at steady state in rat (rVss) 10k-<1k-<1k L/kg 

Volume of distribution at steady state in mouse (mVss) 5k-<1k-<1k L/kg 

Oral bioavailability in rat (rF) 3k-<1k-<100 % 

Oral bioavailability in mouse (mF) 2k-<1k-<1k % 

a %QH describes the percentage of liver blood flow cleared. For different species the following 

liver blood flows are assumed: human 20.7 mL/min/kg, rat: 70 mL/min/kg, mouse: 90 

mL/min/kg. 

The goal of this study was to train ML models that make best use of all available data. It was 

tested how multi-task models trained on several related endpoints at the same time compare to 

conventional single task models in a realistic setting in a pharmaceutical company. We employed 

temporal splitting (based on registration date, i.e., the date the compound is added to the internal 
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database) to enable a realistic evaluation of the models. For multi-task models we further 

distinguish between performance at the design stage and at the testing stage of compounds. 

Figure 1 illustrates how the different scenarios relate to a typical workflow in a drug discovery 

project. The DMTA cycle is an established framework in drug discovery which states that new 

compounds are designed by chemists, synthesized, tested, and analyzed with insights then 

motivating new designs. With evaluation at design stage, we mean the compound is still virtual 

and no experimental data is available for it. Hence, the respective ML model can only be trained 

on data for previously synthesized compounds. As mentioned above, a screening cascade defines 

in which order different experiments are conducted for a compound. In practice, this means that 

experimental data of earlier tiers may be available when experiments of later tiers are conducted. 

Multi-task models may incorporate this information to make better predictions (for details see 

the description of the ML methods). Further details on the splitting strategy to reflect the 

described scenarios are given in the section "Model evaluation" below. 

 

Figure 1 Evaluation scenarios in a drug discovery workflow. The design stage corresponds to 

virtual compounds (no experimental data available). The tiers of the screening cascade define the 

order in which experiments typically are conducted. At the testing stage for a certain tier, 

experimental data of lower tiers is available. 
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Data processing 

Assay data was extracted from Boehringer Ingelheim’s internal database along with the 

registration date of the compound. Censored data (i.e., with an < or > operator, corresponding to 

data outside the assay quantification range) was included ignoring the operator. The data was 

curated by considering the purity of compounds and the variance if replicate measurements were 

available. First, compounds with a reported purity below 80% were excluded. For measurements 

with replicates, the percentual coefficient of variation (%CV) was computed as a criterion for 

filtering. Measurements with exactly two replicates were removed if the %CV was at least 50. 

For measurements with more than 2 replicates, it was tested if a single clear outlier can be 

identified. In particular, it was tested whether removing one measurement would lead to a %CV 

below 50. If one outlier could be identified, this outlier was removed, and the remaining 

replicates were kept. In general, (remaining) replicates were aggregated by computing the 

arithmetic mean. 

Moreover, we applied maximum filters to some of the endpoints, as results in certain ranges 

(very high values) were deemed unreliable. In some cases, high values were not filtered out, but 

instead mapped to a lower value, as the method was considered to not meaningfully distinguish 

values in this range. For example, some of the experimentally determined bioavailabilities (the 

ratio of AUC oral and AUC i.v.; AUC describes the area under the plasma concentration-time 

curve) were measured to be larger than 100% (e.g., due to incomplete plasma concentration-time 

profiles after i.v. dosing). Such measurements were set to 100% which is the highest possible 

bioavailability in theory. In Table 2, the maximum values for inclusion and for modeling are 

reported for the endpoints, where applicable. Values above the limit of inclusion were filtered 

out, whereas values above the limit for modeling (but below the limit for inclusion) were set to 

the limit for modeling. 
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Table 2 Limits for including data and modeling. 

