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Abstract 

Immune checkpoint inhibitors have garnered significant attention in oncological 

research over recent years. A plethora of studies have elucidated that inhibitors 

targeting the Programmed Death-Ligand 1 (PD-L1) play a pivotal role in 

circumventing the evasion mechanisms of cancer cells against the immune system. 

This study aimed to develop an integrated screening model combining an Artificial 

Neural Network (ANN), Molecular Similarity (MS) assessments, and GNINA 1.0 

molecular docking, targeting PD-L1 inhibitors. A database of 2044 substances with 

known PD-L1 inhibitory activity was compiled from Google Patents and used to 

enhance molecular similarity evaluations and train the machine learning model. For 

retrospective validation of the docking procedure, the human PD-L1 protein, with the 

Protein Data Bank (PDB) ID: 5N2F, was employed as a control. In this phase of the 

study, 15,235 compounds from the DrugBank database were subjected to a series of 

screening processes: initially through medicinal chemistry filters, followed by MS 

assessments, the ANN model, and culminating with molecular docking using GNINA 

1.0. The decoy generation yielded promising outcomes, evidenced by an AUC-ROC 

1NN value of 0.52 and Doppelganger scores with a mean of 0.24 and a maximum of 

0.346, indicating a high resemblance of the decoys to the active set. For MS, the 

AVALON emerged as the most effective fingerprint for similarity searching, 

demonstrating an Enrichment Factor (EF) of 1% at 10.96%, an AUC-ROC of 0.963, 

and an optimal similarity threshold of 0.32. The ANN model demonstrated superior 

performance in cross-validation, achieving an average precision of 0.863±0.032 and 

an F1 score of 0.745±0.039, outperforming both the Support Vector Classifier (SVC) 

and Random Forest (RF) models, albeit not significantly. In external validation, the 

ANN model maintained its superiority with an average precision of 0.851 and an F1 

score of 0.790. GNINA 1.0, employed for molecular docking, was validated through 

redocking and retrospective control, achieving an AUC of 0.975, with a critical 

cnn_pose_score threshold of 0.73. From the initial 15,235 compounds, 128 were 

shortlisted using the MS and ANN models. Further screening through GNINA 1.0 
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identified 22 potential candidates, among which (3S)-1-(4-acetylphenyl)-5-

oxopyrrolidine-3-carboxylic acid emerged as the most promising, with a 

cnn_pose_score of 0.79, a PD-L1 inhibitory probability of 70.5%, and a Tanimoto 

coefficient of 0.35. 

KEYWORDS: PD-L1 inhibitors, molecular similarity, GNINA, artificial neural 

network, virtual screening.
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I. INTRODUCTION 

In 2020, the global health landscape was profoundly impacted by cancer, with the 

International Agency for Research on Cancer (IARC) reporting an staggering 19.3 

million new cases and nearly 10 million fatalities1. Cancer, fundamentally a 

conglomerate of diseases manifesting in various organs or tissues, arises from 

abnormal cell behavior leading to uncontrolled proliferation. These rogue cells not 

only transgress their original boundaries but also invade adjacent tissues and can 

metastasize to distant organs2. Categorically, cancer is classified into two main types: 

hematologic cancers, including leukemia, lymphoma, and multiple myeloma, and 

solid tumor cancers, which impact other body organs or tissues, with breast, prostate, 

lung, and colorectal cancers being the most prevalent3. The genesis of all cancers lies 

in cellular changes, either in a single cell or a group. Under normal conditions, 

cellular proliferation is regulated by specific signals that maintain organ-specific cell 

counts. However, disruptions in these regulatory signals can lead to excessive cell 

growth, culminating in tumor formation4. 

Cancer treatment methodologies encompass a variety of modalities, including 

surgery, radiotherapy, hormone therapy, chemotherapy, targeted therapies, , 

immunotherapy5, and gene therapy6. These techniques range from physically 

removing tumors, utilizing ionizing radiation, manipulating hormone production, to 

correcting genetic defects. Immunotherapy, particularly notable among these, 

activates the body's immune system, comprising granulocytes, macrophages, natural 

killer cells, T and B cells, and the lymphatic system, to combat cancer. 

