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Abstract

Recent decades have shown arising growth-on-demand of integrating the machine learning into all areas of chemistry
and materials science. In this study, we consider one of the aspects of applying these technologies to gain advantage
in the search for new knowledge extracted from experimental data obtained in ever-growing number of studies. The
novelty detection approaches are aimed to identify the artefacts in these data that may be of importance in many direc-
tions. The analysis of "outliers" in details of the synthesis in the research studies of garnet-structured solid electrolytes
was chosen as the object of demonstration of one of the practical applications of this methodology. Particular attention
was paid to the choice of precursors. The thermodynamic data such as the heat of formation from the pure oxides
as well as the results of drop solution calorimetry for simple oxides were involved as the descriptors of the studied
systems. The overall performance of novelty/outlier detection of all types of outliers was characterized for the data
described varying the complexity of description using ROC-AUC statistics and was assessed to be 0.71 – 0.72 using
the Area-Under-Curve statistics. It was found that all “outlier” compounds related to those as the result of using the
rare precursors in synthesis were successfully identified. The complementary regression analysis was performed to
elucidate the relationship between the data diversity and the complexity of data description.
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1. Introduction1

Recent decades have designated the integration of artificial intelligence into all the areas of chemistry and materi-2

als science[1, 2, 3, 4]. Materials informatics was emphasized as an efficient way towards the rational synthesis of new3

compounds and new properties. It was efficiently applied in the design of the materials with desired characteristics[5,4

6, 7, 8, 9], in the design of synthesis and for the autonomous laboratories[10, 11, 12, 13], for natural language pro-5

cessing to obtain and analyze experimental data in chemistry and materials science [14, 15, 16, 17, 18], for modeling6

the microstructure [19, 20], for the analysis of the output of physicochemical methods of characterization[21, 22], for7

inverse design of materials[23, 24] and in many other areas of their application.8

Research of the electrochemical energy storage materials is one of the important directions aimed at general wealth9

and technological growth. The recognized demand for all-solid-state batteries has led to recent progress in solid-state10

electrolyte research [25, 26, 27, 28, 29] for multifold applications [30, 31, 32]. Solid state electrolytes are able to re-11

place the organic ones in the batteries of new generation and the cathode materials with the enhanced stability, energy12

and power densities. The performance of all-solid state batteries is largely defined by the choice of the architecture and13

the electrode/electrolyte combination [33]. The solid electrolyte characteristics can be considered as the bottleneck of14

battery performance. Up-to-date garnet-structured solid electrolytes first studied by Weppner and Thangadurai groups15

[34, 35, 36, 37] are the acknowledged alternatives in all-solid-state batteries which are considered in line with LGPS,16

argyrodites and LiPONs [33].17

The role of the synthesis conditions [38] in the product characteristics is the object of active investigation. Novelty18
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detection approaches can assist in finding the non-standard synthesis routes followed by performing the analysis on19

the benefits in the functional characteristics gained as a result of the discrepancy in the methods of synthesis.20

Nowadays, the use of machine learning methods in synthesis optimization is becoming a common practice in chem-21

istry and materials science. The stage of this involvement is a matter of debate due to the difficult questions on22

embeddedness of a theoretical background based on kinetics and thermodynamics[39, 38, 40]. In contrast to organic23

synthesis where the fundamental leap forward was achieved in numerous directions (e.g., in 2001, Hartmuth C. Kolb,24

M G Finn and K. Barry Sharpless introduced “click reactions” [41]), the questions on capability of accounting the25

complex processes in solids are still far from being applied routinely in practice [42]. It’s worth noting that in [42]26

author described in the details the general mechanism of the formation of a new phase from the two interacting solid27

state phases (Figure 1(a)). This bird’s-eye view can be used effectively as a basis in the search for new paths in the28

optimization of the reactions in solids.29

30

Figure 1: (a) The mechanism of a new phase formation from two interacting solid state phases (Figure is reproduced with permission from ref.
[42] Copyright 2004, Wiley), (b) Quasi-ternary phase diagram of the LaO1:5-ZrO2-TaO2:5 system (figure is reproduced with permission from ref.
[43] Copyright 2020, Elsevier)

The pertinent examples of integrating machine learning in the full synthesis cycle have been made in numerous31

studies[12, 10, 13, 44]. Nowadays, it cannot be denied that machine learning methods have already proven themselves32

to be very effective and in many scenarios critical technologies passing through amounts of experimental data growing33

in all fields. Such a methodology opens the avenue to multifold applications such as obtaining the metastable com-34

pounds away from the equilibrium optimizing the synthesis conditions, to gain the control on the thermodynamics and35

kinetics of reactions by rationalizing the synthesis. This problem is discussed in [39], where authors have provided36

with example of the thermodynamic coupling for reaction between MoCl5 and Na2S, which leads to the formation of37

MoS2 and the byproduct NaCl. The formation of the NaCl is exothermic that increases the overall reaction tempera-38

ture and leading to the melting of the NaCl that in turn results in the enhanced homogeneity and crystallinity of the39

target product of reaction. One can expect that the progress in using the thermodynamic data in materials informatics40

will deepen the understanding of the mechanisms of reactions in solids at least due to the enlarged area of visibility41

for scientists. The role of the nonstandard synthesis route in the final product characteristics due to the new method42

of synthesis, unconventional treatment or the choice of the precursors is the interesting factor that can be the object43

of the systematic investigation. In [38] authors have demonstrated the role of the reactivity of the interface of the44

precursors due to their sequential pairwise participation in the reactions in solids. The developed model provides with45

the example of how the replacement of the common precursor may redirect the phases evolution to the alternative46
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reaction intermediates. The replacement of the traditional BaCO3 precursor with BaO2 resulted in the formation of47

YBCO in 30 minutes instead of 12 hours. It is well known that the rate of the reactions in some cases has the dominant48

contribution to the final product formation. In ZrO2-YO1:5 system, the c-δ (Y4Zr3O12 phase) disorder-order transition49

is shown to be rate-limited by the cation diffusion and is extremely sluggish[45]. The very long equilibration times are50

needed to obtain the ordered δ -phase. The authors in [46] assumed that a second yet unseen ordered phase may exist51

near x = 0.40. The additional investigations showed about 90 energetically permitted intermediates. It is also well52

known that although the surface energy is formally relatively small, at the nanoscale, when the size of the particle may53

be quite small, the energetic contribution increases[47]. In [48] it was shown that it can reach the value of 7.9 kJ/mol54

for TiO2, which is three times the molar free energy of phase transformation from anatase to rutile. This is a common55

observation found in many systems, including very classical examples of the systems described by means of the phase56

diagrams. As was reported for Al2O3 (Figure 2(b)) the surface area highly affects the enthalpy of the system and57

may be the reason of the stabilization of the certain phase at given conditions (the slopes represent surface energies).58

The reactivity of the interface can be assessed through the corresponding enthalpy value. Figure 2(c) shows the the59

differential heats of water adsorption on hafnia and zirconia surfaces as a function of the method of synthesis and thus60

the characteristics of the surface [49]. These compounds have the significant importance for diverse technological61

applications and thus are ones of the most investigated objects. The determination of the value of the excess enthalpy62

as a function of the surface coverage was recommended as a method for the characterization of the state of the surface63

for the hydrophilic materials, which surprisingly was not widely used for electrochemical energy storage materials.64

The involvement of the machine learning in the analysis of the relationship between the synthesis methodology, ther-65

modynamic data and the final product characteristics is the long-standing need.66

67

Figure 2: The relation of the microstructure to the target phase stabilization and to the surface energy: (a) The phase diagram of the Y2O3-ZrO2
system for dopant and size effects (figure is reproduced with permission from ref. [48] Copyright 2021, Elsevier), (b) calculated enthalpy (H) of
γ-alumina and α-alumina relative to coarse alpha phase, where the slopes represent surface energies (figure is reproduced with permission from
ref. [48] Copyright 2021, Elsevier), (c) the influence of the defects and the surface state in general as a function of the method of synthesis for
HfO2 and ZrO2 compounds using the information on differential heats of water adsorption on hafnia and on zirconia surfaces (figure is reproduced
with permission from ref. [49] Copyright 2005, AIP Publishing).

The examples given show that the precursors can be considered as the special objects of machine learning-based68

screening before the synthesis that will be discussed below in a context of using the "unconventional" precursors69

3

https://doi.org/10.26434/chemrxiv-2024-cr0q8 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-cr0q8
https://creativecommons.org/licenses/by-nc-nd/4.0/


in a synthesis of the garnet-type solid electrolytes. In [50] authors argue that machine learning is well-suited for70

optimization but not for realizing new exceptional materials. The problem of finding outliers with the exceptional71

properties (authors meant the unique compounds with a combination of diverse characteristics) mentioned in this72

paper well correlates with another problem of using the synthesis "outliers" to analyze the effects resulted from the73

unconventional synthesis routes. In our study, we involve the machine learning methods of novelty/anomaly detection74

as a way to perform such an analysis. Very recently anomaly detection was the methodology of research in a context75

of identifying the structural anomalies[51].76

In this study, we first discuss the experimental data for garnet-structured solid electrolytes of different compositions.77

Thereafter, we will continue with the description of the machine learning methodology, which provides an efficient78

way to extract the knowledge from an ever-growing amount of the experimental data, which has a tendency merely79

progress over time. The results of chosen novelty detection method in identifying the known outliers will be shown80

using ROC-AUC statistics. We discuss the methodological problems that have come to the fore in numerous studies81

in statistical learning in a context of the data complexity problem, the influence of the reduction of data description82

on the statistical characteristics of the developed models is demonstrated for both the classification and the regression83

problems.84

2. Materials and methods85

2.1. Experimental data: garnet-structured solid electrolytes86

Garnet-structured oxides of general formula AxB3C2O12 are known to crystallize in three polymorphs: one tetrag-87

onal and two cubic (Figure 3). The different Li ion distribution among the sites with complete ordering of Li ions88

accommodating tetrahedral sites of the tetragonal polymorph while Li re-distribution among the tetrahedral (24d) and89

octahedral (96h and 48e) sites depending on Li concentration and the composition of the cubic polymorph defines90

the difference in the ionic conductivity values of ca. 2 orders of magnitude. The tetragonal polymorph is thermo-91

dynamically stable at RT while the superionic cubic phase is stabilized by means of doping strategy or the synthesis92

route/conditions. Several studies have been published on the local structure and the difference in Li distribution as93

a function of the doping cations Al3+, Ga3+ and Fe3+ [52, 53, 54, 55]. Figure 3 presents the information on the94

experimental data used in this work: (a) Three polymorphs of garnet-structured solid electrolytes of Li5, Li6 and Li795

phases with the difference in Li+ distribution among the sites (for two cubic polymorphs).96

97

Figure 4(a) shows the distribution of total conductivity σ tot and activation energy Ea values for the data involved98

in this study in line with (Figure 4(b)) the probability density distribution plots for the information on the heating and99

processing treatment, Li excess and relative density of samples. The similar analysis was recently performed for the100

argyrodites [57]. Figure 4(a) shows that the most of the compounds are related to the phases with log σ tot values in the101

range -4.0 to -3 and this trend is distinct from the observed values of the activation energy (Ea), where the values are102

distributed more monotonically. From the Figure 4(b), one can see that the calcination temperature and time are char-103

acterized by two representative ranges while for the sintering the experimental data are distributed more uniformly.104

The specific distribution of temperatures and calcination times may indicate that the heat treatment conditions used in105

[34] proved to be the starting point for optimizing the synthesis of LLZO in further studies. From the experimental106

data, the evident trend of forming LLZO at much faster rates using sol-gel synthesis was found [58, 59, 60], where107

ZrO(NO3)2 are used as the Zr-containing precursors. The hydrothermal/solvothermal route of synthesis and freeze108

drying methods were not found in the experimental data for garnet-structured solid electrolytes used in this study,109

however, one may expect the interesting observations as, first, the c-LLZO formation can be reached at the signif-110

icantly lower temperatures (that is interesting from the point of view of the kinetic and thermodynamic theoretical111

aspects) and, second, the Li-ion mass transport characteristics may differ from those for the samples obtained by the112

conventional solid state synthesis due to the different morphology and the defect state of the product [61]. Another113

underestimation in the chemistry of garnet-type solid electrolytes is the flash sintering methods which demonstrated114

the perspectives in the control of the reaction kinetics during the process of phase formation [62]. In this case the115

amounts of the energy supplied to the system is higher in the shorter period of time (due to Joule heating) that may116

affect the defect state of the structure of the compounds. Several studies involving this method of synthesis were117

recently published [63], however, the data used for the modeling in this work do not include information on flash118
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Figure 3: Experimental data used in this work: (a) Three polymorphs of garnet-structured solid electrolytes of Li5, Li6 and Li7 phases with the
difference in Li+ distribution among the sites (for two cubic polymorphs). Part of the figure reprinted with permission from [56, 52]. Copyright of
American Chemical and Physical Societies.
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sintered as well as on hot pressed samples despite the demonstrated effectiveness of these methods as highly distinct119

microstructure of the samples from that of obtained by the conventional sintering has evident difference which does120

not require involving any machine learning analysis to be distinguished. In the latter case, the heat in a combination121

with pressing provides with at least higher density of the samples also introducing the strain that can be relaxed in the122

certain period of time.123

For the analyzed experimental data, the pelletizing pressure has a little relationship with the relative density of the sam-124

ples according to the analyzed experimental data. The relative density of the samples exceeds 90% for the most of the125

experimental data. In almost all of the experiments 10 weight % of Li excess were introduced. The mechanochemical126

treatment encompasses the wide time range of the processing while the high-energy treatment was performed rela-127

tively rarely despite its demonstrated efficiency[64] in a number of studies even for poor ion conductors [65] or for128

the sinterability enhancement [66]. It is worth to note that in [67], author emphasized the role of the nanostructuring129

for poor ion conductors considering in this study the manifold theoretical insights as a basis for further investigation130

of the size effects in the systems of different complexity. However, the impact of high energy milling procedures is131

not evident: first, the point defects are the relevant centers of the reactivity [67] as well as the high-energy ball milling132

can provide with decreasing the resistance at the interfaces due to the enhanced contact of the particles and with the133

formation of the non-autonomous phases during the synthesis, second, on the other part, the defect enrichment of the134

structure can deteriorate the mass transport characteristics in the bulk.135

136

2.2. Investigated alternatives to the conventional Zr and Ta containing precursors137

The impact of the choice of the precursors is one of the relatively under-investigated aspects in the research of138

materials for electrochemical energy storage. In this study, the compounds obtained using non-standard precursors139

were considered as one of the types of the "outliers". Thus, considering the objects of our study, in [43] authors140

prepared solid solution system between La2Zr2O7 and La3TaO7 with a fluorite-type structure La2+xZr2�2xTaxO7 (x141

= 0.4), using this as the precursor for the synthesis of Li6:5La3Zr1:5Ta0:5O12 allowed to obtain the target composition142

already at 420°C from the results of TG-DTA measurements. Authors assumed that La2+xZr2�2xTaxO7 (x = 0.4) can143

effectively act as a precursor oxide because of the same molar ratio of La:Zr:Ta as in Li6:5La3Zr1:5Ta0:5O12. The syn-144

thesis of Li6:5La3Zr1:5Ta0:5O12 is performed according to the following equation: 3.25Li2O + 1.25La2:4Zr1:2Ta0:4O7145

! Li6:5La3Zr1:5Ta0:5O12 (Figure 1(b) presents the corresponding quasi-ternary phase diagram of the LaO1:5-ZrO2-146

