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ABSTRACT: The site-selective C8-allylation and vinylation of isoquinolones has been accomplished using allyl acetate and vinyl 

acetates and oxo group of isoquinolone as an inherent directing 

group in the presence of Co(III) catalysis. A plausible mecha-

nism for the developed reaction has also been delineated based on 

preliminary mechanistic studies. Broad substrate scope with good 

to excellent yield and post-synthetic transformations of allyl and 

vinyl products feature the importance of reaction.

Isoquinolones are important building blocks for synthesizing 

various natural products and biologically important molecules.1 
Several natural products2a, agrochemicals,2b and drug mole-

cules2c possess isoquinolone as active core within their struc-

ture. Unfortunately, the classical isoquinolone synthesis does 

not always deliver isoquinolone with the desired substitution 

pattern. Consequently, research in this area has shifted focus to 

selective functionalization of isoquinolone.3 Classically, elec-

trophilic metallation or radical reactions are employed to syn-

thesize C4 functionalized isoquinolone.4 The C3 functionaliza-

tion of isoquinolone can be achieved by installing a static di-

recting group.5 Fortunately, the C8 functionalization of iso-

quinolone can be achieved via direct C-H functionalization, in 

which the oxo group of isoquinolone acts as an inherent direct-

ing group. C8-alkylation, alkenylation, and amidation of iso-

quinolone was reported using 4d transition metal catalyst i.e. 
Cp*Rh(III), Cp*Ir(III), and (p-cymene)Ru(II).6 In 2021, our 

group developed a protocol for C8 alkenylation of isoquinolone 

using Cp*Co(III)7 and continuing our interest in direct C8 func-

tionalization of isoquinolone, we became interested in the al-

lylation and vinylation of isoquinolone. Electronic and coordi-

nating flexibilities of allyl and vinyl groups allow the post-syn-

thetic modifications into a diverse array of organic molecules 

and polymers.8 Moreover, allyl and vinyl frameworks are also 

the common structural features of several natural and medici-

nally relevant scaffolds.9 Oxo-directed C-H functionalization 

using high valent cobalt catalysis generally faces a problem due 

to the low stability of cobaltacycle species.10 Utilizing allyl ac-

etate as an allyl surrogate increases the challenges in ß-elimina-

tion step (ß-OAc vs ß-H).11 Hence, we aim to overcome these 

challenges associated with oxo-directed C-H functionalization 

using high-valent cobalt catalysis (Scheme 1). In continuation 

of our work on cobalt-catalyzed C–H functionalization,12 herein 

we report cobalt-catalyzed, inherent directing group enabled 

C(8)-H allylation and vinylation of isoquinolones using readily 

available surrogates. 
 

Scheme1. Approaches to allylation and vinylation.  

 

 
 

We initiated our study by taking N-benzylisoquinolone (1a) 
and allyl acetate (2a) as a model substrates. Initially, 32% of 

desired allylated product 3a was obtained using CoCp*(CO)2I2 
(10 mol%), AgSbF6 (20 mol%) and Cu(OAc)2 (0.5 equiv) in 

DCE at 120°C (Table S1, ESI). Encouraged by the preliminary 

results, solvent, oxidant, and temperature effects were investi-

gated (Table 1).  
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Table 1. Initial optimization studies. 

 
S.N Deviation from the standard condition Yield 

1 Cu(OAc)2 instead of Cu2O 61% 

2 Ag2CO3 instead of Cu2O 28% 

3 Ag2O instead of Cu2O 32% 

4 TFE instead of DCE 54% 

5 HFIP instead of DCE 26% 

6 20 mol% AgSbF6  70% 

8 100°C instead of 120°C 72% 

9 60°C instead of 120°C 54% 

10 40°C instead of 120°C 5% 

12 Without CoCp*(CO)I2 nd 

aReaction conditions: substrate 1a (0.1 mmol), 2a (0.3 mmol), 

CoCp*(CO)I2 (10 mol %), oxidant (0.5 equiv), solvent (0.5 mL).
 

Interestingly, by increasing the amount of AgSbF6 up to 30 

mol%, the yield of 3a was increased to 61% (Table 1, entry 

1). Next, screening various oxidants suggested Cu2O to be a 

superior oxidant, providing 3a in 81% yield (Table 1, entries 
2-3). The effect of various solvents on product formation was 

also studied, and DCE was found to be beneficial over other 

solvents (Table 1, entries 4-5). Decreasing the reaction tem-

perature resulted in a decrease of product yield (Table 1, en-

tries 8-10).  

With the optimized conditions, the viability of the devel-

oped protocol was investigated with a range of substituted iso-

quinolones (Scheme 2). 3-Methyl isoquinolone provided cor-

responding allylated isoquinolone (3b) in 78% yield. C6-sub-

stituted isoquinolone provides the corresponding allylated prod-

uct (3c-3f) with a good to excellent yield (56-75%). C5-substi-

tuted isoquinolone was also feasible under developed reaction 

condition. 5-Bromoisoquinolone (1g) and 5-nitroisoquinolone 

(1h) provide the corresponding allylated product 3g and 3h in 

57% and 38% yield, respectively. 
 