Immunotherapy, a subset of biological therapy, utilizes bio-derived substances to 

tackle cancer7. Immunotherapy includes various treatments such as Immune 

Checkpoint Inhibitors (ICIs)8, T-cell Transfer Therapy9, Monoclonal Antibodies10, 

Immune System Modulators11, and Cancer Treatment Vaccines12. ICIs function by 

interfering with the interaction between T cell proteins and their partner proteins on 

other cells, including cancer cells, which normally send an inhibitory signal to T cells. 
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By blocking this interaction, ICIs enable T cells to attack cancer cells effectively. PD-

L1 and PD-1 inhibitors, a subset of ICIs, specifically target the checkpoint proteins 

PD-L1 and PD-1 (Figure 1). Tumors often evade immune response by overexpressing 

PD-L1, which binds to PD-1 on T cells, leading to their deactivation13. As of 2023, 

the FDA has approved six PD-1/PD-L1 inhibitors: Pembrolizumab, Nivolumab, 

Cemiplimab, Atezolizumab, Avelumab, and Durvalumab14. 

 

Figure 1. Cancer cells generate a protein known as PD-L1. This protein interacts 

with the PD-1 protein, which is a transmembrane protein found in T cells. The result 

of this interaction is the deactivation of T cells. However, the introduction of anti PD-

L1 and anti PD-1 can prevent this complex from forming, thereby allowing the T cells 

to activate. This activation leads to the destruction of cancer cells.  

Numerous investigations have been carried out to establish machine learning 

models for predicting the bioactivity of compounds targeting PD-1 and PD-L1. A 

study by Geethu et al (2022)15 screened 32,552 organic compounds from the Atlas 

database, successfully identifying the top five compounds with the highest potential. 

Concurrently, Sachin et al (2022)16 utilized a Random Forest model to analyze 16 

million biological molecules, identifying two compounds with inhibitory 
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concentration (IC50) values of 22.35 and 33.65 μM, respectively. 

The objective of this research was to identify PD-L1 inhibitors using a three-step 

screening process involving molecular similarity, an ANN model, and GNINA 1.0 

molecular docking. The principle of the molecular similarity model lies in evaluating 

how closely a compound resembles a reference compound in the chemical space17. 

This similarity is measured using techniques such as molecular descriptors, molecular 

fingerprints, and similarity coefficients. Descriptors provide numerical representations 

of molecular characteristics, while fingerprints are binary codes representing 

molecular substructures. Similarity coefficients, such as the Tanimoto and Dice 

coefficients, quantify similarity based on shared attributes. In this study, molecular 

fingerprints were utilized to create a two-dimensional similarity model. 

II. METHODS AND MATERIALS 

The study was conducted on a system with an AMD Ryzen 9 3900X CPU (12 

processors, 3.79 GHz), equipped with 500 GB storage and 96 GB RAM, running 

Linux 22.04. Molecular fingerprints were generated using RDKit 2020.3.118, the ANN 

model was developed via PyTorch library19, and GNINA 1.020 was used for molecular 

docking. Consistency and reproducibility were ensured by maintaining a constant 

random state (value = 42) throughout all phases of the study, as illustrated in Figure 2. 

 

Figure 2. The workflow of this study. 
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Dataset 

The models in this study were developed using a dataset of 2,044 two-

dimensional (2D) structures, derived from patents US10710986, US10899735, 

US20200017471A1, and WO2018195321A1. These structures were delineated using 

ChemDraw 18.1 and saved in both *sdf and *csv file formats. Energy minimization 

was subsequently performed using RDKit. Additionally, a repurposing dataset from 

the DrugBank database, consisting of 15,235 structures either in phase II/III clinical 

trials or approved as drugs21, was utilized for virtual screening. 