TaO2:5 system). The alternative approach was used in [68], where authors have introduced the time-temperature phase147

diagram for thin films of garnet electrolytes in order to efficiently represent the phase formation process. This infor-148

mation can be related to the problems concerned with the surface energy of the studied system, however, the more149

precise thermodynamic-based investigations are needed.150

For this system, the synthesis of target composition can be considered as a two-step process. First, the formation of151

solid solution with the same stoichiometry of La, Zr and Ta is performed followed by obtaining the final composition152

introducing Li2O in synthesis (the process is presented in the details in Figure 5 (a)). The heat treatment for obtaining153

the precursor comprises pre-heating at 350°C for 2 h followed by the calcination at 800-1100 °C for 4 h in air. Second,154

a 50 wt% excess Li2O was added to increase the reaction area between Li oxide and the precursor oxide. Then, the155

mixture was calcined at temperature from 400 to 500°C for 12 h in an Ar atmosphere inside Al2O3 crucible. The156

obtained sample exhibited a bulk Li-ion conductivity of 9.4� 10�4 S�cm�1 at 25°C that, according to the authors,157

slightly outperforms the counterparts of the same composition synthesized by the solid-state route. In [69] authors158

investigated two alternative routes of synthesis of c-LLZO through two different intermediates formation: (i) from159

Li2CO3, La(OH)3 and La2Zr2O7 (instead of ZrO2) precursors authors have obtained La2Zr2O7 at 650°C followed160

by formation of the cubic phase single-phase LLZ by heating the initial mixture to 800°C for 1 hour in air and (ii)161

from Li2CO3, La(OH)3 and ZrO2 precursors, Li2ZrO7 was formed at 700-850°C with La2Zr2O7 as a secondary phase162

accompanied by the formation of a target c-LLZO phase mainly at 700°C-750°C. In [70] it was found that La2Zr2O7163

is a part of a large lithium containing solid solution region, where the search of structures with high surface reactivity164

can be of practical interest.165

Figure 5 also presents the information on synthesis for the alternative Zr-containing precursors and modified LLZO166

synthesis routes, La2Zr2O7, YSZ and t-ZrO2. In [71] authors have investigated the question on crystallite size effects167

in a context whether the different crystal structures of ZrO2 affect the synthesis of LLZO mentioning the surface168

6

https://doi.org/10.26434/chemrxiv-2024-cr0q8 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-cr0q8
https://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4: The distribution of total conductivity σ tot and activation energy Ea values (a) in line with (b)) the probability density distribution plots
with the information on the heating and processing treatment regimes, Li excess introduced during the synthesis and relative density of samples.
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energy as an important factor highly affecting the synthesis. Three polymorphs of pure ZrO2 exist at 1 atm: (i) mon-169

oclinic (m), tetragonal (t) and cubic (c). Monoclinic polymorph (m-ZrO2), which is stable at room temperature (RT)170

transforms to the tetragonal structure (t-ZrO2) at about 1200°C with an associated enthalpy of transition ∆Hm!t (ZrO2)171

of 5.94 �0.4 kJ/mol. Tetragonal polymorph remains stable up to 2377°C, where it transforms to the cubic modifi-172

cation [45]. Monoclinic and tetragonal ZrO2 precursors were used in the abovementioned study, where t-ZrO2 was173

produced by caustic fusion of ZrSiO4 followed by heating at 1000°C. The ball milling for 8 hours and 450 rpm in174

isopropanol was performed with the obtained crystallite size of 190 nm and 122.17 nm for m-ZrO2 and t-ZrO2, re-175

spectively (thus, according to Figure 2(a, no inclusion of the amorphized phases is expected).The heat treatment was176

950°C for 6 hours at the calcination step and 1000°C for 6 hours at sintering step. The presence of LiNaCO3 phase in177

LLZO synthesized from t-ZrO2 was found. Authors relate this fact with slightly higher values of ionic conductivity178

(1.647�10�6 S�cm�1 of LLZO synthesized from t-ZrO2 vs. 1.245�10�6 S�cm�1) of LLZO synthesized from m-ZrO2.179

One may assume over-heating during the synthesis resulting in the dominant t-LLZO formation. The corresponding180

scheme of synthesis is shown in Figure 5(c). Zircon ZrSiO4 can be obtained as a product of reaction of a quartz181

crystal (SiO2) and m-ZrO2 by heat treatment at 1000 K for 3 days. The enthalpy of reaction of the formation of182

ZrSiO4 from its constituent oxides has been determined ∆rH997(ZrSiO4) = -27.9�1.9 kJ/mol[72]. The studies using183

c-ZrO2 as a precursor were not found. However, in [73] authors have used polymerized complex method for the syn-184

thesis of Y4Zr3O12 and Y3:93Yb0:07Zr3O12 with yttrium (III) nitrate hexahydrate, zirconium (IV) oxynitrate hydrate185

and ytterbium (III) nitrate pentahydrate. The X-ray diffraction patterns of powders of YZO undoped and doped with186

Yb3+ match well with those corresponding to the cubic-like fluorite crystal phase of ZrO2 (PDF-30-1468) when it is187

stabilized with concentrations higher than 15 mol%. The perspectives of using this compound for the synthesis of, for188

example, Y-doped LLZO compounds are not clear. The difference with 8 mol% YSZ (being used for the synthesis of189

garnet-type solid electrolytes as a precursor and discussed below) in the reaction behavior can be expected due to dif-190

ference in the structure concerned with the long-range order of vacancies in the fluorite-related structure of Y4Zr3O12.191

In [43] and [74] authors have unraveled the synthetic methodology for obtaining the target garnet-type compounds192

by using conventional solid state method as well as the polymerized complex method from La2Zr2O7 and La3TaO7193

Zr and Ta-containing precursors. To our knowledge, these studies and the works of Kimura[69] and [75] were the194

first ones, where the questions on the influence of using the compounds formed as the intermediates in the synthesis195

as the precursors were studied. The scheme of the synthesis is given in Figure 5. In [43] at the initial step of the196

synthesis by the method of polymerized complex ZrOCl2�8H2O was used as a source for La2Zr2O7 synthesis. The197

information on the synthesis of garnet-type solid electrolyte materials from the chlorides only was not found in the198

literature. However, for Li-rich layered oxides the evident benefits for the Li-ion mass transport characteristics were199

not observed.200

In [76] authors have used 3 and 8 % Y-doped ZrO2 (YSZ) for the synthesis of highly Li-stuffed Li7:06La3Zr1:94Y0:06O12201

and Li7:16La3Zr1:84Y0:16O12 by conventional solid state method of synthesis (Figure 5(b)). According to the phase202

diagram represented at Figure 2(a), 3 mol% YSZ crystallizes in the tetragonal polymorph while 8 mol% YSZ crys-203

tallizes in the cubic modification (the corresponding enthalpies of formation of these compounds from the simple204

oxides are given below as being used as the descriptors in modeling). Other precursors used in synthesis were La2O3205

and LiNO3 (10 weight % excess).The powders were ball-milled for 10-24 hours using zirconia balls in isopropanol.206

Pre-calcination was performed at 700 °C for 12 hours followed by re-grinding for 24 hours and sintering at 950°C for207

12 hours. Non-uniform distribution of yttrium is observed for elemental mapping presented for 8 mol% YSZ-doped208

Li7:16La3Zr1:84Y0:16O12. The Li-ion transport characteristics were found very similar to the studied samples. How-209

ever, one may expect this as the result of using the same synthesis conditions. In [42] Joachim Maier noticed: "The210

reactive adsorption step and the reorganization are followed by the nucleation of the oxide phase, that either takes211

place homogeneously or occur heterogeneously with the aid of crystal defects. In the second case the surface energy212

of the defect is of prime significance." Thus, the precursors characterizing by the different surface energies and the213

defect-enrichment states (Figure 2(c)) may give very different enthalpies of reactions. Similarly, the problem of the214

relationship between the association of the defects and the ion conductivity is well-known [45].215
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Figure 5: Information on synthesis using the alternative Zr- and Ta-containing precursors (La2Zr2O7, YSZ and t-ZrO2, La3TaO7) and the modified
LLZO synthesis routes.
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2.3. Machine learning in a design of synthesis216

The most promising practice for planning synthesis at the moment is the automation of literature analysis followed217

by the use of natural language processing technologies (NLP). In such a way the important findings have been made218

in numerous studies. However, each time these findings are almost completely the result of the analysis depth of the219

obtained results and the assumptions have been made. In [77] using the data set of over 30 000 text-mined solid-state220

synthesis reactions and guided by the assumptions on the (i) good synthesizability of the compounds, (ii) performing221

the synthesis experiments in a one-shot fashion and (iii) predicting the "optimal" synthesis conditions authors have222

underlined the importance of the heating time for the compositions containing (1) Mn, Ru, Rb, In, Ti, Cd, Th, Hf,223

Pb and Te cations and (2) of the heating temperature for the compositions including Li, Mo, Ba, Sr, V, Bi and Te.224

In [78] authors have used the text mining and natural language processing to extract the information on the synthesis225

protocols for gold nanoparticles associating the synthesis routes/conditions with a shape of the particles. In [15]226

authors have used the information on sintering and calcination temperature and time, method of synthesis and solvent,227

which was extracted from the literature and using the NLP software learned model to discriminate synthesis details228

for SrTiO3 and BaTiO3 compounds as well as to elucidate the formation of certain polymorph of MnO2. In [79]229

authors have introduced the similarity metric in the assessment of the similarity in the synthesis routes for inorganic230

materials. The proposed approach has allowed to capture the correlation between the target and the precursors as well231

as the dependency between the different precursors in the same experiment. Authors have randomly masked a part of232

the precursors while remained data have been used to imputing the set of precursors. This methodology has a high233

potential to be used for solving the more general problem of the imputation of the experimental data in chemistry234

and materials science. Among the dilated set of examples authors refer to the study[80], where NaHPO4 have been235

used to synthesize Na3TiV(PO4)3 while the common precursors are Na2CO3 and NH4H2PO4 Additionally, authors236

unexpectedly found that approximately half of the target materials were synthesized using at least one uncommon237

precursor. The similarity-based approach has allowed to transfer the use of the former precursor for the synthesis238

of Na3V2(PO4)3. In [81] the authors jointly used the automatic data extraction methodology with state-of-the-art239

algorithm Autonomous Reaction Route Optimization with Solid State Synthesis (ARROWS), an algorithm designed240

to optimize the solid-state synthesis including the problem of the precursors selection. Based on the initial ranking241

of precursors combinations according to the DFT results on the reaction energies the authors conducted a systematic242

search over a wide range of temperatures and synthesis times. The outcome of reactions was analyzed by XRD thus243

identifying all the products. The information on the intermediates obtained during the synthesis was also obtained.244

The mentioned study is a continuation of many others among which one can refer [82]. The developed methodology245

can be considered one of the most attractive to date due to the obvious prospects for its easy extension to other objects246

with the only limitation associated with synthesis.247

2.4. Methods of novelty/anomalies detection248

The concept of the density of the probability distribution P is laid at the core of the richness of methods for249

anomalies/novelty detection[83]. In practice of the materials science and chemistry this means that any experimental250

data may be analyzed in the context of how the obtained observations fit into a bigger picture of already obtained251

knowledge that can be enforced by initially statistical learning-based principle formulated by Vladimir Vapnik "never252

to solve a problem which is more general than the one we actually need to solve" [84] laying in the basis of numerous253

studies [83]. Anomalies detection techniques can be efficiently applied for the allied purpose of circumscribing the254

experimental data sufficient for the detailed analysis of the certain studied phenomena thus removing the observa-255

tions involving no new knowledge. In the underlying principle, the latter resonates with the training data attribution256

methodology [85].257

Discussing the problems of the so called "outliers", the real data that differ from what may be expected and can be iden-258

tified as obeying no statistical law, one may also address to the experience of statistical learning, where the importance259

of the identification and minimization of such observations are positioned as one of the cornerstones[86]. The assump-260

tion on the majority of the confident "normal" data is usually made. Thus, using the terminology of machine learning,261

the task is formulated as the unsupervised learning, where the data described by means of some selected features and262

the learning process itself does not require the knowledge on the associated with these data properties. The decision263

on the "normality" or "outlierness" of the data point is passed according to the density of the probability distribution264

of the analyzed data. The binary classification of the data to the nominal data and the "outliers" is usually performed265
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by involving the methods that can be classified into four main groups: (i) boundary-based, (ii) reconstruction-based,266

(iii) embedding similarity-based, (iv) classic density estimation methods and (v) distance-based. Figure 6 presents267

(a) the schematic representation of these main categories of methods widely used for the outlier/anomalies detection:268

boundary-based, reconstruction-based, density estimation-based and distance-based methods and (b) Deep Autoen-269

coding Gaussian Mixture Model.270

Among the boundary-based methods several approaches including the "traditional" ones are most often used: (i) one-271

class classifiers, One-Class Support Vector Machines (OC-SVM) [83], Support Vector Domain Description (SVDD)272

[87], (ii) deep one-class classification [88] (DSVDD) and (iii) one-class neural networks [89]. It is widely acknowl-273

edged that the performance of OC-SVM can be sub-optimal on complex, multivariate datasets[87, 84] and this prob-274

lem is discussed for a number of examples as a trade-off between reducing the density uncertainty for the multidimen-275

sional description of the data and the "spatial" uncertainty choosing simplified data description [90].276

The reconstruction-based approaches use the concept of the reconstruction (quantization) error or the energy values for277

estimating data density distribution. Among the reconstruction-based methods the most popular and known methods278

are different types of autoencoders (deep autoencoders [91, 92], neural generative models (variational autoencoders279

[93], contrastive autoencoders [94], adversarial autoencoders [95], autoencoders with nonlinear dimensionality re-280

duction [96], different types of generative adversarial networks GANs [97]), hybrid approaches (Deep Autoencoding281

Gaussian Mixture Model [98], deep anomaly detection using geometric transformations[99], kernel density estimators282

(Kernel Density Estimation [100] and Robust Kernel Density Estimation [101]), Robust-PCA [102].283

Embedding similarity-based and distance-based methods for outlier/anomalies detection includes PaDiM [103], Iso-284

lation Forest (iForest) [104] and Local Outlier Factor (LOF) [105]. The anomaly identification in the latter case is285

performed using the distance between the embedding vectors of a test example and the reference vectors representing286

the normality of the training dataset. The similar principle is put behind the well-known dimensionality reduction287

technique of Self-Organizing Maps [106], where the quantization error is used as a measure characterizing the simi-288

larity of the considered sample to the nominal data. In the former case, the pre-trained networks are used.289

Among the classic density estimation methods for outlier detection one should distinguish manifold learning-based290

(Regularized Principal Manifolds [107], Bayesian estimation of assignments of objects to mixed classes [86] and291

Generative Topographic Maps [108]. The "outlierness"of the data is evaluated using the predictions of the probability292

of mixture membership for each sample. Adversarial Autoencoders introduced by Pidhorskyi et al. [95] and Zong et293

al. [98] can be related to some extent to this category as hybrid approaches.294

Recently a comprehensive review describing in the details the variety of the anomalies approaches was published[109].295

In this study, we use the energy values evaluated by Deep Autoencoding Gaussian Mixture Model[98] as a criteria for296

identifying the novelty/outliers in the data.297

Deep Autoencoding Gaussian Mixture Model In its original form, the autoencoders that are nowadays at the
root of one of the most popular family of statistical learning methods were introduced in the late 80’s [110]. This type
of neural networks was used as a basis for the deep autoencoders gained traction during the last decades simultane-
ously with onrush of the methodology of deep learning [111]. The method involved in this study, Deep Autoencoding
Gaussian Mixture Model (DAGGM), is one of the representatives of deep autoencoders enhanced by Gaussian Mix-
ture Model thus integrating it with a probabilistic approach.
DAGGM consists of two components: the compression network and the estimation network. The compression net-
work functionalizes in an enforced manner by outputting the data of two types: (i) the reduced low-dimensional
representation learned by a deep autoencoder and (ii) the data derived using the reconstruction error evaluated by
the decoder component. The estimation networks uses both type of information to evaluate the likelihood/energy by
using Gaussian Mixture Model (GMM). Given the low-dimensional representation, the estimation network estimates
the probability density of the data by using GMM. During the training with some initialized mixture component
distribution φ , the mixture means µ , and the mixture covariance Σ, the network estimates the parameters without
using procedures as Expectation-Maximization (EM) by means of multilayer neural network to predict the mixture
membership for each sample.