Endpoint Max limit for inclusion Max limit for modeling 

rPPB 100% 99.9% 

hPPB 100% 99.9% 

mPPB 100% 99.9% 

Caco Efflux 80 - 

rCL 200 mL/(min*kg) 150 mL/(min*kg) 

mCL 200 mL/(min*kg) 150 mL/(min*kg) 

rVss 25 L/kg - 

mVss 25 L/kg - 

rF 150% 100% 

mF 150% 100% 

 

For some of the endpoints, transformations were applied to improve the data distribution for 

modeling. These were a logarithmic transformation (with base 10) for the endpoints: HTSol2.2, 

HTSol4.5, HTSol6.8, Caco Perm, Caco Efflux, rCL, mCL, rVss, mVss; and a logistic 

transformation for the endpoints: rPPB, hPPB, mPPB. 

ML models 

In this study we tested two single-task approaches (RF and ST-Chemprop) and two approaches 

considering relationships between endpoints (stacked RF and MT-Chemprop). All the trained 

models were regression models. 

RF: A RF is an ensemble of randomized decision trees widely used for QSAR modeling. The 

scikit-learn implementation for regression models was used.33 As descriptors, we used 

alvaDesc.34 Hyperparameters were selected after initial experiments (results not shown). The 

number of trees in the forest was set to 500, 20 was set as the maximum depth of trees, and 50% 

of all features were considered when looking for the best split. Otherwise default 

hyperparameters from the scikit-learn version 1.1.1 were used. 
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Stacked RF: Model stacking, a two-step procedure, was used as a technique to leverage 

relationships between different endpoints. The implementation here closely follows the 

description in a recent publication, where this approach was referred to as Feature Net.35 In the 

first step, a regular RF single task model is trained for each endpoint and this model is used to 

impute missing data for the corresponding endpoint (not all compounds have been measured in 

each assay). Then, a second RF model is trained for each endpoint. As features for this model, 

the chemical descriptors are concatenated with one column for each auxiliary endpoint. The 

values in the auxiliary columns are either experimentally measured, or, if not available, imputed 

using the models from the first step. The individual RF instances used the same hyperparameters 

as for single task modeling, with the exception that the models in the second step considered all 

available features to find the best split to ensure that relevant auxiliary features are considered. 

Chemprop: The Chemprop package is a popular implementation of graph-based chemical 

property prediction based on the message-passing neural network (MPNN) framework. 

Following an initial featurization with fundamental atom and bond descriptors, learned 

representations of input molecules are obtained through graph convolutions. Both single task and 

multi-task models were trained using the Chemprop package. For early stopping, the training 

data was split with a scaffold-based scheme (90/10). All models were trained for up to 30 epochs 

and models instances stored after each epoch. In the end, the model instance with the best 

performance on the scaffold-based validation set was kept. All Chemprop models used are an 

ensemble of five individual neural network instances. This was considered a good tradeoff to 

increase performance compared to single instances, while limiting computational cost. In 

addition to the default learning hyperparameters, some variations were tested to improve single 

task and multi-task models. The tested sets of hyperparameters are reported in Table 3. For all 

other hyperparameters, no changes from the default were made.  Furthermore, it was tested 

whether the utilization of global descriptors from RDKit could enhance the performance of the 

model as has been shown before for some datsets.36 In the Chemprop framework, global 

molecular descriptors are concatenated with the learned molecular representation before passing 

the representation on to fully connected layers. In the SI (Table S1), representative commands 

for training Chemprop models are shown. 
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Table 3 Tested hyperparameters for Chemprop. 

Set depth hidden_size ffn_hidden_size 

1 (default) 3 300 300 

2 5 300 300 

3 3 1000 1000 

4 5 1000 1000 

5 3 100 100 

 

Model evaluation 

All datasets were split into a training set, a validation set, and a test set according to the 

registration date of the molecules to evaluate the ML models in a prospective manner. In 

particular, the training set comprised molecules registered until the end of 2020, the validation 

set molecules registered in the year 2021, and the test set molecules registered in the years 2022 

and 2023 (up to end of June). Note that these splits are distinct from the scaffold-based split used 

for early stopping. In a first step, different ML models were trained on the training set and used 

to predict the validation set to compare their performance. As described above, some attempts 

were made to further improve the performance of Chemprop models by modifying 

hyperparameters and adding global descriptors. Finally, the models were re-trained on both 

training set and validation set to predict the test set. For this we used the best model settings 

identified (i.e., hyperparameters and with or without global descriptors) when evaluating on the 

validation set. 