Molecular similarity model 

BMS-1166 was selected as the query substance for its potent PD-L1 inhibitory 

activity, evidenced by an IC50 value of 1.4 nM in a homogeneous time-resolved 

fluorescence (HTRF) binding assay22. The study's active set comprised 2,044 

substances, each with a PD-L1 inhibitory IC50 value under 100 nM. Decoys were 

generated at a 1:10 ratio (one active substance to ten decoys) using the DeepCoy 

library23. Both active substances and decoys were employed to create five types of 

molecular fingerprints: AVALON, MACCS, ECFP4, RDK5, and MAP4. A similarity 

matrix was computed for BMS-1166 in comparison with each active and decoy 

compound for all fingerprint types, utilizing Tanimoto and Dice coefficients. The 

Tanimoto coefficient is mathematically defined as: 𝑇!(𝐴, 𝐵) = 	
!

"#$%!
; where ‘a’ and 

‘b’ represent the number of features in compounds A and B, respectively, and ‘c’ is 

the number of features that A and B have in common24. 

The calculation yielded a data table comprising ten columns of coefficients. To 

ascertain the most efficient fingerprint and its ideal similarity threshold for virtual 

screening, the study employed a validation process. This involved analyzing the 

receiver Operating Characteristic (ROC) curve, Area Under the Curve (AUC), 

enrichment factor (EF), and average precision metrics. The EF is a metric that 

quantifies the active compounds found within a specified “early recognition” portion 

of an ordered list, compared to what would be expected from a random distribution. 
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𝐸𝐹&% =	
𝑛'
𝑁'
	× 	

𝑁
𝑛  

where ‘ns’ is the number of active substances in the χ% dataset, ‘Ns’ is the number of 

active substances in the entire dataset, ‘n’ is the number of substances in the χ% dataset 

and ‘N’ is the number of substances in the entire dataset25. 

Artificial Neural Networks model 

The ANN model, utilizing the SECFP fingerprint as input data, was developed 

using the PyTorch library and executed on a GPU for accelerated computational 

efficiency. The dataset, comprising 2,044 substances, was partitioned into training, 

external validation, and internal validation sets, with allocation ratios of 0.72, 0.2, and 

0.08, respectively. For compatibility with GPU-based computations and deep learning 

operations within PyTorch, the data was transformed into a Tensor network. The 

training set was further segmented into batches, optimizing computational resource 

usage, enhancing randomness, and ensuring representative data sampling. 

 

Figure 3. Summary of the process of building the ANN model 

In the development of the ANN model (illustrated in Figure 3), several critical 

steps were undertaken. Initially, the number of hidden layers was determined, 

informed by the problem's complexity and data volume, as the correct number 

significantly enhances the model's learning capability. Subsequently, the node count 

in each hidden layer was established, balancing the complexity of the problem against 
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the model's learning capacity; too few nodes risk underfitting due to limited learning 

of complex patterns, whereas excess nodes may cause overfitting. Finally, the dropout 

rate was set. Dropout26 is a technique used in neural network training to randomly 

deactivate certain nodes, which helps in mitigating the risk of overfitting. The detailed 

configuration of the ANN model is outlined in Table 1. 

Table 1. The specific architecture of the ANN model 

Layer Parameter 

Input layer Linear (in_features = 2048, out_features = 2048) 

Activation function ReLU 

Dropout Dropout (p = 0.5) 

First hidden layer Linear (in_features = 2048, out_features = 1024) 

Activation function ReLU 

Dropout Dropout (p = 0.5) 

Second hidden layer Linear (in_features = 1024, out_features = 256) 

Activation function ReLU 

Dropout Dropout (p = 0.5) 

Output layer Linear (in_features = 256, out_features = 1) 

Activation function Sigmoid 

The performance of a model can be evaluated by its learnability from data and 

generalizability on unseen datasets, performed through internal and external 

validation, respectively. Internal validation (IV) involves cross-validation techniques 

for training models and hyperparameter tuning. External validation (EV), on the other 

hand, utilizes a validation dataset from an independent source to assess the model’s 

performance unbiasedly. As such, the results of EV provide crucial evidence for the 

generalizability of a QSAR model27. 
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The models' performance in this study were assessed using statistical parameters 

such as F1-score, and average precision (AP). AP is computed as the weighted mean 

of precision at each threshold, with the weight being the increase in recall from the 

previous threshold:28 AP =	∑ (Recall! − Recall!"#) × Precision!!  