p = MLN(z;Θm) (1)

γ = so f tmax(p) (2)
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Figure 6: Schematic representation of main categories of methods widely used for the outlier/anomalies detection: boundary-based, reconstruction-
based, density estimation-based and distance-based methods; (b) Deep Autoencoding Gaussian Mixture Model.

where γ is a K-dimensional vector for the soft mixture-component membership prediction, K is a number of Gaussians298

and p is the output of a multilayer network parameterized by Θm. This proposed architecture allows one to preserve299

and use the capabilities of the basic algorithm as well as to gain the probabilistic assessment of the data.300

2.5. Methods of dimensionality reduction301

t-Distributed Stochastic Triplet Embedding In this study, we use the method of Stochastic Triplet Embedding
for the dimensionality reduction[112]. This method exploits the concept underlying in a human system of judgments
based on the principles of relative similarity of objects (A is more similar to B than C) which is realized in the
framework of stochastic neighbor approach by maximizing the sum of the log probabilities of fairness of a given
statement over all considered triplets.

max
X

∑
8(i; j;l)�(τ)

logPi jl (3)

Authors introduce a Student-t kernel with α degrees of freedom. Hence, the probabilities are defined based on the
local similarities as follows:

pi jl =
(1+ jjxi�x j jj

2

α
)�

α+1
2

(1+ jjxi�x j jj2

α
)�

α+1
2 +(1+ jjxi�xl jj

2

α
)�

α+1
2

(4)

During the process of training, the relative coordinates of the samples are perturbed to improve the decision of the302

model according to equation (4). This procedure similar to the metric learning principle allows both to close the303

coordinates of the similar observations in the map minimizing the distance between them while to spread apart the304

dissimilar according to the data description objects. In this study, we use this method in line with the energy values305

obtained from the DAGGM to visualize the experimental data with the indication of the compounds, for which the306

probability being the novelty/outlier is higher.307
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2.6. Machine learning methods used for regression problem308

Support Vector Machines method (SVM)[84] was involved for model development as it is implemented in LIB-
SVM package [113] with settings of using ε-SVR and Radial Basis Function (RBF) kernel.
The second approach is the Probabilistic Backpropagation Bayesian Neural Networks (PBP) [114]. Given data
D = fxn,yng

N
n = 1, where xn2R

D and corresponding scalar variables yn2R, yn = f (xn; W )+εn, where f (�; W ) is
the output value with weights given by W and noise variables εn.
The likelihood of dependent variable given weights W and the noise precision γ is defined as following:

p(yjW ;X ;γ) =
N

∏
n = 1

N (ynj f (xn;W );γ
�1) (5)

PBP does not use the point estimates of the weights during the training instead the set of the Gaussians is generated:309

p(W jλ ) =
L

∏
l = 1

Vl

∏
i = 1

Vl�1+1

∏
j = 1

N (wi j;l j0;λ
�1) (6)

where wi j;l is the weights and λ is a precision parameter. The details on how the prior for λ is defined are given in the
original publication.
The posterior distribution for the parameters W , γ and λ can then be obtained according to Bayes’ rule as follows:

p(W ;γ;λ jD) =
p(yjW ;X ;γ)p(W jλ )p(λ )p(γ)

p(yjX)
(7)

The output predictions are performed using predictive posterior distribution:

p(ytarget jxtarget ;D) =

Z
p(ytarget jxtarget ;W ;γ)p(W ;γ;δ jD)dγdλdW (8)

where p(ytarget |xtarget , W , γ) = N (ytarget |f (xtarget ), γ). At the end of the forward stage, PBP computes the logarithm
of the marginal probability of the dependent variable. At the stage of backward propagation, the network propagates
the gradient of this quantity with respect to the means and the variances of the approximate Gaussian posterior, which
in turn are used to update the corresponding values of the means and the variances of the posterior approximation of
the Gaussians. The weights are updated according to the Bayes’ rule:

s(w) = Z�1 f (w)N (wjm;v) (9)

where Z is the normalization constant. The updated values for the means and the variances are obtained using the
gradient of the logarithm of the normalization constant Z:

mnew = m+ v
∂ logZ

∂m
(10)

vnew = v� v2

"�
∂ logZ

∂m

�2

�2
�

∂ logZ
∂v

�#
(11)

The third method is Deep Gaussian Processes (DGP) [115]. DGP are a deep belief network based on Gaussian process310

mapping. The Gaussian processes are organized in the hierarchy in a way similar to the neural networks, where the311

inputs of one layer are the outputs of the previous layer. A single layer model is equivalent to the individual GP or312

the GP latent variable model. The benefits of this methodology is two-fold: (i) deep models are known to have the313

advantages over the shallow methods as they are able to extract more complex relationships from the processed data314

and (ii) the proposed method allows one to perform some sort of feature weighting that significantly improves the315

stability of the models for the data of different complexity. Principally, authors have realized the variational inference316

to marginalize the latent variables in the hierarchy variationally. The probabilistic nature of the algorithm additionally317

contributes to the model stability that otherwise can be sensitive to the outlier objects.318
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The proposed architecture can be reprsented as a graphical model with three kinds of nodes: (i) the leaf nodes319

Y2RN�D, where D is the number of Gaussian process priors, (ii) the intermediate latent spaces in amount of the320

hidden layers in the architecture Xh 2R
N�Qh , where h = 1,..., H (H is the number of hidden layers) and (iii) the parent321

latent node Z that can be unobserved in the architectures of the special purposes Z = XH2R
N�Qh .322

For the architectures containing only two hidden units, the generative process takes the form:323

ynd = f y
d(xn) + ε

y
nd , where d = 1,..., D; xn 2 R

Q
324

xnq = f x
q(zn) + εx

nq, where q = 1,..., Q; zn 2 R
Qz .325

where f y and f x are the input and the output, respectively. As each layer contains a significant number of model param-326

eters to be taken into account, authors have proposed two features that enforce this method at the same time allowing327

to solve the problem of regularization. At the first step, they have introduced the automatic relevance determination328

(ARD) covariance functions for the GPs:329

K(xi, x j) = σ2
arde�1=2∑

Q
q=1 wq(xi;q�x j;q)

2
330

331

Thus, the weights are effectively introduced into the model for each latent dimension. This allows one to automat-332

ically determine the most important information ignoring the possible deficiencies in the data description. To avoid333

the difficulties for Bayesian treatment of the introduced nonlinearities, which are, however, of principal importance334

for the weighting, the special pseudo-inputs are introduced that are known as the inducing points. Their number K is335

defined in the configuration of the model. This allows to realize some sort of the surrogate function defining the per-336

formance of the models developed during the training procedure. For the details concerned to the Bayesian training,337

please, refer to the original publication.338

339

2.7. Descriptors340

The parameters used in the study as the descriptors can be related to several categories: (i) a composition of341

the compounds, (ii) atomic characteristics (Shannon ionic radii, atomic scattering factor, dielectric polarizability and342

atomic weight values) [116], (iii) details of synthesis including Li excess, temperature of decomposition for Li pre-343

cursors, calcination and sintering time and temperature.344

The atomic characteristics are well-known and successfully applied in materials informatics as a simple materials345

fingerprints [117, 3].346

In recent years the descriptors describing the process of synthesis were efficiently used in materials informatics347

[15, 118, 10, 119]. Authors of this study have used this type of descriptors for modeling the functional character-348

istics of the materials for the electrochemical energy storage [120, 121, 122]. The important role of these descriptors349

is in the possibility to take into account the number of factors related to the synthesis that otherwise remain not de-350

scribed. The thoroughness of the introduced description for the compounds of different compositions largely defines351

the precision of the models, however, placing the question on the compromise between the complexity and the un-352

certainty in the spatial data description and the inherent capabilities of the machine learning methods. The need in353

using the special data imputation techniques can arise as a result of increased complexity in data description. In this354

study, several descriptors from this category were used. The heat treatment were described by means of four values355

referred to calcination and sintering temperature and time, respectively. These values were normalized to zero-to-one356

scale using the minimal and maximal temperature and time values taken from the collected experimental data. The357

temperature of decomposition of Li precursors was also normalized. The information on Li excess was introduced358

without the normalization.359

Particular attention in the analysis of novelty detection in design of synthesis in this study was given to the choice of C360

cation precursors. The thermodynamic data such as the heat of formation from the pure oxides as well as the results of361

drop solution calorimetry for simple oxides were involved as the descriptors of the studied systems. The enthalpy of362

formation of c-YSZ ∆H f ;ox was defined with respect to the oxides m-ZrO2 and C-type YO1:5 as equal to the weighted363

sum of the enthalpies of transition plus the enthalpy of mixing in the cubic solid solution [45]:364

∆H f ;ox (c-YSZ) = [(1–x) ∆Hm!c(ZrO2) + x∆HC!c]+ ∆Hmix365

For 8YSZ and 3YSZ this value was defined as ∆H f ;ox (8YSZ) = +0.78 kJ/mol and ∆H f ;ox (3YSZ) = +4.2 kJ/mol,366

respectively (∆Hm!c(ZrO2) = 6.1 kJ/mol). For other oxides, the data provided in a literature was taken. We also367

indicate here the enthalpy value for La2Zr2O7 ∆H f ;ox (La2Zr2O7) = -136.1 kJ/mol.368
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In a case of several cations accommodated at the C site of garnet structure this value was taken for the major one in369

the composition. We consider this decision as appeared the best found.370

The complete data description involves the following descriptors: compositional (nine elements in the string), atomic371

characteristics (Shannon ionic radii, atomic scattering factor, dielectric polarizability (according to Shannon), atomic372

weights), the synthesis details (Li excess, T of decomposition of Li precursors, enthalpies of formation from the373

pure oxides as well as the results of drop solution calorimetry for simple oxides) for C cation precursors, calcina-374

tion time and temperatures (two-stage heat treatment was assumed), sintering temperatures (two stage heat treatment375

was assumed) (overall 48 descriptors). The reduced data description involves the following descriptors: Li content,376

La content, Atomic scattering factor for cation C, Shannon ionic radius of Li substituent, polarizability of cation C,377

Shannon ionic radius of the substituent of the cation C, content of cation C, Calcination time (stage 1), content of378

Li substituent, content of substituent of cation C, sintering temperature (stage 1), calcination temperature (stage 1),379

calcination temperature (stage 2), T of decomposition of Li precursor, enthalpies of formation from the pure oxides380

as well as the results of drop solution calorimetry for simple oxides) for C cation precursors (overall 21 descriptors).381

The content of the pool was defined as a result of the analysis performed in our recent study [121].382

383

2.8. Computational procedures384

2.8.1. Validation and statistical parameters of models385

The overall performance of novelty/outlier detection of all types of outliers was characterized using neural net-
works with deep autoencoder architecture to describe data of varying complexity using ROC-AUC statistics, where
the Receiver Operating Characteristic (ROC) is determined as a result of binary classification, where the confusion
matrix of true positives, true negatives, false positive and false negatives is used to determine the true positive and
false positive rates, TPR and FPR, respectively. The ROC curve (TPR as a function of FPR values) was build, where
the decision on the success in prediction was taken as a result of the comparison of the class("outlier"/"normal") labels
for each individual sample pre-defined based on the analysis of the experimental data and taking into account the set
of descriptors (using the complete or reduced data description) with the labels obtained as a result of the estimation of
the energy value by DAGGM, with the threshold values defined as 0.195 and 0.435 for the complete and reduced data
description, respectively.
Predictive performance of regression models was evaluated using the ten-fold external cross-validation (10-CV) pro-
cedure where the entire dataset was divided into ten non-overlapping pairs of the training and test sets of compounds.
The models were obtained on the training set followed by their validation on the corresponding test set. The param-
eters optimization was performed using the tuning set (subset of the training set). The determination coefficient R2

and root mean square error (RMSE) were used to evaluate the ability of the models to quantitatively predict the target
property value. At the end of the procedure, all of the compounds in the initial data set are evaluated. The initial pool
of descriptors both for the complete and the reduced data description was reshuffled N times (10 time for DGP and
100 times for SVM and PBP) and the calculations were repeated. The resulting performance metrics coefficients were
averaged. The parameters for performance evaluation are evaluated as follows:

R2 = 1�
∑

N
i=1(Y(pred;i)�Y(exp;i))

2

∑
N
i=1(Y(exp;i)� Ȳexp)2

(12)

RMSE =

s
N

∑
i=1

1
N
(Y(pred;i)�Y(exp;i))

2 (13)

Here, Y
(exp;i) and Y

(pred;i) are, respectively, experimental and predicted values of the modeling property, N is the386

number of data points, Ȳexp is the average value of the experimental property.387

In this study we use the p-value as the criteria of the model performance. We suggest it as the additional criteria to388

characterize the possible effects related with the different complexity of the data description.389

The performed analysis on the continuity of the changes in the target characteristics as a function of the similarity390

defined by the descriptors was performed for both levels of complexity in data description using the special index391

of Structure-Activity Landscape Analysis (SALi) adopted from the practice used in the literature in the fields of392

cheminformatics and artificial intelligence in medicinal chemistry [123].393
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2.8.2. Configuration of the models394

The following parameters were set for Deep Autoencoding Gaussian Mixture Model (DAGMM): (i) for the395

complete data description defined by 45 descriptors in the model the number of epochs for training was limited by396

500, the patience is 5, learning rate milestone = 50, batch size = 32, latent dim = 1, number of Gaussians in mixture397

model = 4, lambda energy = 0.1, lambda covariance = 0.005, (ii) for the reduced data description defined by 15 de-398

scriptors in the model the number of epochs for training was limited by 500, the patience is 5, learning rate milestone399

= 50, batch size = 12, latent dim = 1, number of Gaussians in mixture model = 12, lambda energy = 0.1, lambda400

covariance = 0.005.401

Support Vector Machines performance was optimized in the grid search by varying three parameters as follows402

within the given range: C = 2�5, 2�3...215, ε = 0.0001, 0.001 . . . 10 and γ = 2�15, 2�13...23.403

Gaussian Processes were used with the following parameters: RBF kernel, back constraint = False, number of induc-404

ing points = 20, maximum number of iterations = 1200 and 1800 (for fixed and unfixed noise variance, respectively).405

406

3. Results and analysis407

3.1. Identification of different types of "outliers"/"novelty" in the synthesis in relation with the influence of the com-408

plexity of the data description409

The impact of the complexity of the data description is one of the key problems being discussed in the context of410

novelty/outlier detection methods. The known discussions addressed both the general methodological issues as well411

as the shortcomings of the certain types of the methods. Additionally, considering the complexity of data description412

one should address the practical aspects of using experimental data: extending the data description by introducing413

more factors, which affect the target functional characteristics of interest, increases the necessity to involve the special414

techniques for data imputation or to reduce the size of the experimental data since some parameters can be not de-415

scribed in the literature. The question may arise how to assess the performance of the data description sufficient for the416

formulated problem and if one should always expect the need to find the certain compromise between the uncertainty417

in the data description and the capacities of the methods used for solving the problem. In this study, we consider418

these questions for one practical example of the problem of identification of different types of "outliers"/"novelty" and419

relying on the results obtained for one particular data set describing the data with a specific pool of the descriptors.420

Therefore, the results are assumed to be not of general character in nature.421

In Figure 7 (left) the correlation matrix for two studied descriptors’ pools is shown: (i) data description used in our422

previous study of modeling the functional ion transport characteristics of the garnet-type solid electrolytes while aug-423

mented with one type of descriptors has been introduced in this study [121], (ii) the reduced data description using424

the descriptors selected from the complete set according to the analysis of the contribution based on the Shapley value425

analysis performed in our previous study (Figure 8), however, preserving the information on the synthesis conditions426

and augmented with one type of descriptors introduced in this study. This correlation matrix allows to visually as-427

sess the types of descriptors where the sharp discontinuity in its values are observed. This also allows to assess the428

collinearity of these introduced parameters. From the Figure 7 (left) one may infer on the presence of the outliers429

in the data with respect to the synthesis conditions. It also allows to pre-assess the diversity in the presented com-430

positions of the compounds and in the synthesis details/conditions. This correlation matrix is shown in line with the431

representation of the landscape of the changes in Li-ion conductivity value as a function of the similarity among the432

individual compounds based on Euclidean distance and defined by the chosen set of the descriptors. For this purpose,433

the corresponding SALi index relating the difference in the property value to the distance between the compounds is434

visualized. One can see that the reduced representation of the data is characterized by the increased number of the so435

called "cliffs" in the landscape. Our results obtained for the regression and, in some extent, for binary classification436

problems allows us to conclude on the demonstrated usefulness of such an analysis being performed to preserve the437