MT-Chemprop and stacked RF were evaluated both at design stage and testing stage. At design 

stage, no auxiliary information about the compounds to be predicted (i.e., validation set for the 

first models and test set for the second models) was used during model training. For the testing 

stage, all available auxiliary information for lower tiers was added to the models (MT-Chemprop 

and stacked RF). This is illustrated in Figure 2. For MT-Chemprop the respective compounds 

and experimental measurements for lower tiers assays were added to the training set. For the 

stacked models, the experimental values were used to replace predicted values where possible. 
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Figure 2 Visual explanation of the different evaluation scenarios. Rows correspond to 

compounds, while columns represent experiments (tiers separated by thick lines). At the design 

stage, no experimental data of test compounds is made available to the ML model. At testing 

stage, when available, experimental data of lower tiers than the assay evaluated is added to the 

training data. For example, the right panel illustrates data included for predicting in vivo PK 

characteristics (i.e., a Tier 3 study).  

To evaluate the regression models, we used the coefficient of determination (R2) and root-mean-

square error (RMSE): 

 𝑅2 = 1 −  
∑ (𝑓𝑖− 𝑦𝑖)2

𝑖

∑ (𝑦𝑖− 𝑦̅)2
𝑖

  (1) 

 𝑅𝑀𝑆𝐸 =  √
1

𝑛
 ∑ (𝑓𝑖 −  𝑦𝑖)2

𝑖  (2) 

With 𝑦𝑖 and 𝑓𝑖 being the (transformed) experimental and predicted value of molecule 𝑖, 

respectively; 𝑦̅ the mean (transformed) experimental value and 𝑛 the number of molecules. 

Biogen LM prediction 

As an external validation, we used data for rat and human microsomal stability recently 

published (referred to as hLM_Biogen and rLM_Biogen to distinguish from in-house data).11 

This data was randomly split in a training (80%; hLM_Biogen: 2594 data points; rLM_Biogen: 
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2566 data points) and a test set (20%; hLM_Biogen: 493 data points; rLM_Biogen: 488 points). 

We trained single task models using only the Biogen training data (RF with AlvaDesc and ST-

Chemprop) as well as MT-Chemprop models where we add the public training data to our in-

house data as additional tasks. The in-house data were all data points considered within this 

study (i.e., training, validation and test set combined). When splitting the public data set, we 

ensured that overlapping compounds with our in-house dataset (i.e., identical InChI) were placed 

into the training set so that the MT-Chemprop model would not have seen the test compounds 

during training for any task. 

Activity cliff analysis  

For model evaluation on particularly challenging examples, activity cliff compounds (ACs) were 

identified in the datasets. ACs generally refer to chemically similar compounds with widely 

different activities and are notoriously hard to predict with ML.37–39 Each validation set 

compound (internal datasets), or test set compound (external datasets) was labeled as either being 

an AC or a non-AC. To decide whether a compound is considered an AC, the median structure 

activity landscape index (SALI) to its closest analogues was calculated.40 The SALI index for a 

pair of compounds is defined as: 

 𝑆𝐴𝐿𝐼 =  
∆𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦

1−𝑇𝑎𝑛𝑖𝑚𝑜𝑡𝑜
  (3) 

To have activity values for different endpoints on the same scale, min-max normalization to the 

range 0-1 was applied to the assay data for this analysis. Tanimoto similarity was determined 

using Morgan fingerprints of radius 2, folded to 2048 bits from the RDKit. SALI values were 

calculated for a compound’s five nearest neighbors, whereby only analogues with a Tanimoto 

similarity of at least 0.5 were considered. This was done to ensure that only sufficiently similar 

analogues were considered to label a compound as an AC. If the median SALI for a compound 

exceeds 1, a compound was labeled as an AC. The rationale behind this procedure was to 

identify compounds whose activity strongly differs to close analogues within clusters of 

compounds. 
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Pairwise Chemprop models 

To understand the success of MT-Chemprop models at design stage, pairwise Chemprop models 

were trained. For three example endpoints (rHEP5, rPPB and rCl: three rat endpoints of higher 

tiers which strongly benefit from multi-task setting), two-task Chemprop models were trained in 

turn with each of the other endpoints (from the same or lower tiers) as auxiliary task. For a 

robust evaluation, 10 models with different random seeds were trained for each pair of endpoints. 