The F1-score is calculated as the harmonic mean of precision and recall, 

providing a measure of the trade-off between them29: F1 − score = 	 $×&'()*+*,!×-().//	
&'()*+*,!1-().//

 

GNINA 1.0 – molecular docking 

In this research, the PD-L1 protein structure was sourced from the Protein Data 

Bank (PDB ID: 5N2F)30, and underwent standardization, including restoration of 

missing residues and local energy minimization. MGLTools was used to add both 

polar and non-polar hydrogen atoms and assign Gasteiger charges to the structure. 

The docking gridbox was set as a 22.5 × 22.5 × 22.5 Å cube, centered at coordinates x 

= 32.391 Å, y = 12.721 Å, and z = 133.816 Å. Butina algorithm31 was employed to 

categorize the 2044 substances into 17 clusters, from which 17 centroids were 

selected alongside a co-crystal ligand, yielding 18 active substances. Utilizing the 

DeepCoy library, 1800 decoys were generated from these actives at a 1:100 ratio. The 

resultant dataset of 1818 compounds (actives and decoys) was then used for docking. 

Initial docking yielded cnn_pose_score and cnn_affinity scores; GNINA’s CNN 

algorithm then prioritized conformations based on cnn_pose_score (ranging from 0 to 

1, indicating binding potential), while cnn_affinity provided additional binding 

potential assessment, with higher values indicating stronger binding. 

The assessment of the docking model's performance was rigorously conducted 

through two principal methodologies. Redocking validation was employed to 

ascertain docking power, quantified by a Root Mean Square Deviation (RMSD) 

criterion of ≤ 2 Å. For evaluating the model's screening efficacy, retrospective control 

was executed, with the ROC-AUC serving as the key metric. To further refine the 

analysis, the Geometric Mean (G-Mean) was applied to determine the optimal cut-off 

for the ROC curve32. The G-Mean is an analytical metric designed to evaluate the 
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equilibrium in classification accuracy between the majority and minority classes, 

ensuring a comprehensive assessment of the model's performance. 

III. RESULTS AND DISCUSSION 
Molecular similarity 

A total of 22,484 decoys were generated, exhibiting close resemblance to the 

active compound set, as indicated by the monitoring metrics: AUC-ROC for 1-Nearest 

Neighbor (1NN) at 0.52, AUC-ROC for Random Forest (RF) at 0.65, and 

Doppelganger scores with a mean of 0.24 and a maximum of 0.346. The study's initial 

phase included the computation of a similarity matrix, accessible on the 

accompanying GitHub repository. As illustrated in Figure 4, the distribution of 

Tanimoto coefficients for five distinct fingerprints was analyzed. The AVALON 

fingerprint demonstrated a bifurcation in distribution between decoys and actives. In 

contrast, the distributions for ECFP4, RDK5, MAP4, and MACCS fingerprints 

presented considerable overlap, complicating the distinction between decoys and 

actives. Therefore, the Tanimoto coefficients derived from the AVALON fingerprint 

are indicative of its superior discriminative capability between decoys and actives. 

 

Figure 4. The distribution of Tanimoto coefficients for (A) AVALON 

fingerprint, (B) ECFP4 fingerprint, (C) RDK5 fingerprint, (D) MAP4 fingerprint, (E) 

MACCS fingerprint, where ‘0’ indicates a decoy and ‘1’ signifies an active. 

This study utilized EF metrics at the 1%, 5%, and 10% levels of the dataset to 

https://doi.org/10.26434/chemrxiv-2024-zf1k8 ORCID: https://orcid.org/0000-0002-3532-2064 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-zf1k8
https://orcid.org/0000-0002-3532-2064
https://creativecommons.org/licenses/by-nc/4.0/


12 
 

determine the optimal molecular fingerprint for similarity-based virtual screening. 