Occam’s razor principle. It is assumed that this illustrative representation by using the heatmap plots may be helpful438

to support the decision on the perspectives of the methods to reach the desired performance with the involved data.439

However, this is more reasoned to assume the analysis of the inherent structure of the data description as more univer-440

sal and feasible approach.441
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Below the data complexity is discussed from the point of view (i) of the relationship with the performance of the re-442

gression models as well as (i) of the dimensionality reduction problem supported by the the energy/distance evaluation443

provided as a landscape of the reduced data representation.444

Figure 7: Data description as a clustermap with information on the variation in the descriptors’ values for: (i) complete pool of parameters (ii)
reduced pool of descriptors preserving the synthesis-related parameters.
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Figure 8: Shapley value based model explainability. The average impact on the model prediction is accompanied by the distribution of Shapley
values for the considered data: (a) for σ tot conductivity values. Figure reprinted with permission from [121]. Copyright of Elsevier

3.2. Quantitative results of outliers identification using the Area Under Curve (AUC) values445

The overall performance of novelty/outlier detection of all types of outliers was characterized using neural net-446

works with deep autoencoder architecture combined with the Gaussian mixture model to describe the data of varying447

complexity. The analysis was performed for both types of the data description, complete and reduced, to compare the448

efficiency of the data description in line with the efficiency of the novelty detection approaches. The decision on the449

success of the chosen DAGGM approach in the detection of the novelty/anomalies in the experimental data is per-450

formed based on the obtained values of Receiver Operating Characteristic with the evaluated values of the Area Under451

Curve (AUC). Using ROC-AUC statistics provides with 0.71 – 0.72 of the Area-Under-Curve values. However, one452

should take into account that this insignificant difference can be explained by re-defined list of the compounds that453

are considered as the "novelty"/"outliers" as it was not correct to use the same characterization for the reduced data454

description. The unchanged classification to outliers/nominal data provides with significantly worse performance that455

may be considered as insufficient ( 0.58 in AUC values). Using the provided data description DAGGM demonstrated456

the performance that does not affected by the dimensionality of the data. From the analysis of the results one may457

conclude on the sensitivity of DAGGM to the local changes in the data description. Even the change in one position458

in the descriptor fingerprint (indeed, we are referring to the significant change in its value) impacts the value of the459

energy function of DAGGM. It is worth to note that all the “outlier” compounds related to those as the result of using460

the rare precursors in synthesis were successfully identified. The unexpected adverse observation is that the two sim-461

ilar compounds can be characterized by the extremely different values of energy and, therefore, related to different462

classes (the nominal data or the outliers) of data as a result of the chosen batch parameter of neural networks. One of463

the source of the errors are considering the compounds obtained by distinct from the solid state synthesis routes as the464

outliers. This includes the compounds synthesized by sol-gel, co-precipitation and Pechini methods. The compounds465

obtained by these methods differ at least in their morphology and for sol-gel synthesis one may infer on the general466

trend of forming LLZO at much faster rates. Thus in the most of cases the samples obtained by sol-gel techniques are467

identified correctly. Also the difference can be concerned to the different defect states as of the surface as well as of468

the bulk structure.469

The aim of this study was to demonstrate the perspectives of using the novelty detection techniques for identifying470

the unconventional synthesis routes. Using the available experimental data on ion transport characteristics in solid471

electrolytes of garnet-type we in addition have deliberately introduced the information on the compounds obtained472

by using unconventional for the most of data the cation C precursors, the available data also contained the examples473

that can be classified as those differ from the most of the data. For the former case, the chosen method of the novelty474

detection DAGGM successfully identified all the examples. The performance of the models can be improved by the475

enrichment of the target data especially for co-doped samples of different compositions.476
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Figure 9: Receiver Operating Curve in line with corresponding Area Under Curve value characterizing the performance of the obtained novelty
detection models describing the composition and the synthesis routes of the garnet-structured solid state electrolytes.

3.3. Relationship between the outliers detection and the performance of composition-synthesis conditions-structure-477

property relationship modeling using the coefficient of determination R2, root mean squared error RMSE and478

p-value statistics as the selected criteria479

Three machine learning methods for regression problem have been involved as those providing with minimum480

value of the average prediction error in our previous studies [121, 122]: Support Vector Machines (SVM), Deep481

Gaussian Processes (DGP) and Probabilistic Backpropagation Neural Networks (PBP). We assume the overall "nor-482

mality" of the data and thus the interval of the analysis is limited by 75 percents of the data to be considered as the483

nominal. The another assumption made in this study is in the a-priori better quality of the complete data description as484

the lower number of the "cliffs" were shown in Figure 7 well coincides with the predictive performance of models. The485

outlierness of the data was introduced by means of the ranging the data ascending according to the values of the energy486

function evaluated by DAGGM. Hereafter, the obtained results for the data of varying complexity are analyzed in two487

aspects: (i) the overall performance as a function of the ML method as well as the complexity and (ii) the character of488

behavior of the system. The statistical parameters (R2 and RMSE) of regression models for Li-ion total conductivity489

σ tot value are represented in Figure 10 with the corresponding standard errors as a function of the part of the data (Q)490

involved in modeling (the corresponding values are given in Table 1). In all the cases, the statistical parameters of the491

models for the complete data description and the entire data involved in modeling is higher with the best performance492

of the models obtained using PBP (R2 = 0.75�0.02 and RMSE = 0.379 � 0.015). For the data of reduced complexity493

the best performance was reached using DGP method and is characterized by R2 = 0.69�0.003 and RMSE = 0.417494

� 0.003. DGP has shown a smoother trend in the changes of the statistical characteristics of models depending on495

the data used in the simulation than its counterparts. However, the opposite trend is observed for the complete and496

the reduced data description: the predictive error decreases as a function of the data amount for the complete data497

description while the insignificant increase is observed for the reduced data. It is worth to note that the std. errors498

for the averaged results are of order of magnitude lower for the DGP. Both SVM and PBP methods have revealed the499

lower boundary that may be recommended for the separation the areas of lower density of the probability distribution.500

For the complete data description, this boundary corresponds to 85 percents of data considered as nominal/"normal"501

and thus used in modeling. For the reduced data description, PBP shows the enhanced predictive performance after502
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10 percents of data are removed, afterwards the predictive error changes insignificantly. This difference demonstrates503

the importance of the analysis of the landscape of the target characteristics as a function of the similarity between the504

compounds defined by the data description. SVM approach has demonstrated the similar trend for the data of both505

complete and reduced description and this trend corresponds well with that of PBP used for the data described by the506

complete set of the descriptors. The performance and the trend of the obtained results allows one to conclude on the507

tendency of the methods to preserve all the data as the normal to provede with reliable predictions. Due to introducing508

the feature weighting in the algorithm DGP is highly stable to the data variations and thus can be considered as a good509

choice for the data comprising the different types of the "outliers". Figure 11 shows the p-value evaluated using the510

experimental values and the results of the predictions of the regression models for total Li-ion conductivity σ tot value511

as a function of the part of the data involved in modeling. From this figure one can consider 85 percents of the data as512

a recommended threshold for studied experimental data and the machine learning methods used for modeling.513

Figure 10: Statistical parameters (R2 and RMSE) of regression models for Li-ion total conductivity σ tot value as a function of the part of the data
involved in modeling. The values were evaluated using 10-fold cross-validation for complete and reduced data description and three machine learn-
ing methods: Deep Gaussian Processes (DGP), Support Vector Machines (SVM) and Probabilistic Bayesian Backpropagation Neural Networks
(PBP) (here Q is the part of the data used in modeling).
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Figure 11: p-value evaluated using the experimental values and the results of the predictions of the regression models for total Li-ion conductivity
σ tot value as a function of the part of the data involved in modeling. The values were evaluated using 10-fold cross-validation for complete and
reduced data description and three machine learning methods: Deep Gaussian Processes (DGP), Support Vector Machines (SVM) and Probabilistic
Bayesian Backpropagation Neural Networks (PBP) (here Q is the part of the data used in modeling).

Table 1: Statistical parameters for modeling the Li-ion conductivity σ tot : coefficient of determination R2 and root mean square error (RMSE) with
averaged (the number of models are shown in the brackets) std. errors for ten-fold cross-validation for complete and reduced data description (here
Q is the part of the data used in modeling).

Q N d DGP Avg. R2

with std. error
and p-value

DGP Avg. RMSE
and std. error

SVM Avg. R2

with std. error
and p-value

SVM Avg. RMSE
and std. error

PBP Avg. R2

with std. error
and p-value

PBP Avg. RMSE
and std. error

1.0 172 48 0.70�0.003,
1.72e-45 (10)

0.413�0.003 (10) 0.68�0.03,
2.05e-44 (100)

0.425�0.020
(100)

0.75�0.02,
2.19e-46 (100)

0.379�0.015(100)

0.95 163 48 0.69�0.003,
2.85e-29 (10)

0.416�0.004 (10) 0.67�0.03,
9.39e-44 (100)

0.428�0.023
(100)

0.73�0.02,
1.62e-43 (100)

0.395�0.015(100)

0.9 154 48 0.70�0.003,
3.85e-41 (10)

0.415�0.003 (10) 0.68�0.02,
1.31e-40 (100)

0.421�0.015
(100)

0.73�0.02,
4.24e-40 (100)

0.398�0.017(100)

0.85 145 48 0.72�0.002,
1.19e-41 (10)

0.402�0.002 (10) 0.68�0.07,
3.34e-38 (100)

0.430�0.039
(100)

0.75�0.02,
2.43e-37 (100)

0.392�0.017(100)

0.8 136 48 0.72�0.002,
5.49e-39 (10)

0.399�0.004 (10) 0.60�0.15,
1.04e-29 (100)

0.516�0.071
(100)

0.69�0.03,
1.38e-31 (100)

0.433�0.020(100)

0.75 127 48 0.73�0.004,
1.04e-36 (10)

0.401�0.005 (10) 0.60�0.09,
4.32e-29 (100)

0.478�0.050
(100)

0.69�0.02,
1.13e-29 (100)

0.440�0.019(100)

1.0 172 21 0.69�0.003,
5.28e-45 (10)

0.417�0.003 (10) 0.65�0.03,
2.86e-41 (100)

0.444�0.017
(100)

0.67�0.03,
6.08e-35 (100)

0.446�0.021(100)

0.95 163 21 0.71�0.004,
3.57e-44 (10)

0.408�0.005 (10) 0.67�0.03,
3.16e-41 (100)

0.432�0.019
(100)

0.66�0.03,
2.12e-30 (100)

0.459�0.027(100)

0.9 154 21 0.70�0.003,
1.29e-40 (10)

0.406�0.003 (10) 0.66�0.03,
1.80e-36 (100)

0.435�0.016
(100)

0.64�0.04,
1.03e-28 (100)

0.462�0.030(100)

0.85 145 21 0.69�0.006,
1.28e-37 (10)

0.409�0.006 (10) 0.60�0.05,
8.29e-32 (100)

0.461�0.027
(100)

0.68�0.03,
2.82e-30 (100)

0.421�0.024(100)

0.8 136 21 0.69�0.003,
1.34e-35 (10)

0.414�0.002 (10) 0.59�0.04,
3.69e-29 (100)

0.468�0.022
(100)

0.70�0.03,
5.87e-30 (100)

0.414�0.020(100)

0.75 127 21 0.68�0.003,
4.44e-32 (10)

0.421�0.003 (10) 0.59�0.05,
3.11e-27 (100)

0.466�0.026
(100)

0.69�0.03,
1.72e-28 (100)

0.415�0.022(100)
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3.4. Distinguishing outliers by means of dimensionality reduction techniques using associated information of novelty514

detection515

In this study, the idea one of the first times mentioned in [110] is demonstrated in a way very close to the original516

formulation by means of using the dimensionality reduction technique, Stochastic Triplet Embedding. The dimension-517

ality reduction effectively condenses the multiparametric information distilled from the available experimental data518

to, in our case, the two-dimensional representation (more generally, to the dimensionality reduced comparing to the519

original one) to provide with the so called "mapping" to show the investigated compounds in a correspondence to their520

relative distribution according to the similarity defined by the descriptors (the set of the input parameters) introducing521

the landscape of the energy value as a criteria of the outlierness/normality of the data. This type of representation may522

be associated with the related additional information by using the color indication for the points corresponding to the523

individual compounds. This color indication of the points may relate to, for example, the functional characteristics524

under the investigation. In Figure 12 the distributed data are attributed with Li-ion conductivity σ tot values (in log of525

σ tot / S�cm�1) and activation energy values (Ea, eV). The background in Figure 12 may serve as the indication of the526

samples were synthesized using the non-conventional routes or, of distinct from the most represented compositions.527

The lighter background colour corresponds to the higher probability for the compound/compounds to be the outlier.528

One can see that the compounds with the lower conductivity values are grouped in the map in one constrained region,529

the larger area of the map is intended to be used for the screening of new compounds. Thus, the areas with already as-530

sessed values of energy function using novelty detection techniques are preferential. The enrichment of the analyzed531

data here is beneficial. The comparative analysis of these two maps can provide with the compounds, which have532

these two target characteristics in disagreement.533

534

Figure 12: t-STE visualization of the experimental data attributed with Li-ion transport characteristics and the energy values for the novelty
detection: each point on the map is the individual compound (the dimensionality reduction was performed from the dimensionality of 48 ).