The models were trained on the training set and evaluated on the validation set. Default 

hyperparameters and no global descriptors were used. We analyzed how many of the training 

examples of the auxiliary task are not included in the training examples of the target task (i.e., 

number of complementary training examples). Moreover, the correlation between two endpoints 

was determined by computing Pearson correlation coefficients between overlapping training 

compounds of two endpoints. To further investigate the impact of the size of auxiliary training 

data, pairwise Chemprop models were also trained with the auxiliary dataset being downsampled 

so that all considered auxiliary training sets had the same number of complementary training 

compounds. Ten random samples were drawn for each endpoint pair and one pairwise model 

was trained for each sample. 

 

RESULTS AND DISCUSSION 

Model evaluation on the validation set 

Initially, the studied ML techniques were assessed with models trained on the training set and 

evaluated on the validation set. As single-task models (i.e., each assay modelled separately), we 

investigated RF and ST-Chemprop, as models incorporating relationships between assays 

stacked RF and MT-Chemprop were investigated. When evaluating the latter techniques, two 

scenarios were distinguished: at design stage (i.e., no experimental information for predicted 

compounds) and at testing stage (where available, experimental information of lower tier assays 

is made available to models, see Material and Methods). R2 and RMSE scores for all models on 

all assays are reported in Table S2 and Table S3. For both scenarios, MT-Chemprop (before 

optimizing the performance, see below) was clearly superior to stacked RF. Therefore, stacked 
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RF was not further analyzed. Figure 3 shows R2 scores for all individual assays as well as 

averaged by tier for RF, ST-Chemprop, MT-Chemprop and MT-Chemprop+exp (i.e., MT-

Chemprop at testing stage). Note that the numbers of validation datapoints shown in Table 1 

provide an overview how much information of earlier experiments is available at testing stage. 

 

Figure 3 R2 model scores for individual endpoints and averaged for tiers on the validation set. 

Lines represent individual endpoint performance, while bars represent the average of the 

performance for the tier. 

First, clear differences between the two single-task techniques can be observed. On all Tier 0 and 

Tier 1 assays, RF was clearly outperformed by ST-Chemprop. These are the assays with the 

largest training sets, and it seems that in these cases learned representations are superior to RF 

with AlvaDesc as a set of conventional chemical descriptors. The performance of ST-Chemprop 

for Tier 2 and Tier 3 was overall comparable to RF with a tendency that assays with a high 

number of data points were better predicted by ST-Chemprop. This is consistent to observations 

in the literature that large amounts of training data are required for learned representations to 

outperform traditional chemical descriptors.36,41 

Second, MT-Chemprop used at design stage clearly outperformed both single task techniques. 

While MT-Chemprop provides no benefit over ST-Chemprop for the logD assays (Tier 0), it 

outperforms ST-Chemprop for all other assays. It seems that the presence of other tasks clearly 

improves the relevance of the learned representations for virtually all the assays. In a later 

section it is further analyzed which auxiliary tasks are most useful for the individual target tasks. 
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Third, an additional improvement was found when MT-Chemprop was used at the testing stage. 

This shows that these models can leverage experimental data of earlier assays to predict later 

ones more accurately for the same compounds. This modeling scenario has also been referred to 

as imputation (i.e., predict missing bioactivity data from partially available bioactivity data)42 

and the benefit over traditional prediction based purely on chemical descriptors has been 

reported in several studies.35,42–45 

When considering the different tiers, model scores decrease from earlier to later tiers, regardless 

of what modeling technique is used. Several reasons might be contributing to that. In later tiers, 

fewer training data points are available to learn from for the models. Moreover, later experiments 

correspond to biologically more complex processes. For instance, bioavailability captures 

solubility, permeability, and efflux in the gut, as well as first-pass metabolism, which are all 

mechanisms individually tested in in vitro ADME assays. On the other hand, it seems that assays 

of later tiers very strongly benefit from the multi-task approach (i.e., larger increase in R2 score). 