Concurrently, two critical metrics in the classification model, namely AUCROC and 

AP, were utilized to assess the performance of the model (Table 2). 

Table 2. Results of five molecular similarity models, encompassing AP, 

AUCROC, LogAUCROC, EF1%, EF5%, and EF10% 

Model AP AUCROC Log 

AUCROC 

EF1% EF5% EF10% 

tanimoto_avalon 0.933 0.963 0.913 10.959 10.998 9.041 

tanimoto_maccs 0.721 0.923 0.64 10.959 9.53 6.756 

tanimoto_ecfp4 0.75 0.948 0.658 10.959 9.53 7.04 

tanimoto_rdk5 0.759 0.914 0.712 10.959 10.558 7.035 

tanimoto_map4 0.829 0.9 0.794 10.959 10.998 7.818 

Table 2 reveals that the AVALON fingerprint outperformed in similarity searching, 

achieving an EF1% of 10.959%, EF5% of 10.998%, and EF10% of 9.041%, alongside 

an AUC-ROC of 0.963 and an AP of 0.933. To define a molecular similarity threshold, 

AUC-ROC and AP plots were depicted in Figure 5, from which a threshold of 0.32 was 

derived for optimal virtual screening efficacy. 

 

Figure 5. (A) The Area Under the Receiver Operating Characteristic plots and 

(B) The Average Precision plots for five fingerprints, accompanied by their cutoffs.  
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ANN model 

Figure 6 demonstrates a sustained decline in training and validation errors across 

170 epochs, indicating the ANN model's convergence, as further training showed no 

improvement. Simultaneously, a progressive increase in the F1 score and Average 

Precision (AP) was observed, suggesting efficient learning without overfitting. The 

training epoch experienced some fluctuations in validation loss and metrics, possibly 

due to the increased weight_decay hyperparameter that enhanced the rigor of the 

learning process. Nevertheless, the stable trend in validation loss corroborates the 

absence of overfitting. 

 

Figure 6. The diagram illustrates the training process of ANN model 

During the internal cross-validation, the model attained AP of 0.863±0.032 and 

F1 score of 0.745±0.03. In the external validation, the model yielded an F1 score of 

0.799 and an AP of 0.854. 

Our study also included a comparative analysis between the ANN model and two 

other machine learning models based on RF and SVC algorithms. Figure 7 presents 

the comparative results. The cross-validated F1 score of the ANN model was not 

statistically significant compared to RF and SVC models, with p-values of 0.42 and 

0.12, respectively. However, the ANN model's Average Precision (AP) from cross-

validation was statistically significant when compared with the RF model (p-value ≤ 

0.01) but not significant compared to the SVC model (p-value = 0.08).
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Figure 7. (A) The F1-score comparison of the ANN model with RF and SVC 

based on the Wilcoxon signed-rank test, (B) The AP comparison of the ANN model 

with RF and SVC based on the Wilcoxon signed-rank test. 

GNINA 1.0 

Utilizing GNINA for molecular docking, the study processed protein and ligand 

structures in the *.pdb format. Following the redocking phase, the ten highest-ranking 

conformations by cnn_pose_score were juxtaposed with the co-crystal ligand 

reference. The most accurately docked conformation exhibited an RMSD of 1.40 Å, 

well within the acceptable threshold of 2 Å, demonstrating precise docking fidelity as 

depicted in Figure 8. 
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Figure 8. (A) The best docked conformation is shown in yellow, while the co-

crystal ligand is displayed in pink. (B) The binding pocket highlights the hydrogen 

bonds formed with the sidechain of Gln-49 a characteristic seen in the co-crystal-

protein complex. © The RMSD value was found to be 1.4 Å. 