Scheme 2. Co(III)-Catalyzed allylation and vinylation of isoquinolone derivatives. 

aReaction conditions for allylation: 1a (0.2 mmol), 2a (0.6 mmol), CoCp*(CO)I2 (10 mol %), AgSbF6 (30 mol%), Cu2O (0.5 equiv), DCE (1.0 mL).bReaction conditions for 

vinylation: 1a (0.2 mmol), 2b (0.6 mmol), CoCp*(CO)I2 (10 mol %), AgNTf2 (30 mol%),  Cu2O (0.5 equiv), TFE (1.0 mL), a at 5.0 mmol scale
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4-Substituted isoquinolone also provided the allylated product 

(3i-3k) in good yields. 3,4-Isoquinolones also furnished the 

desired products in excellent yields. Other than N-benzyl, dif-

ferent N-substituted isoquinolone were also tested under the de-

veloped protocol. Pleasingly, N-methyl and N-phenyl isoquin-

olone provide the corresponding product (3l-m) in good yields. 
However, unmasked isoquinolone were not able to provide the 

allylated product. Although 7-F provided the corresponding al-

lylated product (3n) in 35% yield, 7-Br and 7-methyl isoquino-

lone failed to react. Next, using vinyl acetate (2b), instead of 

allyl acetate provide the vinylated product (3r) in 37% yield, 

under standard reaction condition. Slight modification in stand-

ard reaction condition i.e., AgNTf2 instead of AgSbF6 in TFE, 

provides 3r in 84% yield. Under this reaction condition a range 

of substituted isoquinolone were diversified to yield C8 vinyl-

ated isoquinolone (3r-3zg).  

 

Scheme 3. Preliminary mechanistic studies. 

 

Next, preliminary experiments with allyl acetate were 

performed to gain insight into the reaction pathway. A deuter-

ation exchange experiment revealed reversible C–H bond acti-

vation (Scheme 3a). The standard reaction of 1a with allyl 

acetate (2a) in the presence of MeOD provides 3a in 38% yield 

with ~6% deuteration at β-position. However, 1a was recov-

ered in 44% yield accompanied by 28% deuteration at C8 

position (Scheme 3b). In a parallel kinetic isotopic study, pH/pD 

value of 1.54 and in a competitive isotopic study kH/kD value of 

1.07 were observed, respectively, suggesting C-H activation 

might not be a rate-determining step (Scheme 3c-d). 
A plausible mechanism was proposed based on literature13 

and preliminary experiments (Scheme 4). The reaction initiated 

from in-situ generation of cationic cobalt species (A) via 

Cp*Co(CO)I2  and silver salt reaction. Next, a reversible con-

certed metalation deprotanation (CMD) take place to form co-

baltacycle (B). Subsequently, coordination followed by 1,2 mi-

gratory insertion of 2a and 2b leads to the formation of 7-mem-

bered C1 and C2 intermediate, respectively. The deuteration 

labeling experiment (Scheme 3b) also supports the 1,2-migra-

tory insertions step. C1 and C2 undergoes β-OAc and β-H 
elimination to give D1 and D2, respectively. Although both β-
OAc and β-H elimination are possible from C1 to D1, β-OAc 

elimination took place due to the better-leaving property of -
OAc group proceeds reaction via. Further, Cu2O regenerates 

the cationic cobalt species A along with the formation of prod-

ucts 3a and 3r. 
 

Scheme 4. Plausible mechanism. 

 
Next, the synthetic utility of the developed protocol 

was also examined using scale-up synthesis and post-synthetic 

applications of the C8-vinylated and allylated isoquinolones. 
The developed methodology was also feasible at 5 mmol scale, 

and product 3r was obtained in 61% yield (Scheme 2). Prod-

uct 3a was further transformed into corresponding 1-chloroiso-

quinoline (4) in good yields. The vinyl group of 3r was further 

transformed into synthetically important functional groups i.e. 
aldehyde and nitriles, providing 8-acetaldehyde N-benzyl iso-

quinolone (5) and 8-carbonitrile N-benzyl isoquinolone (6), re-

spectively (Scheme 5).  
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Scheme 5. Post-synthetic applications. 

 

In conclusion, a Co(III)-catalyzed protocol has 

been developed top access C8 allylated and vinylated iso-

quinolone derivatives. Allyl acetate and vinyl acetate serve 

as effective surrogates of the allyl and vinyl groups, respec-

tively. The reaction displays a broad substrate scope and 

good functional group tolerance. The synthetic utility of the 

protocol was demonstrated by scale-up reaction and trans-

formation of products into useful building blocks. 
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