Small training datasets limit how well a ML model can learn structure-activity relationships. 

However, in a multi-task model, small tasks may benefit from the joint representation learned 

from all the tasks, effectively augmenting the data the model can learn from to predict small 

tasks. 

Model tuning 

In the following, we attempted to further increase the performance of the MT-Chemprop models. 

For this we considered modifying the learning hyperparameters as well as adding global 

descriptors to learn from. Model scores of all tested variants of ST-Chemprop and MT-

Chemprop on the validation set can be found in the Tables S4-S7. The hyperparameter sets 2, 3 

and 4 (see Material and Methods) all outperformed set 1 (i.e., the default settings), while set 5 

performed worse. Among those, we selected the set 4 for all MT models, which has a larger 

learned representation, more neurons in the fully connected layers, as well as increased depth in 

the message-passing step. Also, we found that the addition of RDKit global descriptors (as 

implemented in the Chemprop package) generally provides a benefit in model performance. In 

Figure 4, we report the changes in R2 score for all assays on the validation set with the selected 

setup (i.e., hyperparameter set 4 and use of RDKit descriptors) in comparison to the default 

scores. 
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Figure 4 Improvements in R2 score for the optimized MT-Chemprop model over the default 

model on the validation set. 

The optimized models for most assays provide a small to moderate benefit of up to 0.1 in R2 

score. For mHEP0, an exceptionally large increase of around 0.35 was observed, yet large 

variations in performance for this assay may be explained by the small size of the validation set 

(< 100 compounds). Only for three of the endpoints a slight decrease in performance was 

observed. Overall, the optimized model setting provides a clear benefit over the default models 

(hyperparameter set 1, no RDKit descriptors) and hence was used for final evaluation on the test 

set. In comparison to the default models, the selected set of hyperparameters means that the 

model has a larger number of trainable model parameters. It appears that in our case we have 

sufficient training data to observe a slight increase in performance compared to the default 

settings. Moreover, the beneficial effect of adding global descriptors (from RDKit) indicates 

complementary information compared to purely learned representations from chemical graphs. 

As an additional control, we trained a MT-Chemprop model without graph convolutions (i.e., 

multi-task feedforward neural network with RDKit descriptors as input, hyperparameter set 4). 

This model performed worse than our optimized model on all endpoints (see Table S6 and Table 

S7) illustrating the importance of the representations learned by graph convolutions in the 

models. 
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Model evaluation on the test set 

For the final evaluation on the test set (data has not been used for model tuning and selection), 

ST-Chemprop as well as MT-Chemprop (at design and testing stage) were evaluated. For a fair 

comparison to the optimized MT-Chemprop model, the best hyperparameter set per endpoint 

was used for ST-Chemprop, as well as global RDKit descriptors, if those were found beneficial 

on the validation set. R2 scores for individual endpoints as well as average scores for tiers are 

shown in Figure 5. R2 and RMSE scores for all models on all assays are reported in Table S8 and 

Table S9. 

 

Figure 5 R2 model scores for individual endpoints and averaged for tiers on the test set. Lines 

represent individual endpoint performance, while bars represent the average of the performance 

for the tier. 

Similar as for the validation set, it can be observed that MT-Chemprop overall outperformed ST-

Chemprop, with larger increases in R2 score for the higher tiers. When evaluating MT-Chemprop 

at testing stage, a further benefit can be observed for most assays. As outliers to the overall trend 

can be identified endpoints with very small datasets (hHEP0 and mHEP0) where large variability 

in predictiveness can be expected. In those cases, the R2 scores drop with MT-Chemprop 

(hHEP0) or are below 0 regardless of the model (mHEP0). While the same trends were observed 

for both evaluation steps (on validation and test set), model scores for individual endpoints may 

vary considerably. For instance, scores for rPPB were higher when evaluated on the test set (MT-

Chemprop scores for validation/test: R2: 0.680/0.812; RMSE: 0.474/0.397), while the opposite 

was observed for hLM (MT-Chemprop scores for validation/test: R2: 0.559/0.365; RMSE: 
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15.9/16.7). Fluctuation of ML model performance over time is not uncommon. Sheridan et al 

found that the presence of activity cliffs (i.e., test compounds with different activities compared 

to similar compounds in the training set) in the test set is a key factor to explain variable model 

performance over time.38 Nevertheless, the evaluation on the test set confirms that MT-

Chemprop markedly outperformed ST-Chemprop in this analysis. 