According to the AUC-ROC curve in Figure 9, the AUC value was 0.975 for 

cnn_pose-score (gnina_CNN_best). From this curve, a docking threshold of 0.73 was 

extrapolated, as per the ROC-AUC analysis. 
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Figure 9. The retrospective control was evaluated utilizing four types of 

conformations, including the smallest positive (gnina_CNN_min), the most positive 

(gnina_CNN_max), the median (gnina_CNN_median), and mean (gnina_CNN_mean) 

of docked conformation distribution. 

Virtual screening 

From the initial set of 15,235 substances in the DrugBank database, 8,895 

structures were retained after a medicinal chemistry filter screening. These were then 

subjected to the molecular similarity model, which identified 828 compounds as 

active. Subsequently, these 828 compounds were processed through the ANN model, 

narrowing the list down to 128 compounds. Finally, molecular docking of these 128 

compounds led to the identification of 22 promising candidates, comprising 10 known 

medicines and 12 new hits. The outcomes of this virtual screening process are detailed 

in Figure 10.  
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Figure 10. The results of virtual screening process 

Table 3 highlights the identification of 5 substances characterized by a 

cnn_pose_score exceeding 0.7 and a PD-L1 inhibitory probability surpassing 65%. 

Table 3. Five substances from the repurposing dataset have a cnn_pose_score 

greater than 0.7 and PD-L1 inhibitiory probability greater than 65% 

Structure PD-L1 

inhibitiory 

probability 

(%) 

Cnn 

pose 

score 

Tanimoto 

coefficient 

 

(3S)-1-(4-acetylphenyl)-5-oxopyrrolidine-3-

carboxylic acid 

70.5 0.79 0.35 

https://doi.org/10.26434/chemrxiv-2024-zf1k8 ORCID: https://orcid.org/0000-0002-3532-2064 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-zf1k8
https://orcid.org/0000-0002-3532-2064
https://creativecommons.org/licenses/by-nc/4.0/


18 
 

 

Fradafiban 

69.7 0.89 0.34 

 

GW-559090 

67.3 0.82 0.38 

 

(2R,4S)-2-[(1R)-1-[[(2R)-2-Amino-2-(4-

hydroxyphenyl) acetyl] amino]-2-oxoethyl]-5,5-

dimethyl-1,3-thiazolidine-4-carboxylic acid 

66.1 0.76 0.33 

 

Zomepirac 

65 0.84 0.34 
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Out of the five identified compounds, only (3S)-1-(4-acetylphenyl)-5-

oxopyrrolidine-3-carboxylic acid exhibited a binding pocket analogous to that of the 

co-crystal ligand. It establishes two hydrogen bonds with Gln49 and Asp105, a crucial 

interaction anticipated to bolster the conformational stability of (3S)-1-(4-

acetylphenyl)-5-oxopyrrolidine-3-carboxylic acid within the binding pocket. This 

stabilization mechanism plays a pivotal role in its PD-L1 inhibitory activity. 

 

Figure 11. (A) Binding conformation in the binding pocket of the co-crystal 

ligand and five candidates (B) Interaction between (3S)-1-(4-acetylphenyl)-5-

oxopyrrolidine-3-carboxylic acid and the co-crystal ligan with vital amino acid in the 

active site. 

IV. CONCLUSIONS 

Our study implemented three computational models—molecular similarity, ANN, 

and the GNINA 1.0 docking procedure—to screen for PD-1/PD-L1 inhibitors. In 

molecular similarity assessments, the AVALON fingerprint emerged as the superior 

method, achieving the EF1% of 10.959%, the AUC-ROC of 0.963, and a similarity 

threshold of 0.32. The ANN model surpassed the SVC and RF models in cross-

validation with an AP of 0.863±0.032 and an F1 score of 0.745±0.039, albeit not 

significantly. Further external validation reaffirmed the ANN model's superior 

performance with an AP of 0.854 and an F1 score of 0.799. Following the screening 

of the repurposing structure library, 22 promising compounds were identified. It is 
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suggested that these compounds undergo synthesis and subsequent biological activity 

evaluation to confirm their therapeutic potential. 
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