4. Conclusions535

In this study, we propose using the novelty detection approaches aimed at identifying the novelty in the experi-536

mental data for garnet-structured solid electrolytes for the analysis of the non-standard synthesis details as the object537

demonstrating one of the practical applications of high demand. Particular attention in the analysis of novelty de-538

tection in the design of synthesis was given to the choice of C cation precursors. The thermodynamic data such as539

the heat of formation from the pure oxides as well as the results of drop solution calorimetry for simple oxides were540

involved as the descriptors of the studied systems. The overall performance of novelty/outlier detection of all types541
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of outliers was characterized for the data description of varying complexity using ROC-AUC statistics and is assessed542

as 0.71 – 0.72 of the Area-Under-Curve values. It was found that all the “outlier” compounds related to those as the543

result of using the rare precursors in synthesis were successfully identified. The complementary regression analysis544

was performed for studying the relationship between the data diversity and the complexity. The conclusions on the545

requirements for the initial characterization of the data to find the optimized degree of the complexity of the data546

description were made based on the results obtained.547

5. Acknowledgements548

Authors acknowledge Prof. Alexandre Varnek for fruitful discussions of our work. Matplotlib[124] and Seaborn[125]549

packages were used for the modeling and the presentation of the results. Free access to the "Database of properties of550

chemical elements"[116] is highly appreciated.551

6. Data availability552

The data were submitted as Supporting Information.553

References554

[1] K. Rajan (Ed.), Data-driven Discovery for Accelerated Experimentation and Application, Elsevier, 2013.555

[2] K. A. Brown, S. Brittman, N. Maccaferri, D. Jariwala, U. Celano, Machine learning in nanoscience: Big data at small scales, Nano Letters556

20 (1) (2020) 2–10, pMID: 31804080. arXiv:https://doi.org/10.1021/acs.nanolett.9b04090, doi:10.1021/acs.nanolett.557

9b04090.558

URL https://doi.org/10.1021/acs.nanolett.9b04090559

[3] C. Chen, Y. Zuo, W. Ye, X. Li, Z. Deng, S. P. Ong, A critical review of machine learning of energy materials, Advanced Energy Materials560

10 (8) (2020) 1903242. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/aenm.201903242, doi:https://doi.561

org/10.1002/aenm.201903242.562

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.201903242563

[4] T. Gao, W. Lu, Machine learning toward advanced energy storage devices and systems, iScience 24 (1). doi:10.1016/j.isci.2020.564

101936.565

URL https://doi.org/10.1016/j.isci.2020.101936566

[5] D. Lee, D. You, D. Lee, X. Li, S. Kim, Machine-learning-guided prediction models of critical temperature of cuprates, J. Phys. Chem. Lett.567

12 (26) (2021) 6211–6217. doi:10.1021/acs.jpclett.1c01442.568

URL https://doi.org/10.1021/acs.jpclett.1c01442569

[6] A. G. Patel, L. Johnson, R. Arroyave, J. L. Lutkenhaus, Design of multifunctional supercapacitor electrodes using an informatics approach,570

Mol. Syst. Des. Eng. 4 (2019) 654–663. doi:10.1039/C8ME00060C.571

URL http://dx.doi.org/10.1039/C8ME00060C572

[7] Z.-Y. Zhang, X. Liu, L. Shen, L. Chen, W.-H. Fang, Machine learning with multilevel descriptors for screening of inorganic nonlinear optical573

crystals, The Journal of Physical Chemistry C 125 (45) (2021) 25175–25188. arXiv:https://doi.org/10.1021/acs.jpcc.1c06049,574

doi:10.1021/acs.jpcc.1c06049.575

URL https://doi.org/10.1021/acs.jpcc.1c06049576

[8] N. Kireeva, V. P. Solov’ev, Machine learning analysis of microwave dielectric properties for seven structure types: The role of the processing577

and composition, Journal of Physics and Chemistry of Solids 156 (2021) 110178. doi:https://doi.org/10.1016/j.jpcs.2021.578

110178.579

URL https://www.sciencedirect.com/science/article/pii/S0022369721002444580

[9] H. Takeda, H. Fukuda, K. Nakano, S. Hashimura, N. Tanibata, M. Nakayama, Y. Ono, T. Natori, Process optimisation for nasicon-type solid581

electrolyte synthesis using a combination of experiments and bayesian optimisation, Mater. Adv. 3 (2022) 8141–8148. doi:10.1039/582

D2MA00731B.583

URL http://dx.doi.org/10.1039/D2MA00731B584

[10] S. R. Young, A. Maksov, M. Ziatdinov, Y. Cao, M. Burch, J. Balachandran, L. Li, S. Somnath, R. M. Patton, S. V. Kalinin, R. K. Vasudevan,585

Data mining for better material synthesis: The case of pulsed laser deposition of complex oxides, Journal of Applied Physics 123 (11) (2018)586

115303. arXiv:https://doi.org/10.1063/1.5009942, doi:10.1063/1.5009942.587

URL https://doi.org/10.1063/1.5009942588

[11] L. Velasco, J. S. Castillo, M. V. Kante, J. J. Olaya, P. Friederich, H. Hahn, Phase–property diagrams for multicomponent oxide systems589

toward materials libraries, Advanced Materials 33 (43) (2021) 2102301. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.590

1002/adma.202102301, doi:https://doi.org/10.1002/adma.202102301.591

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202102301592

23

https://doi.org/10.26434/chemrxiv-2024-cr0q8 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.1021/acs.nanolett.9b04090
http://arxiv.org/abs/https://doi.org/10.1021/acs.nanolett.9b04090
http://dx.doi.org/10.1021/acs.nanolett.9b04090
http://dx.doi.org/10.1021/acs.nanolett.9b04090
http://dx.doi.org/10.1021/acs.nanolett.9b04090
https://doi.org/10.1021/acs.nanolett.9b04090
https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.201903242
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/aenm.201903242
http://dx.doi.org/https://doi.org/10.1002/aenm.201903242
http://dx.doi.org/https://doi.org/10.1002/aenm.201903242
http://dx.doi.org/https://doi.org/10.1002/aenm.201903242
https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.201903242
https://doi.org/10.1016/j.isci.2020.101936
http://dx.doi.org/10.1016/j.isci.2020.101936
http://dx.doi.org/10.1016/j.isci.2020.101936
http://dx.doi.org/10.1016/j.isci.2020.101936
https://doi.org/10.1016/j.isci.2020.101936
https://doi.org/10.1021/acs.jpclett.1c01442
http://dx.doi.org/10.1021/acs.jpclett.1c01442
https://doi.org/10.1021/acs.jpclett.1c01442
http://dx.doi.org/10.1039/C8ME00060C
http://dx.doi.org/10.1039/C8ME00060C
http://dx.doi.org/10.1039/C8ME00060C
https://doi.org/10.1021/acs.jpcc.1c06049
https://doi.org/10.1021/acs.jpcc.1c06049
https://doi.org/10.1021/acs.jpcc.1c06049
http://arxiv.org/abs/https://doi.org/10.1021/acs.jpcc.1c06049
http://dx.doi.org/10.1021/acs.jpcc.1c06049
https://doi.org/10.1021/acs.jpcc.1c06049
https://www.sciencedirect.com/science/article/pii/S0022369721002444
https://www.sciencedirect.com/science/article/pii/S0022369721002444
https://www.sciencedirect.com/science/article/pii/S0022369721002444
http://dx.doi.org/https://doi.org/10.1016/j.jpcs.2021.110178
http://dx.doi.org/https://doi.org/10.1016/j.jpcs.2021.110178
http://dx.doi.org/https://doi.org/10.1016/j.jpcs.2021.110178
https://www.sciencedirect.com/science/article/pii/S0022369721002444
http://dx.doi.org/10.1039/D2MA00731B
http://dx.doi.org/10.1039/D2MA00731B
http://dx.doi.org/10.1039/D2MA00731B
http://dx.doi.org/10.1039/D2MA00731B
http://dx.doi.org/10.1039/D2MA00731B
http://dx.doi.org/10.1039/D2MA00731B
http://dx.doi.org/10.1039/D2MA00731B
https://doi.org/10.1063/1.5009942
http://arxiv.org/abs/https://doi.org/10.1063/1.5009942
http://dx.doi.org/10.1063/1.5009942
https://doi.org/10.1063/1.5009942
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202102301
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202102301
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202102301
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.202102301
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.202102301
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.202102301
http://dx.doi.org/https://doi.org/10.1002/adma.202102301
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202102301
https://doi.org/10.26434/chemrxiv-2024-cr0q8
https://creativecommons.org/licenses/by-nc-nd/4.0/


[12] D. P. Tabor, L. M. Roch, S. K. Saikin, C. Kreisbeck, D. Sheberla, J. H. Montoya, S. Dwaraknath, M. Aykol, C. Ortiz, H. Tribukait,593

C. Amador-Bedolla, C. J. Brabec, B. Maruyama, K. A. Persson, A. Aspuru-Guzik, Accelerating the discovery of materials for clean energy594

in the era of smart automation, Nature Reviews Materials 3 (5) (2018) 5–20. doi:10.1038/s41578-018-0005-z.595

URL https://doi.org/10.1038/s41578-018-0005-z596

[13] E. Borvick, A. Y. Anderson, H.-N. Barad, M. Priel, D. A. Keller, A. Ginsburg, K. J. Rietwyk, S. Meir, A. Zaban, Process-function data597

mining for the discovery of solid-state iron-oxide pv, ACS Combinatorial Science 19 (12) (2017) 755–762, pMID: 29120164. arXiv:598

https://doi.org/10.1021/acscombsci.7b00121, doi:10.1021/acscombsci.7b00121.599

URL https://doi.org/10.1021/acscombsci.7b00121600

[14] E. A. Olivetti, J. M. Cole, E. Kim, O. Kononova, G. Ceder, T. Y.-J. Han, A. M. Hiszpanski, Data-driven materials research enabled by natural601

language processing and information extraction, Applied Physics Reviews 7 (4) (2020) 041317. arXiv:https://doi.org/10.1063/5.602

0021106, doi:10.1063/5.0021106.603

URL https://doi.org/10.1063/5.0021106604

[15] E. Kim, K. Huang, S. Jegelka, E. Olivetti, Virtual screening of inorganic materials synthesis parameters with deep learning, npj Computa-605

tional Materials 3 (1) (2017) 53. doi:10.1038/s41524-017-0055-6.606

URL https://doi.org/10.1038/s41524-017-0055-6607

[16] E. Kim, Z. Jensen, A. van Grootel, K. Huang, M. Staib, S. Mysore, H.-S. Chang, E. Strubell, A. McCallum, S. Jegelka, E. Olivetti, Inorganic608

materials synthesis planning with literature-trained neural networks, Journal of Chemical Information and Modeling 60 (3) (2020) 1194–609

1201, pMID: 31909619. arXiv:https://doi.org/10.1021/acs.jcim.9b00995, doi:10.1021/acs.jcim.9b00995.610

URL https://doi.org/10.1021/acs.jcim.9b00995611

[17] C. Karpovich, Z. Jensen, V. Venugopal, E. Olivetti, Inorganic synthesis reaction condition prediction with generative machine learning612

(2021). arXiv:2112.09612.613

[18] S. A. Malik, R. E. A. Goodall, A. A. Lee, Predicting the outcomes of material syntheses with deep learning, Chemistry of Materials 33 (2)614

(2021) 616–624. arXiv:https://doi.org/10.1021/acs.chemmater.0c03885, doi:10.1021/acs.chemmater.0c03885.615

URL https://doi.org/10.1021/acs.chemmater.0c03885616

[19] O. Wodo, S. Broderick, K. Rajan, Microstructural informatics for accelerating the discovery of processing-microstructure-property617

relationships, MRS Bulletin 41 (8) (2016) 603–609. doi:10.1557/mrs.2016.161.618

URL https://www.cambridge.org/core/article/microstructural-informatics-for-accelerating-the-discovery-of-processing-microstructure-property-relationships/619

28DA8E333BF33856C9647FCD0F0983D1620

[20] L. Xu, N. Hoffman, Z. Wang, H. Xu, Harnessing structural stochasticity in the computational discovery and design of microstructures,621

Materials Design 223 (2022) 111223. doi:https://doi.org/10.1016/j.matdes.2022.111223.622

URL https://www.sciencedirect.com/science/article/pii/S0264127522008450623

[21] L. C. O. Tiong, J. Kim, S. S. Han, D. Kim, Identification of crystal symmetry from noisy diffraction patterns by a shape analysis and deep624

learning, npj Computational Materials 6 (1) (2020) 196. doi:10.1038/s41524-020-00466-5.625

URL https://doi.org/10.1038/s41524-020-00466-5626

[22] S. B. Torrisi, M. R. Carbone, B. A. Rohr, J. H. Montoya, Y. Ha, J. Yano, S. K. Suram, L. Hung, Random forest machine learning models627

for interpretable x-ray absorption near-edge structure spectrum-property relationships, npj Computational Materials 6 (1) (2020) 109. doi:628

10.1038/s41524-020-00376-6.629

URL https://doi.org/10.1038/s41524-020-00376-6630

[23] A. Zunger, Inverse design in search of materials with target functionalities, Nature Reviews Chemistry 2 (4) (2018) 0121. doi:10.1038/631

s41570-018-0121.632

URL https://doi.org/10.1038/s41570-018-0121633

[24] J. Wang, Y. Wang, Y. Chen, Inverse design of materials by machine learning, Materials 15 (5). doi:10.3390/ma15051811.634

URL https://www.mdpi.com/1996-1944/15/5/1811635

[25] J. B. Goodenough, P. Singh, Review—solid electrolytes in rechargeable electrochemical cells, Journal of The Electrochemical Society636

162 (14) (2015) A2387. doi:10.1149/2.0021514jes.637

URL https://dx.doi.org/10.1149/2.0021514jes638

[26] J. C. Bachman, S. Muy, A. Grimaud, H.-H. Chang, N. Pour, S. F. Lux, O. Paschos, F. Maglia, S. Lupart, P. Lamp, L. Giordano, Y. Shao-639

Horn, Inorganic solid-state electrolytes for lithium batteries: Mechanisms and properties governing ion conduction, Chemical Reviews640

116 (1) (2016) 140–162. doi:10.1021/acs.chemrev.5b00563.641

URL https://doi.org/10.1021/acs.chemrev.5b00563642

[27] B. V. Lotsch, J. Maier, Relevance of solid electrolytes for lithium-based batteries: A realistic view, Journal of Electroceramics 38 (2) (2017)643

128–141. doi:10.1007/s10832-017-0091-0.644

URL https://doi.org/10.1007/s10832-017-0091-0645

[28] Z. Zou, Y. Li, Z. Lu, D. Wang, Y. Cui, B. Guo, Y. Li, X. Liang, J. Feng, H. Li, C.-W. Nan, M. Armand, L. Chen, K. Xu, S. Shi, Mobile646

ions in composite solids, Chemical Reviews 120 (9) (2020) 4169–4221, pMID: 32267697. arXiv:https://doi.org/10.1021/acs.647

chemrev.9b00760, doi:10.1021/acs.chemrev.9b00760.648

URL https://doi.org/10.1021/acs.chemrev.9b00760649

[29] J. W. Fergus, Ceramic and polymeric solid electrolytes for lithium-ion batteries, Journal of Power Sources 195 (15) (2010) 4554–4569.650

doi:https://doi.org/10.1016/j.jpowsour.2010.01.076.651

URL https://www.sciencedirect.com/science/article/pii/S037877531000234X652

[30] J. F. M. Oudenhoven, L. Baggetto, P. H. L. Notten, All-solid-state lithium-ion microbatteries: A review of various three-dimensional653

concepts, Advanced Energy Materials 1 (1) (2011) 10–33. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/aenm.654

201000002, doi:https://doi.org/10.1002/aenm.201000002.655

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.201000002656

[31] T. S. Hernandez, M. Alshurafa, M. T. Strand, A. L. Yeang, M. G. Danner, C. J. Barile, M. D. McGehee, Electrolyte for improved durability657