External validation 

In a recent publication by researchers from Biogen, data for some ADME endpoints was made 

publicly available which provides an opportunity to test the benefit of MT-Chemprop models 

when combining in-house with public data.11 For this exercise, we used the external datasets for 

human and rat liver microsome stability (referred to as hLM_Biogen and rLM_Biogen to 

distinguish from in-house data). In Figure 6A, R2 scores of different models are reported. The 

models are RF (trained on Biogen data), ST-Chemprop (trained on Biogen data), MT-Chemprop 

(trained on hLM_Biogen and rLM_Biogen; MT-BG), and MT-Chemprop (trained in 

hLM_Biogen and rLM_Biogen as well as all 28 in-house endpoints; MT-BG+BI).  

 

Figure 6 Model performance on the external validation set (Biogen data). A: R2 scores for RF, 

ST-Chemprop, MT-Chemprop (BG), MT-Chemprop (BG+BI). B: Experimental and predicted 

values with identity line for ST-Chemprop on hLM. C: Experimental and predicted values with 

identity line for MT-Chemprop (BG+BI) on hLM. 

 

It can be observed that the MT-Chemprop model including the in-house tasks clearly 

outperformed the other models on both hLM-Biogen and rLM-Biogen with R2 scores of nearly 

0.7. Combining the two Biogen tasks in a MT-Chemprop model outperformed the respective ST-
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Chemprop models, although for hLM_Biogen, the RF model achieved a better score. 

Experimental and predicted values for hLM-Biogen are shown for ST-Chemprop (Figure 6B) 

and MT-Chemprop (BG+BI) (Figure 6C). A better correlation between experimental and 

predicted values can be seen for the model including the in-house tasks. These observations 

demonstrate how our in-house data may be used to boost the performance on external datasets. It 

appears that tasks with a large training set spanning a wide chemical space assist the model in 

predicting related tasks with less training data. We believe that this strategy may be applicable to 

predict many other bioactivity endpoints with limited data. 

Activity cliff analysis 

For a further evaluation of MT-Chemprop models, we analyzed how well the models may 

predict ACs, which are known to be very challenging to predict.39 Hence, the objective was to 

determine if benefits of MT models become also apparent on ACs. Model performance on both 

ACs and non-ACs was evaluated for both the internal and external datasets. In Figure 7, model 

performances on the AC subset of the validation (internal datasets) and test sets (external 

datasets) are reported as relative RMSE (i.e., RMSE for the subset divided by RMSE on the full 

dataset for ST-Chemprop). In Figure S1, scores are also reported for the non-AC subset. As was 

expected, for all models relative RMSE scores are much larger for ACs in comparison to non-

ACs, which indicates that ACs are predicted with lower accuracy. With respect to ACs, MT-

Chemprop was the best model among the three tested for 18 out of the 22 considered endpoints 

with at least 20 ACs in the set used for evaluation. 
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Figure 7 Models evaluated on activity cliffs (ACs). The evaluation set for each endpoint was 

divided in ACs and non-ACs (see Methods). Reported are RMSE scores relative to the RMSE of 

ST-Chemprop for the full dataset. Number of ACs per dataset: LogD2 (506), LogD11 (741), 

HTSol2.2 (518), HTSol4.5 (973), HTSol6.8 (1154), hLM (1319), mLM (994), hPPB (70), mPPB 

(23), hHEP5 (272), hHEP50 (108), rHEP5 (149), rHEP50 (112), mHEP5 (201), mHEP50 (152), 

Caco Perm (137), Caco Efflux (272), rF (31), mF (60), rLM-Biogen (86), hLM-Biogen (73). 