24

https://doi.org/10.26434/chemrxiv-2024-cr0q8 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.1038/s41578-018-0005-z
https://doi.org/10.1038/s41578-018-0005-z
https://doi.org/10.1038/s41578-018-0005-z
http://dx.doi.org/10.1038/s41578-018-0005-z
https://doi.org/10.1038/s41578-018-0005-z
https://doi.org/10.1021/acscombsci.7b00121
https://doi.org/10.1021/acscombsci.7b00121
https://doi.org/10.1021/acscombsci.7b00121
http://arxiv.org/abs/https://doi.org/10.1021/acscombsci.7b00121
http://arxiv.org/abs/https://doi.org/10.1021/acscombsci.7b00121
http://arxiv.org/abs/https://doi.org/10.1021/acscombsci.7b00121
http://dx.doi.org/10.1021/acscombsci.7b00121
https://doi.org/10.1021/acscombsci.7b00121
https://doi.org/10.1063/5.0021106
https://doi.org/10.1063/5.0021106
https://doi.org/10.1063/5.0021106
http://arxiv.org/abs/https://doi.org/10.1063/5.0021106
http://arxiv.org/abs/https://doi.org/10.1063/5.0021106
http://arxiv.org/abs/https://doi.org/10.1063/5.0021106
http://dx.doi.org/10.1063/5.0021106
https://doi.org/10.1063/5.0021106
https://doi.org/10.1038/s41524-017-0055-6
http://dx.doi.org/10.1038/s41524-017-0055-6
https://doi.org/10.1038/s41524-017-0055-6
https://doi.org/10.1021/acs.jcim.9b00995
https://doi.org/10.1021/acs.jcim.9b00995
https://doi.org/10.1021/acs.jcim.9b00995
http://arxiv.org/abs/https://doi.org/10.1021/acs.jcim.9b00995
http://dx.doi.org/10.1021/acs.jcim.9b00995
https://doi.org/10.1021/acs.jcim.9b00995
http://arxiv.org/abs/2112.09612
https://doi.org/10.1021/acs.chemmater.0c03885
http://arxiv.org/abs/https://doi.org/10.1021/acs.chemmater.0c03885
http://dx.doi.org/10.1021/acs.chemmater.0c03885
https://doi.org/10.1021/acs.chemmater.0c03885
https://www.cambridge.org/core/article/microstructural-informatics-for-accelerating-the-discovery-of-processing-microstructure-property-relationships/28DA8E333BF33856C9647FCD0F0983D1
https://www.cambridge.org/core/article/microstructural-informatics-for-accelerating-the-discovery-of-processing-microstructure-property-relationships/28DA8E333BF33856C9647FCD0F0983D1
https://www.cambridge.org/core/article/microstructural-informatics-for-accelerating-the-discovery-of-processing-microstructure-property-relationships/28DA8E333BF33856C9647FCD0F0983D1
http://dx.doi.org/10.1557/mrs.2016.161
https://www.cambridge.org/core/article/microstructural-informatics-for-accelerating-the-discovery-of-processing-microstructure-property-relationships/28DA8E333BF33856C9647FCD0F0983D1
https://www.cambridge.org/core/article/microstructural-informatics-for-accelerating-the-discovery-of-processing-microstructure-property-relationships/28DA8E333BF33856C9647FCD0F0983D1
https://www.cambridge.org/core/article/microstructural-informatics-for-accelerating-the-discovery-of-processing-microstructure-property-relationships/28DA8E333BF33856C9647FCD0F0983D1
https://www.sciencedirect.com/science/article/pii/S0264127522008450
http://dx.doi.org/https://doi.org/10.1016/j.matdes.2022.111223
https://www.sciencedirect.com/science/article/pii/S0264127522008450
https://doi.org/10.1038/s41524-020-00466-5
https://doi.org/10.1038/s41524-020-00466-5
https://doi.org/10.1038/s41524-020-00466-5
http://dx.doi.org/10.1038/s41524-020-00466-5
https://doi.org/10.1038/s41524-020-00466-5
https://doi.org/10.1038/s41524-020-00376-6
https://doi.org/10.1038/s41524-020-00376-6
https://doi.org/10.1038/s41524-020-00376-6
http://dx.doi.org/10.1038/s41524-020-00376-6
http://dx.doi.org/10.1038/s41524-020-00376-6
http://dx.doi.org/10.1038/s41524-020-00376-6
https://doi.org/10.1038/s41524-020-00376-6
https://doi.org/10.1038/s41570-018-0121
http://dx.doi.org/10.1038/s41570-018-0121
http://dx.doi.org/10.1038/s41570-018-0121
http://dx.doi.org/10.1038/s41570-018-0121
https://doi.org/10.1038/s41570-018-0121
https://www.mdpi.com/1996-1944/15/5/1811
http://dx.doi.org/10.3390/ma15051811
https://www.mdpi.com/1996-1944/15/5/1811
https://dx.doi.org/10.1149/2.0021514jes
http://dx.doi.org/10.1149/2.0021514jes
https://dx.doi.org/10.1149/2.0021514jes
https://doi.org/10.1021/acs.chemrev.5b00563
http://dx.doi.org/10.1021/acs.chemrev.5b00563
https://doi.org/10.1021/acs.chemrev.5b00563
https://doi.org/10.1007/s10832-017-0091-0
http://dx.doi.org/10.1007/s10832-017-0091-0
https://doi.org/10.1007/s10832-017-0091-0
https://doi.org/10.1021/acs.chemrev.9b00760
https://doi.org/10.1021/acs.chemrev.9b00760
https://doi.org/10.1021/acs.chemrev.9b00760
http://arxiv.org/abs/https://doi.org/10.1021/acs.chemrev.9b00760
http://arxiv.org/abs/https://doi.org/10.1021/acs.chemrev.9b00760
http://arxiv.org/abs/https://doi.org/10.1021/acs.chemrev.9b00760
http://dx.doi.org/10.1021/acs.chemrev.9b00760
https://doi.org/10.1021/acs.chemrev.9b00760
https://www.sciencedirect.com/science/article/pii/S037877531000234X
http://dx.doi.org/https://doi.org/10.1016/j.jpowsour.2010.01.076
https://www.sciencedirect.com/science/article/pii/S037877531000234X
https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.201000002
https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.201000002
https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.201000002
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/aenm.201000002
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/aenm.201000002
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/aenm.201000002
http://dx.doi.org/https://doi.org/10.1002/aenm.201000002
https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.201000002
https://www.sciencedirect.com/science/article/pii/S2542435120301914
https://www.sciencedirect.com/science/article/pii/S2542435120301914
https://www.sciencedirect.com/science/article/pii/S2542435120301914
https://doi.org/10.26434/chemrxiv-2024-cr0q8
https://creativecommons.org/licenses/by-nc-nd/4.0/


of dynamic windows based on reversible metal electrodeposition, Joule 4 (7) (2020) 1501–1513. doi:https://doi.org/10.1016/j.658

joule.2020.05.008.659

URL https://www.sciencedirect.com/science/article/pii/S2542435120301914660

[32] I. Peters, C. Breyer, S. Jaffer, S. Kurtz, T. Reindl, R. Sinton, M. Vetter, The role of batteries in meeting the pv terawatt challenge, Joule 5 (6)661

(2021) 1353–1370. doi:https://doi.org/10.1016/j.joule.2021.03.023.662

URL https://www.sciencedirect.com/science/article/pii/S254243512100146X663

[33] K. J. Huang, G. Ceder, E. A. Olivetti, Manufacturing scalability implications of materials choice in inorganic solid-state batteries, Joule664

5 (3) (2021) 564–580. doi:https://doi.org/10.1016/j.joule.2020.12.001.665

URL https://www.sciencedirect.com/science/article/pii/S2542435120305699666

[34] R. Murugan, V. Thangadurai, W. Weppner, Fast lithium ion conduction in garnet-type li7la3zr2o12, Angewandte Chemie International Edi-667

tion 46 (41) (2007) 7778–7781. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.200701144, doi:https:668

//doi.org/10.1002/anie.200701144.669

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.200701144670

[35] R. Murugan, V. Thangadurai, W. Weppner, Effect of lithium ion content on the lithium ion conductivity of the garnet-like structure671

li5+xbala2ta2o11.5+0.5x (x = 0–2), Applied Physics A 91 (4) (2008) 615–620. doi:10.1007/s00339-008-4494-2.672

URL https://doi.org/10.1007/s00339-008-4494-2673

[36] V. Thangadurai, H. Kaack, W. J. F. Weppner, Novel fast lithium ion conduction in garnet-type li5la3m2o12 (m = nb, ta), Journal of the674

American Ceramic Society 86 (3) (2003) 437–440. arXiv:https://ceramics.onlinelibrary.wiley.com/doi/pdf/10.1111/j.675

1151-2916.2003.tb03318.x, doi:https://doi.org/10.1111/j.1151-2916.2003.tb03318.x.676

URL https://ceramics.onlinelibrary.wiley.com/doi/abs/10.1111/j.1151-2916.2003.tb03318.x677

[37] V. Thangadurai, D. Pinzaru, S. Narayanan, A. K. Baral, Fast solid-state li ion conducting garnet-type structure metal oxides for energy678

storage, The Journal of Physical Chemistry Letters 6 (2) (2015) 292–299. doi:10.1021/jz501828v.679

URL https://doi.org/10.1021/jz501828v680

[38] A. Miura, C. J. Bartel, Y. Goto, Y. Mizuguchi, C. Moriyoshi, Y. Kuroiwa, Y. Wang, T. Yaguchi, M. Shirai, M. Nagao, N. C. Rosero-681

Navarro, K. Tadanaga, G. Ceder, W. Sun, Observing and modeling the sequential pairwise reactions that drive solid-state ceramic synthesis,682

Advanced Materials 33 (24) (2021) 2100312. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.202100312,683

doi:https://doi.org/10.1002/adma.202100312.684

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202100312685

[39] J. R. Chamorro, T. M. McQueen, Progress toward solid state synthesis by design, Accounts of Chemical Research 51 (11) (2018) 2918–686

2925. arXiv:https://doi.org/10.1021/acs.accounts.8b00382, doi:10.1021/acs.accounts.8b00382.687

URL https://doi.org/10.1021/acs.accounts.8b00382688

[40] Z. Cai, Y.-Q. Zhang, Z. Lun, B. Ouyang, L. C. Gallington, Y. Sun, H.-M. Hau, Y. Chen, M. C. Scott, G. Ceder, Thermodynamically driven689

synthetic optimization for cation-disordered rock salt cathodes, Advanced Energy Materials 12 (21) (2022) 2103923. arXiv:https:690

//onlinelibrary.wiley.com/doi/pdf/10.1002/aenm.202103923, doi:https://doi.org/10.1002/aenm.202103923.691

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.202103923692

[41] H. C. Kolb, M. G. Finn, K. B. Sharpless, Click chemistry: Diverse chemical function from a few good reactions, Angewandte Chemie693

International Edition.694

[42] J. Maier, Physical Chemistry of Ionic Materials: Ions and Electrons in Solids, 1st Edition, Wiley, 2004.695

[43] N. Hamao, K. Hamamoto, N. Taguchi, S. Tanaka, J. Akimoto, Synthesis and crystal structure of fluorite-type la2.4zr1.2ta0.4o7: A precursor696

oxide for low temperature formation of garnet-type li6.5la3zr1.5ta0.5o12, Solid State Ionics 357 (2020) 115460. doi:https://doi.org/697

10.1016/j.ssi.2020.115460.698

URL https://www.sciencedirect.com/science/article/pii/S0167273820305142699

[44] T. Gensch, G. dos Passos Gomes, P. Friederich, E. Peters, T. Gaudin, R. Pollice, K. Jorner, A. Nigam, M. Lindner-D’Addario, M. S. Sigman,700

A. Aspuru-Guzik, A comprehensive discovery platform for organophosphorus ligands for catalysis, Journal of the American Chemical Soci-701

ety 144 (3) (2022) 1205–1217, pMID: 35020383. arXiv:https://doi.org/10.1021/jacs.1c09718, doi:10.1021/jacs.1c09718.702

URL https://doi.org/10.1021/jacs.1c09718703

[45] T. A. Lee, A. Navrotsky, I. Molodetsky, Enthalpy of formation of cubic yttria-stabilized zirconia, Journal of Materials Research 18 (4) (2003)704

908–918. doi:10.1557/JMR.2003.0125.705

URL https://doi.org/10.1557/JMR.2003.0125706

[46] A. Bogicevic, C. Wolverton, G. M. Crosbie, E. B. Stechel, Defect ordering in aliovalently doped cubic zirconia from first principles, PRB707

64 (1) (2001) 014106. doi:10.1103/PhysRevB.64.014106.708

URL https://link.aps.org/doi/10.1103/PhysRevB.64.014106709

[47] J. Maier, Ionic conduction in space charge regions, Progress in Solid State Chemistry 23 (3) (1995) 171–263. doi:https://doi.org/710

10.1016/0079-6786(95)00004-E.711

URL https://www.sciencedirect.com/science/article/pii/007967869500004E712

[48] R. H. Castro, Interfacial energies in nanocrystalline complex oxides, Current Opinion in Solid State and Materials Science 25 (3) (2021)713

100911. doi:https://doi.org/10.1016/j.cossms.2021.100911.714

URL https://www.sciencedirect.com/science/article/pii/S1359028621000140715

[49] S. V. Ushakov, A. Navrotsky, Direct measurements of water adsorption enthalpy on hafnia and zirconia, Appl. Phys. Lett. 87 (16) (2005)716

164103. doi:10.1063/1.2108113.717

URL https://doi.org/10.1063/1.2108113718

[50] B. T. B. J. Schrier J, Norquist A, In pursuit of the exceptional: Research directions for machine learning in chemical and materials science,719

Chemrxiv.720

[51] Z. Zhang, J. Brgoch, Treating superhard materials as anomalies, Journal of the American Chemical Society 144 (39) (2022) 18075–18080,721

pMID: 36136594. arXiv:https://doi.org/10.1021/jacs.2c07957, doi:10.1021/jacs.2c07957.722

25

https://doi.org/10.26434/chemrxiv-2024-cr0q8 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://www.sciencedirect.com/science/article/pii/S2542435120301914
https://www.sciencedirect.com/science/article/pii/S2542435120301914
http://dx.doi.org/https://doi.org/10.1016/j.joule.2020.05.008
http://dx.doi.org/https://doi.org/10.1016/j.joule.2020.05.008
http://dx.doi.org/https://doi.org/10.1016/j.joule.2020.05.008
https://www.sciencedirect.com/science/article/pii/S2542435120301914
https://www.sciencedirect.com/science/article/pii/S254243512100146X
http://dx.doi.org/https://doi.org/10.1016/j.joule.2021.03.023
https://www.sciencedirect.com/science/article/pii/S254243512100146X
https://www.sciencedirect.com/science/article/pii/S2542435120305699
http://dx.doi.org/https://doi.org/10.1016/j.joule.2020.12.001
https://www.sciencedirect.com/science/article/pii/S2542435120305699
https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.200701144
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.200701144
http://dx.doi.org/https://doi.org/10.1002/anie.200701144
http://dx.doi.org/https://doi.org/10.1002/anie.200701144
http://dx.doi.org/https://doi.org/10.1002/anie.200701144
https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.200701144
https://doi.org/10.1007/s00339-008-4494-2
https://doi.org/10.1007/s00339-008-4494-2
https://doi.org/10.1007/s00339-008-4494-2
http://dx.doi.org/10.1007/s00339-008-4494-2
https://doi.org/10.1007/s00339-008-4494-2
https://ceramics.onlinelibrary.wiley.com/doi/abs/10.1111/j.1151-2916.2003.tb03318.x
http://arxiv.org/abs/https://ceramics.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1151-2916.2003.tb03318.x
http://arxiv.org/abs/https://ceramics.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1151-2916.2003.tb03318.x
http://arxiv.org/abs/https://ceramics.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1151-2916.2003.tb03318.x
http://dx.doi.org/https://doi.org/10.1111/j.1151-2916.2003.tb03318.x
https://ceramics.onlinelibrary.wiley.com/doi/abs/10.1111/j.1151-2916.2003.tb03318.x
https://doi.org/10.1021/jz501828v
https://doi.org/10.1021/jz501828v
https://doi.org/10.1021/jz501828v
http://dx.doi.org/10.1021/jz501828v
https://doi.org/10.1021/jz501828v
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202100312
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.202100312
http://dx.doi.org/https://doi.org/10.1002/adma.202100312
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202100312
https://doi.org/10.1021/acs.accounts.8b00382
http://arxiv.org/abs/https://doi.org/10.1021/acs.accounts.8b00382
http://dx.doi.org/10.1021/acs.accounts.8b00382
https://doi.org/10.1021/acs.accounts.8b00382
https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.202103923
https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.202103923
https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.202103923
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/aenm.202103923
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/aenm.202103923
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/aenm.202103923
http://dx.doi.org/https://doi.org/10.1002/aenm.202103923
https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.202103923
https://www.sciencedirect.com/science/article/pii/S0167273820305142
https://www.sciencedirect.com/science/article/pii/S0167273820305142
https://www.sciencedirect.com/science/article/pii/S0167273820305142
http://dx.doi.org/https://doi.org/10.1016/j.ssi.2020.115460
http://dx.doi.org/https://doi.org/10.1016/j.ssi.2020.115460
http://dx.doi.org/https://doi.org/10.1016/j.ssi.2020.115460
https://www.sciencedirect.com/science/article/pii/S0167273820305142
https://doi.org/10.1021/jacs.1c09718
http://arxiv.org/abs/https://doi.org/10.1021/jacs.1c09718
http://dx.doi.org/10.1021/jacs.1c09718
https://doi.org/10.1021/jacs.1c09718
https://doi.org/10.1557/JMR.2003.0125
http://dx.doi.org/10.1557/JMR.2003.0125
https://doi.org/10.1557/JMR.2003.0125
https://link.aps.org/doi/10.1103/PhysRevB.64.014106
http://dx.doi.org/10.1103/PhysRevB.64.014106
https://link.aps.org/doi/10.1103/PhysRevB.64.014106
https://www.sciencedirect.com/science/article/pii/007967869500004E
http://dx.doi.org/https://doi.org/10.1016/0079-6786(95)00004-E
http://dx.doi.org/https://doi.org/10.1016/0079-6786(95)00004-E
http://dx.doi.org/https://doi.org/10.1016/0079-6786(95)00004-E
https://www.sciencedirect.com/science/article/pii/007967869500004E
https://www.sciencedirect.com/science/article/pii/S1359028621000140
http://dx.doi.org/https://doi.org/10.1016/j.cossms.2021.100911
https://www.sciencedirect.com/science/article/pii/S1359028621000140
https://doi.org/10.1063/1.2108113
http://dx.doi.org/10.1063/1.2108113
https://doi.org/10.1063/1.2108113
https://doi.org/10.1021/jacs.2c07957
http://arxiv.org/abs/https://doi.org/10.1021/jacs.2c07957
http://dx.doi.org/10.1021/jacs.2c07957
https://doi.org/10.26434/chemrxiv-2024-cr0q8
https://creativecommons.org/licenses/by-nc-nd/4.0/