 

Two examples in which MT-Chemprop made accurate predictions on ACs from the hLM-Biogen 

dataset are presented in Table 4. On average, errors for MT-Chemprop are around 14% smaller 

than for RF and 18% smaller than for ST-Chemprop for this task (numbers obtained by dividing 

MT-Chemprop RMSE for ACs by the single task model RMSE for ACs). Mol2977 is the only 

close analogue of Mol2062 with a Tanimoto similarity of at least 0.5 (pyridine ring instead of 

isoxazole) and the two compounds differ moderately in stability (13.6 mL/min/kg vs 4.74 

mL/min/kg) and hence Mol2062 was labelled as AC (see Material and Methods). MT-

Chemprop’s and RF's predictions for this AC are much closer to the experiment (5.43 and 5.37 

mL/min/kg, respectively) than the prediction from ST-Chemprop (25.4 mL/min/kg). In the 

second example, four close analogues of Mol1903 were identified. Both Mol1903 and Mol875 

were moderately or very well predicted by MT-Chemprop, respectively, whereas both single task 

techniques clearly underpredicted the clearance for both compounds. Those examples illustrate 

how MT-Chemprop seems to leverage information from auxiliary tasks to accurately predict the 

microsomal clearance in the presence of ACs. While ACs are still challenging to predict for MT-
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Chemprop (larger errors compared to non-ACs), it appears that the overall observed benefit over 

the single task models also holds true for ACs. Previously, it was shown that several graph-based 

neural networks are inferior to traditional ML models (such as SVM) when predicting ACs.39 

However, our results suggest that graph-based models such as Chemprop may be a good choice 

to predict also ACs, provided that the endpoint of interest can benefit from a multi-task setting. 

Table 4 Example predictions for ACs and their close analogues for hLM-Biogena 

 
Compound 

Exp hLM-

Biogen 

Pred (RF / ST) 

hLM-Biogen 

Pred (MT) 

hLM-Biogen 

E
x
am

p
le

 1
  

Mol2062 - query 

4.74 5.37 / 25.4 5.43 

 
Mol2977 

13.6 Training Training 

E
x
am

p
le

 2
 

 
Mol1903 - query 

562 107 / 199 441 

 
Mol1979 

106 Training Training 

 
Mol875 

115 69.7 / 63.9 117 
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Mol2207 

345 Training Training 

 
Mol2500 

19.7 Training Training 

aShown are two example query compounds found to be ACs and their nearest neighbors 

(Tanimoto >0.5). The columns show experimental data as well as predictions by RF, ST-

Chemprop and MT-Chemprop, in case the compound was in the test set. Experimental and 

predicted clearances have the unit mL/min/kg. 

 

Analysis on auxiliary task relevance 

Having established a superior performance of MT-Chemprop models to ST models, we sought to 

understand the success of those models focusing on evaluations at design stage (see Figures 1 

and 2). We attempted to attribute the success to certain auxiliary tasks. For that purpose, pairwise 

(i.e., two-task) Chemprop models were trained for three exemplary target endpoints: rHEP5, 

rPPB and rCL. In Figure 8 A-C, the performance of each pairwise model is contrasted against the 

size of the respective auxiliary task, and in D-F against the Pearson correlation of overlapping 

compounds in the training set as a measure of task relatedness. 

The rHEP5 task strongly benefitted from the physiologically related LM tasks (also reflected in a 

moderate to strong Pearson correlation). Similarly, rLM as auxiliary task strongly improved the 

predictions for rCL. The rHEP assays are even more closely related to in vivo clearance, yet for 

those endpoints much less training data was available which might have prevented a benefit on 

accuracy. Neither were the predictions for rPPB improved when the strongly correlated hPPB or 

mPPB endpoints were added as tasks. On the other hand, moderately correlated endpoints like 

LogD11 (positive correlation) or HTSol 6.8 (negative correlation) with large amounts of training 

data were successfully used as auxiliary tasks.  
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Overall, the large auxiliary tasks were found most useful as auxiliary tasks in MT-Chemprop 

models, despite only weak or moderate correlation to the target assays. Interestingly, simple 

experiments like LogD2 and LogD11 that measure lipophilicity can be successfully leveraged as 

auxiliary tasks. Trends between lipophilicity and PK parameters are well established in the 

literature which may explain our findings.46 

 

Figure 8 Analysis of pairwise Chemprop models for rHEP5, rPPB and rCL. A-C: Median R2 

scores of pairwise Chemprop models versus size of the auxiliary task (i.e., number of 

complementary training compounds). D-F: Median R2 scores of pairwise Chemprop models 

versus Pearson correlation of overlapping compounds between target and auxiliary task. G: R2 

scores of pairwise Chemprop models for rHEP5 as target (10 random seeds) in comparison to R2 

scores if auxiliary task is downsampled to smallest considered auxiliary task (here mHEP5). 

 

To further understand the role of auxiliary task size, we also downsampled the auxiliary tasks so 

that all compared auxiliary task are of same size for rHEP5 (Figure 8G). This resulted in clear 
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decreases in performance for all pairwise models with downsampled auxiliary tasks. Comparable 

observations can be made for rPPB and rCL (see Figure S2). These findings confirm the 

importance of the size of auxiliary tasks for the success of MT-Chemprop model in our case. 

In a previous study on benefits of multi-task models over single-task models, correlation between 

target and auxiliary was found as a prerequisite to achieve an improvement over a single-task 

model.47 Our results suggest that even a relatively weak correlation (e.g., Pearson correlation 

coefficient between rHEP5 and LogD11 ~0.2) may be sufficient for a strong multi-task benefit. 

The benefit of large auxiliary tasks may be attributed to a larger chemical space that the model 

encompasses. Our findings are consistent with observations from other studies. For instance, the 

prediction of in vivo brain penetration could be strongly improved when learned together with 

much larger in vitro tasks related to lipophilicity and membrane permeation.29 Prediction of 

aqueous solubility from powder material as a relatively small task was improved when trained 

together with other physicochemical property tasks such as predicting solubility measured with 

other methods and LogD measured at different pH.15 These findings can be translated into a 

general strategy for endpoints with little training data. By combining them with much larger 

auxiliary tasks that are at least weakly correlated in a multi-task model, improved predictions can 

be achieved in many cases. 

 

CONCLUSIONS 

In the present study, we demonstrated the usefulness of multi-task modeling for predicting 

ADME/PK properties using in-house data from drug discovery projects at Boehringer Ingelheim. 

Graph-based multitask learning proved to be useful to train the models. Predicting ADME/PK 

parameters at industrial scales could be identified as a use case where learned representations 

from chemical graphs appear advantageous in comparison to traditional chemical descriptors. 

Using a multi-task setting means having a joint representation of compounds across tasks which 

benefitted especially smaller tasks (complex in vitro endpoints or in vivo PK). We have shown 

that for ADME properties, a single MT model performs well, even beyond previously reported 

sets of endpoints.41 
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The graph-based multitask models could be successfully extended to external data. By 

combining in-house tasks with external ones (hLM and rLM) from a public data set, performance 

on external tasks could be clearly improved in comparison to single-task or multi-task models 

based purely on the external data. In addition to improved performance, a multi-task model 

means that the number of ML models that need to be deployed and maintained for productive use 

can be reduced. Regular model updates ensure that currently researched chemical space is 

covered and that information about early assays can support predictions for more complex assays 

(i.e., predictions at testing stage). 

While relatively well explored for ADME predictions, more work is needed to fully understand 

the potential of multi-task modeling for other bioactivity tasks such as potency or toxicity 

prediction. Future studies could investigate whether physicochemical datasets such as LogD or 

aqueous solubility as auxiliary tasks could also improve predictivity of other types of endpoints. 

A concept related to multi-task learning is transfer learning, where a neural network is pre-

trained on a large dataset before fine-tuning the model using data from the target task.16–18,48,49 A 

direction for further interesting research will be to systematically understand under which 

circumstances multi-task or transfer learning strategies are superior. 
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