URL https://doi.org/10.1021/jacs.2c07957723

[52] R. Wagner, G. J. Redhammer, D. Rettenwander, A. Senyshyn, W. Schmidt, M. Wilkening, G. Amthauer, Crystal structure of garnet-724

related li-ion conductor li7-3xgaxla3zr2o12: Fast li-ion conduction caused by a different cubic modification?, Chemistry of Materials725

28 (6) (2016) 1861–1871, pMID: 27019548. arXiv:https://doi.org/10.1021/acs.chemmater.6b00038, doi:10.1021/acs.726

chemmater.6b00038.727

URL https://doi.org/10.1021/acs.chemmater.6b00038728

[53] D. Rettenwander, J. Langer, W. Schmidt, C. Arrer, K. J. Harris, V. Terskikh, G. R. Goward, M. Wilkening, G. Amthauer, Site occupation729

of ga and al in stabilized cubic li7–3(x+y)gaxalyla3zr2o12 garnets as deduced from 27al and 71ga mas nmr at ultrahigh magnetic fields,730

Chemistry of Materials 27 (8) (2015) 3135–3142. arXiv:https://doi.org/10.1021/acs.chemmater.5b00684, doi:10.1021/731

acs.chemmater.5b00684.732

URL https://doi.org/10.1021/acs.chemmater.5b00684733

[54] D. Rettenwander, G. Redhammer, F. Preishuber-Pflügl, L. Cheng, L. Miara, R. Wagner, A. Welzl, E. Suard, M. M. Doeff, M. Wilkening,734

J. Fleig, G. Amthauer, Structural and electrochemical consequences of al and ga cosubstitution in li7la3zr2o12 solid electrolytes, Chemistry735

of Materials 28 (7) (2016) 2384–2392, pMID: 27110064. arXiv:https://doi.org/10.1021/acs.chemmater.6b00579, doi:10.736

1021/acs.chemmater.6b00579.737

URL https://doi.org/10.1021/acs.chemmater.6b00579738

[55] R. Wagner, G. J. Redhammer, D. Rettenwander, G. Tippelt, A. Welzl, S. Taibl, J. Fleig, A. Franz, W. Lottermoser, G. Amthauer, Fast li-ion-739

conducting garnet-related li7-3xfexla3zr2o12 with uncommon i43d structure, Chemistry of Materials 28 (16) (2016) 5943–5951, pMID:740

27570369. arXiv:https://doi.org/10.1021/acs.chemmater.6b02516, doi:10.1021/acs.chemmater.6b02516.741

URL https://doi.org/10.1021/acs.chemmater.6b02516742

[56] N. Bernstein, M. D. Johannes, K. Hoang, Origin of the structural phase transition in li7la3zr2o12, Phys. Rev. Lett. 109 (2012) 205702.743

doi:10.1103/PhysRevLett.109.205702.744

URL https://link.aps.org/doi/10.1103/PhysRevLett.109.205702745

[57] S. Ohno, T. Bernges, J. Buchheim, M. Duchardt, A.-K. Hatz, M. Kraft, H. Kwak, A. Santhosha, Z. Liu, N. Minafra, F. Tsuji,746

A. Sakuda, R. Schlem, S. Xiong, Z. Zhenggang, P. Adelhelm, H. Chen, A. Hayashi, Y. S. Jung, W. Zeier, How certain are the re-747

ported ionic conductivities of thiophosphate-based solid electrolytes? an interlaboratory study, ACS Energy Letters 5 (2020) 910–915.748

doi:10.1021/acsenergylett.9b02764.749

[58] R. Inada, K. Kusakabe, T. Tanaka, S. kudo, Y. Sakurai, Synthesis and properties of al-free li7 - xla3zr 2 - xtaxo12 garnet related oxides,750

Solid State Ionics 262 (2014) 568–572. doi:10.1016/j.ssi.2013.09.008.751

[59] S. M. Alizadeh, I. Moghim, M. Golmohammad, Synthesis and characterization of highly conductive ga/y co-doped llzo by facile combustion752

sol-gel method, Solid State Ionics 397 (2023) 116260. doi:https://doi.org/10.1016/j.ssi.2023.116260.753

URL https://www.sciencedirect.com/science/article/pii/S0167273823001182754

[60] J. Kosir, S. Mousavihashemi, B. P. Wilson, E.-L. Rautama, T. Kallio, Comparative analysis on the thermal, structural, and electrochemical755

properties of al-doped li7la3zr2o12 solid electrolytes through solid state and sol-gel routes, Solid State Ionics 380 (2022) 115943. doi:756

https://doi.org/10.1016/j.ssi.2022.115943.757

URL https://www.sciencedirect.com/science/article/pii/S0167273822000923758

[61] O. Brylev, O. Shlyakhtin, T. Kulova, A. Skundin, Y. Tretyakov, Influence of chemical prehistory on the phase formation and electrochem-759

ical performance of licoo2 materials, Solid State Ionics 156 (3) (2003) 291–299. doi:https://doi.org/10.1016/S0167-2738(02)760

00686-0.761

URL https://www.sciencedirect.com/science/article/pii/S0167273802006860762

[62] C. Korte, B. Franz, Reaction kinetics in the system y2o3/al2o3 – use of an external electric field to control the product phase formation in a763

system forming multiple product phases, Solid State Ionics 383 (2022) 115978. doi:https://doi.org/10.1016/j.ssi.2022.115978.764

URL https://www.sciencedirect.com/science/article/pii/S0167273822001278765

[63] A. Sazvar, H. Sarpoolaky, M. Golmohammad, The effects of electric field on physical properties of llzo made by flash sintering method,766

Solid State Ionics 386 (2022) 116054. doi:https://doi.org/10.1016/j.ssi.2022.116054.767

URL https://www.sciencedirect.com/science/article/pii/S016727382200203X768

[64] A. M. Belenguer, A. A. L. Michalchuk, G. I. Lampronti, J. K. M. Sanders, Understanding the unexpected effect of frequency on the kinetics769

of a covalent reaction under ball-milling conditions., Beilstein journal of organic chemistry 15 (2019) 1226–1235.770

[65] T. Scheiber, M. Gombotz, K. Hogrefe, H. M. R. Wilkening, Fluoride ion dynamics in nanocrystalline a-pbf2: On the tremendous impact of771

structural disorder on f- anion hopping in poor ion conductors, Solid State Ionics 387 (2022) 116077. doi:https://doi.org/10.1016/772

j.ssi.2022.116077.773

URL https://www.sciencedirect.com/science/article/pii/S0167273822002260774

[66] A. A. Shindrov, Increasing sinterability and ionic conductivity of na3zr2si2po12 ceramics by high energy ball-milling, Solid State Ionics775

391 (2023) 116139. doi:https://doi.org/10.1016/j.ssi.2022.116139.776

URL https://www.sciencedirect.com/science/article/pii/S0167273822002880777

[67] J. Maier, Pushing nanoionics to the limits: Charge carrier chemistry in extremely small systems, Chemistry of Materials 26 (1) (2014)778

348–360. arXiv:https://doi.org/10.1021/cm4021657, doi:10.1021/cm4021657.779

URL https://doi.org/10.1021/cm4021657780

[68] Y. Zhu, M. Chon, C. V. Thompson, J. L. M. Rupp, Time-temperature-transformation (ttt) diagram of battery-grade li-garnet electrolytes781

for low-temperature sustainable synthesis, Angewandte Chemie International Edition 62 (45) (2023) e202304581. arXiv:https:782

//onlinelibrary.wiley.com/doi/pdf/10.1002/anie.202304581, doi:https://doi.org/10.1002/anie.202304581.783

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202304581784

[69] T. Kimura, Y. Yamada, K. Yamamoto, T. Matsuda, H. Nomura, T. Hirayama, Rapid low-temperature synthesis of tetragonal single-phase785

li7la3zr2o12, Journal of the American Ceramic Society 100 (4) (2017) 1313–1319. arXiv:https://ceramics.onlinelibrary.wiley.786

com/doi/pdf/10.1111/jace.14633, doi:https://doi.org/10.1111/jace.14633.787

26

https://doi.org/10.26434/chemrxiv-2024-cr0q8 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.1021/jacs.2c07957
https://doi.org/10.1021/acs.chemmater.6b00038
https://doi.org/10.1021/acs.chemmater.6b00038
https://doi.org/10.1021/acs.chemmater.6b00038
http://arxiv.org/abs/https://doi.org/10.1021/acs.chemmater.6b00038
http://dx.doi.org/10.1021/acs.chemmater.6b00038
http://dx.doi.org/10.1021/acs.chemmater.6b00038
http://dx.doi.org/10.1021/acs.chemmater.6b00038
https://doi.org/10.1021/acs.chemmater.6b00038
https://doi.org/10.1021/acs.chemmater.5b00684
https://doi.org/10.1021/acs.chemmater.5b00684
https://doi.org/10.1021/acs.chemmater.5b00684
http://arxiv.org/abs/https://doi.org/10.1021/acs.chemmater.5b00684
http://dx.doi.org/10.1021/acs.chemmater.5b00684
http://dx.doi.org/10.1021/acs.chemmater.5b00684
http://dx.doi.org/10.1021/acs.chemmater.5b00684
https://doi.org/10.1021/acs.chemmater.5b00684
https://doi.org/10.1021/acs.chemmater.6b00579
http://arxiv.org/abs/https://doi.org/10.1021/acs.chemmater.6b00579
http://dx.doi.org/10.1021/acs.chemmater.6b00579
http://dx.doi.org/10.1021/acs.chemmater.6b00579
http://dx.doi.org/10.1021/acs.chemmater.6b00579
https://doi.org/10.1021/acs.chemmater.6b00579
https://doi.org/10.1021/acs.chemmater.6b02516
https://doi.org/10.1021/acs.chemmater.6b02516
https://doi.org/10.1021/acs.chemmater.6b02516
http://arxiv.org/abs/https://doi.org/10.1021/acs.chemmater.6b02516
http://dx.doi.org/10.1021/acs.chemmater.6b02516
https://doi.org/10.1021/acs.chemmater.6b02516
https://link.aps.org/doi/10.1103/PhysRevLett.109.205702
http://dx.doi.org/10.1103/PhysRevLett.109.205702
https://link.aps.org/doi/10.1103/PhysRevLett.109.205702
http://dx.doi.org/10.1021/acsenergylett.9b02764
http://dx.doi.org/10.1016/j.ssi.2013.09.008
https://www.sciencedirect.com/science/article/pii/S0167273823001182
https://www.sciencedirect.com/science/article/pii/S0167273823001182
https://www.sciencedirect.com/science/article/pii/S0167273823001182
http://dx.doi.org/https://doi.org/10.1016/j.ssi.2023.116260
https://www.sciencedirect.com/science/article/pii/S0167273823001182
https://www.sciencedirect.com/science/article/pii/S0167273822000923
https://www.sciencedirect.com/science/article/pii/S0167273822000923
https://www.sciencedirect.com/science/article/pii/S0167273822000923
http://dx.doi.org/https://doi.org/10.1016/j.ssi.2022.115943
http://dx.doi.org/https://doi.org/10.1016/j.ssi.2022.115943
http://dx.doi.org/https://doi.org/10.1016/j.ssi.2022.115943
https://www.sciencedirect.com/science/article/pii/S0167273822000923
https://www.sciencedirect.com/science/article/pii/S0167273802006860
https://www.sciencedirect.com/science/article/pii/S0167273802006860
https://www.sciencedirect.com/science/article/pii/S0167273802006860
http://dx.doi.org/https://doi.org/10.1016/S0167-2738(02)00686-0
http://dx.doi.org/https://doi.org/10.1016/S0167-2738(02)00686-0
http://dx.doi.org/https://doi.org/10.1016/S0167-2738(02)00686-0
https://www.sciencedirect.com/science/article/pii/S0167273802006860
https://www.sciencedirect.com/science/article/pii/S0167273822001278
https://www.sciencedirect.com/science/article/pii/S0167273822001278
https://www.sciencedirect.com/science/article/pii/S0167273822001278
http://dx.doi.org/https://doi.org/10.1016/j.ssi.2022.115978
https://www.sciencedirect.com/science/article/pii/S0167273822001278
https://www.sciencedirect.com/science/article/pii/S016727382200203X
http://dx.doi.org/https://doi.org/10.1016/j.ssi.2022.116054
https://www.sciencedirect.com/science/article/pii/S016727382200203X
https://www.sciencedirect.com/science/article/pii/S0167273822002260
https://www.sciencedirect.com/science/article/pii/S0167273822002260
https://www.sciencedirect.com/science/article/pii/S0167273822002260
http://dx.doi.org/https://doi.org/10.1016/j.ssi.2022.116077
http://dx.doi.org/https://doi.org/10.1016/j.ssi.2022.116077
http://dx.doi.org/https://doi.org/10.1016/j.ssi.2022.116077
https://www.sciencedirect.com/science/article/pii/S0167273822002260
https://www.sciencedirect.com/science/article/pii/S0167273822002880
http://dx.doi.org/https://doi.org/10.1016/j.ssi.2022.116139
https://www.sciencedirect.com/science/article/pii/S0167273822002880
https://doi.org/10.1021/cm4021657
http://arxiv.org/abs/https://doi.org/10.1021/cm4021657
http://dx.doi.org/10.1021/cm4021657
https://doi.org/10.1021/cm4021657
https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202304581
https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202304581
https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202304581
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.202304581
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.202304581
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.202304581
http://dx.doi.org/https://doi.org/10.1002/anie.202304581
https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202304581
https://ceramics.onlinelibrary.wiley.com/doi/abs/10.1111/jace.14633
https://ceramics.onlinelibrary.wiley.com/doi/abs/10.1111/jace.14633
https://ceramics.onlinelibrary.wiley.com/doi/abs/10.1111/jace.14633
http://arxiv.org/abs/https://ceramics.onlinelibrary.wiley.com/doi/pdf/10.1111/jace.14633
http://arxiv.org/abs/https://ceramics.onlinelibrary.wiley.com/doi/pdf/10.1111/jace.14633
http://arxiv.org/abs/https://ceramics.onlinelibrary.wiley.com/doi/pdf/10.1111/jace.14633
http://dx.doi.org/https://doi.org/10.1111/jace.14633
https://doi.org/10.26434/chemrxiv-2024-cr0q8
https://creativecommons.org/licenses/by-nc-nd/4.0/


URL https://ceramics.onlinelibrary.wiley.com/doi/abs/10.1111/jace.14633788

[70] E. Anderson, A. Jonderian, R. Z. Khaliullin, E. McCalla, Combinatorial study of the li-la-zr-o system, Solid State Ionics 388 (2022) 116087.789

doi:https://doi.org/10.1016/j.ssi.2022.116087.790

URL https://www.sciencedirect.com/science/article/pii/S0167273822002363791

[71] F. Rahmawati, B. Musyarofah, K. D. Nugrahaningtyas, A. Prasetyo, V. Suendo, H. Haeruddin, M. F. Handaka, H. Nilasari, H. Nursukatmo,792

A different zirconia precursor for li7la3zr2o12 synthesis, Journal of Materials Research and Technology 15 (2021) 2725–2734. doi:https:793

//doi.org/10.1016/j.jmrt.2021.09.064.794

URL https://www.sciencedirect.com/science/article/pii/S2238785421010450795

[72] A. J. G. Ellison, A. Navrotsky, Enthalpy of formation of zircon, Journal of the American Ceramic Society 75 (6) (1992) 1430–796

1433. arXiv:https://ceramics.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1151-2916.1992.tb04205.x, doi:https:797

//doi.org/10.1111/j.1151-2916.1992.tb04205.x.798

URL https://ceramics.onlinelibrary.wiley.com/doi/abs/10.1111/j.1151-2916.1992.tb04205.x799

[73] F. González, R. Khadka, R. López-Juárez, J. Collins, B. Di Bartolo, Emission of white-light in cubic y4zr3o12:yb3+ induced by a continuous800

infrared laser, Journal of Luminescence 198 (2018) 320–326. doi:https://doi.org/10.1016/j.jlumin.2018.02.053.801

URL https://www.sciencedirect.com/science/article/pii/S0022231317320537802

[74] N. Hamao, J. Akimoto, A novel synthetic route of garnet-type li6.5la3zr1.5ta0.5o12 using pyrochlore-type la2zr2o7 and weberite-type803

la3tao7 as starting materials, Journal of the Ceramic Society of Japan 127 (2019) 374–377. doi:10.2109/jcersj2.19014.804

[75] C. Deviannapoorani, S. Ramakumar, N. Janani, R. Murugan, Synthesis of lithium garnets from la2zr2o7 pyrochlore, Solid State Ionics 283805

(2015) 123–130. doi:https://doi.org/10.1016/j.ssi.2015.10.006.806

URL https://www.sciencedirect.com/science/article/pii/S0167273815003847807

[76] G. T. Hitz, E. D. Wachsman, V. Thangadurai, Highly li-stuffed garnet-type li7+xla3zr2-xyxo12, Journal of The Electrochemical Society808

160 (8) (2013) A1248. doi:10.1149/2.088308jes.809

URL https://dx.doi.org/10.1149/2.088308jes810

[77] H. Huo, C. J. Bartel, T. He, A. Trewartha, A. Dunn, B. Ouyang, A. Jain, G. Ceder, Machine-learning rationalization and prediction of solid-811

state synthesis conditions, Chemistry of Materials 34 (16) (2022) 7323–7336. arXiv:https://doi.org/10.1021/acs.chemmater.812

2c01293, doi:10.1021/acs.chemmater.2c01293.813

URL https://doi.org/10.1021/acs.chemmater.2c01293814

[78] K. Cruse, A. Trewartha, S. Lee, Z. Wang, H. Huo, T. He, O. Kononova, A. Jain, G. Ceder, Text-mined dataset of gold nanoparticle synthesis815

procedures, morphologies, and size entities, Scientific Data 9 (1) (2022) 234. doi:10.1038/s41597-022-01321-6.816

URL https://doi.org/10.1038/s41597-022-01321-6817

[79] T. He, H. Huo, C. J. Bartel, Z. Wang, K. Cruse, G. Ceder, Precursor recommendation for inorganic synthesis by machine learning materials818

similarity from scientific literature, Science Advances 9 (23) (2023) eadg8180. arXiv:https://www.science.org/doi/pdf/10.1126/819

sciadv.adg8180, doi:10.1126/sciadv.adg8180.820

URL https://www.science.org/doi/abs/10.1126/sciadv.adg8180821

[80] F. Lalère, V. Seznec, M. Courty, J. N. Chotard, C. Masquelier, Coupled x-ray diffraction and electrochemical studies of the mixed ti/v-822

containing nasicon: Na2tiv(po4)3, J. Mater. Chem. A 6 (2018) 6654–6659. doi:10.1039/C7TA10689K.823

URL http://dx.doi.org/10.1039/C7TA10689K824

[81] N. J. Szymanski, P. Nevatia, C. J. Bartel, Y. Zeng, G. Ceder, Autonomous and dynamic precursor selection for solid-state materials synthesis,825

Nature Communications 14 (1) (2023) 6956. doi:10.1038/s41467-023-42329-9.826

URL https://doi.org/10.1038/s41467-023-42329-9827

[82] N. J. Szymanski, C. J. Bartel, Y. Zeng, Q. Tu, G. Ceder, Probabilistic deep learning approach to automate the interpretation of multi-phase828

diffraction spectra, Chemistry of Materials 33 (11) (2021) 4204–4215. arXiv:https://doi.org/10.1021/acs.chemmater.1c01071,829

doi:10.1021/acs.chemmater.1c01071.830

URL https://doi.org/10.1021/acs.chemmater.1c01071831

[83] B. Schölkopf, R. C. Williamson, A. Smola, J. Shawe-Taylor, J. Platt, Support vector method for novelty detection, in: S. Solla, T. Leen,832

K. Müller (Eds.), Advances in Neural Information Processing Systems, Vol. 12, MIT Press, 1999.833

URL https://proceedings.neurips.cc/paper_files/paper/1999/file/8725fb777f25776ffa9076e44fcfd776-Paper.834

pdf835

[84] V. Vapnik, Statistical Learning Theory, Wiley, New York, 1998.836

[85] E. Nguyen, M. Seo, S. J. Oh, A bayesian perspective on training data attribution (05 2023).837

[86] G. Ritter, M. T. Gallegos, Outliers in statistical pattern recognition and an application to automatic chromosome classification, Pattern838

Recognition Letters 18 (6) (1997) 525–539. doi:https://doi.org/10.1016/S0167-8655(97)00049-4.839

URL https://www.sciencedirect.com/science/article/pii/S0167865597000494840

[87] D. M. Tax, R. P. Duin, Support vector domain description, Pattern Recognition Letters 20 (11) (1999) 1191–1199. doi:https://doi.841

org/10.1016/S0167-8655(99)00087-2.842

URL https://www.sciencedirect.com/science/article/pii/S0167865599000872843

[88] L. Ruff, R. Vandermeulen, N. Goernitz, L. Deecke, S. A. Siddiqui, A. Binder, E. Müller, M. Kloft, Deep one-class classification, in: J. Dy,844

A. Krause (Eds.), Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning845

Research, PMLR, 2018, pp. 4393–4402.846

URL https://proceedings.mlr.press/v80/ruff18a.html847

[89] R. Chalapathy, A. Krishna Menon, S. Chawla, Anomaly Detection using One-Class Neural Networks, arXiv e-prints (2018)848

arXiv:1802.06360arXiv:1802.06360, doi:10.48550/arXiv.1802.06360.849

[90] S. Ben-David, M. Lindenbaum, Learning distributions by their density levels: A paradigm for learning without a teacher, Journal of Com-850

puter and System Sciences 55 (1) (1997) 171–182. doi:https://doi.org/10.1006/jcss.1997.1507.851

URL https://www.sciencedirect.com/science/article/pii/S0022000097915075852

27

https://doi.org/10.26434/chemrxiv-2024-cr0q8 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://ceramics.onlinelibrary.wiley.com/doi/abs/10.1111/jace.14633
https://www.sciencedirect.com/science/article/pii/S0167273822002363
http://dx.doi.org/https://doi.org/10.1016/j.ssi.2022.116087
https://www.sciencedirect.com/science/article/pii/S0167273822002363
https://www.sciencedirect.com/science/article/pii/S2238785421010450
http://dx.doi.org/https://doi.org/10.1016/j.jmrt.2021.09.064
http://dx.doi.org/https://doi.org/10.1016/j.jmrt.2021.09.064
http://dx.doi.org/https://doi.org/10.1016/j.jmrt.2021.09.064
https://www.sciencedirect.com/science/article/pii/S2238785421010450
https://ceramics.onlinelibrary.wiley.com/doi/abs/10.1111/j.1151-2916.1992.tb04205.x
http://arxiv.org/abs/https://ceramics.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1151-2916.1992.tb04205.x
http://dx.doi.org/https://doi.org/10.1111/j.1151-2916.1992.tb04205.x
http://dx.doi.org/https://doi.org/10.1111/j.1151-2916.1992.tb04205.x
http://dx.doi.org/https://doi.org/10.1111/j.1151-2916.1992.tb04205.x
https://ceramics.onlinelibrary.wiley.com/doi/abs/10.1111/j.1151-2916.1992.tb04205.x
https://www.sciencedirect.com/science/article/pii/S0022231317320537
https://www.sciencedirect.com/science/article/pii/S0022231317320537
https://www.sciencedirect.com/science/article/pii/S0022231317320537
http://dx.doi.org/https://doi.org/10.1016/j.jlumin.2018.02.053
https://www.sciencedirect.com/science/article/pii/S0022231317320537
http://dx.doi.org/10.2109/jcersj2.19014
https://www.sciencedirect.com/science/article/pii/S0167273815003847
http://dx.doi.org/https://doi.org/10.1016/j.ssi.2015.10.006
https://www.sciencedirect.com/science/article/pii/S0167273815003847
https://dx.doi.org/10.1149/2.088308jes
http://dx.doi.org/10.1149/2.088308jes
https://dx.doi.org/10.1149/2.088308jes
https://doi.org/10.1021/acs.chemmater.2c01293
https://doi.org/10.1021/acs.chemmater.2c01293
https://doi.org/10.1021/acs.chemmater.2c01293
http://arxiv.org/abs/https://doi.org/10.1021/acs.chemmater.2c01293
http://arxiv.org/abs/https://doi.org/10.1021/acs.chemmater.2c01293
http://arxiv.org/abs/https://doi.org/10.1021/acs.chemmater.2c01293
http://dx.doi.org/10.1021/acs.chemmater.2c01293
https://doi.org/10.1021/acs.chemmater.2c01293
https://doi.org/10.1038/s41597-022-01321-6
https://doi.org/10.1038/s41597-022-01321-6
https://doi.org/10.1038/s41597-022-01321-6
http://dx.doi.org/10.1038/s41597-022-01321-6
https://doi.org/10.1038/s41597-022-01321-6
https://www.science.org/doi/abs/10.1126/sciadv.adg8180
https://www.science.org/doi/abs/10.1126/sciadv.adg8180
https://www.science.org/doi/abs/10.1126/sciadv.adg8180
http://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/sciadv.adg8180
http://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/sciadv.adg8180
http://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/sciadv.adg8180
http://dx.doi.org/10.1126/sciadv.adg8180
https://www.science.org/doi/abs/10.1126/sciadv.adg8180
http://dx.doi.org/10.1039/C7TA10689K
http://dx.doi.org/10.1039/C7TA10689K
http://dx.doi.org/10.1039/C7TA10689K
http://dx.doi.org/10.1039/C7TA10689K
http://dx.doi.org/10.1039/C7TA10689K
https://doi.org/10.1038/s41467-023-42329-9
http://dx.doi.org/10.1038/s41467-023-42329-9
https://doi.org/10.1038/s41467-023-42329-9
https://doi.org/10.1021/acs.chemmater.1c01071
https://doi.org/10.1021/acs.chemmater.1c01071
https://doi.org/10.1021/acs.chemmater.1c01071
http://arxiv.org/abs/https://doi.org/10.1021/acs.chemmater.1c01071
http://dx.doi.org/10.1021/acs.chemmater.1c01071
https://doi.org/10.1021/acs.chemmater.1c01071
https://proceedings.neurips.cc/paper_files/paper/1999/file/8725fb777f25776ffa9076e44fcfd776-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/8725fb777f25776ffa9076e44fcfd776-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/8725fb777f25776ffa9076e44fcfd776-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/8725fb777f25776ffa9076e44fcfd776-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0167865597000494
http://dx.doi.org/https://doi.org/10.1016/S0167-8655(97)00049-4
https://www.sciencedirect.com/science/article/pii/S0167865597000494
https://www.sciencedirect.com/science/article/pii/S0167865599000872
http://dx.doi.org/https://doi.org/10.1016/S0167-8655(99)00087-2
http://dx.doi.org/https://doi.org/10.1016/S0167-8655(99)00087-2
http://dx.doi.org/https://doi.org/10.1016/S0167-8655(99)00087-2
https://www.sciencedirect.com/science/article/pii/S0167865599000872
https://proceedings.mlr.press/v80/ruff18a.html
https://proceedings.mlr.press/v80/ruff18a.html
http://arxiv.org/abs/1802.06360
http://dx.doi.org/10.48550/arXiv.1802.06360
https://www.sciencedirect.com/science/article/pii/S0022000097915075
http://dx.doi.org/https://doi.org/10.1006/jcss.1997.1507
https://www.sciencedirect.com/science/article/pii/S0022000097915075
https://doi.org/10.26434/chemrxiv-2024-cr0q8
https://creativecommons.org/licenses/by-nc-nd/4.0/


[91] C. Zhou, R. C. Paffenroth, Anomaly detection with robust deep autoencoders, in: Proceedings of the 23rd ACM SIGKDD International853

Conference on Knowledge Discovery and Data Mining, KDD ’17, Association for Computing Machinery, New York, NY, USA, 2017, p.854

665–674. doi:10.1145/3097983.3098052.855

URL https://doi.org/10.1145/3097983.3098052856

[92] S. Zhai, Y. Cheng, W. Lu, Z. Zhang, Deep structured energy based models for anomaly detection.857

[93] D. P. Kingma, M. Welling, An introduction to variational autoencoders, Foundations and Trends® in Machine Learning 12 (4) (2019) 307–858

392. doi:10.1561/2200000056.859

URL https://doi.org/10.1561%2F2200000056860

[94] S. Rifai, P. Vincent, X. Muller, X. Glorot, Y. Bengio, Contractive auto-encoders: Explicit invariance during feature extraction, in: Proceed-861

ings of the 28th International Conference on International Conference on Machine Learning, ICML’11, Omnipress, Madison, WI, USA,862

2011, p. 833–840.863

[95] S. Pidhorskyi, R. Almohsen, D. A. Adjeroh, G. Doretto, Generative probabilistic novelty detection with adversarial autoencoders (2018).864

arXiv:1807.02588.865

[96] M. Sakurada, T. Yairi, Anomaly detection using autoencoders with nonlinear dimensionality reduction, in: Proceedings of the MLSDA 2014866

2nd Workshop on Machine Learning for Sensory Data Analysis, MLSDA’14, Association for Computing Machinery, New York, NY, USA,867

2014, p. 4–11. doi:10.1145/2689746.2689747.868

URL https://doi.org/10.1145/2689746.2689747869

[97] M. Mirza, S. Osindero, Conditional generative adversarial nets (2014). arXiv:1411.1784.870

[98] B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D. ki Cho, H. Chen, Deep autoencoding gaussian mixture model for unsupervised871

anomaly detection, in: International Conference on Learning Representations, 2018.872

[99] I. Golan, R. El-Yaniv, Deep anomaly detection using geometric transformations, in: S. Bengio, H. Wallach, H. Larochelle, K. Grauman,873

N. Cesa-Bianchi, R. Garnett (Eds.), Advances in Neural Information Processing Systems, Vol. 31, Curran Associates, Inc., 2018.874

URL https://proceedings.neurips.cc/paper_files/paper/2018/file/5e62d03aec0d17facfc5355dd90d441c-Paper.875

pdf876

[100] E. Parzen, On Estimation of a Probability Density Function and Mode, The Annals of Mathematical Statistics 33 (3) (1962) 1065 – 1076.877

doi:10.1214/aoms/1177704472.878

URL https://doi.org/10.1214/aoms/1177704472879

[101] J. Kim, C. D. Scott, Robust kernel density estimation, J. Mach. Learn. Res. 13 (1) (2012) 2529–2565.880

[102] E. J. Candès, X. Li, Y. Ma, J. Wright, Robust principal component analysis?, J. ACM 58 (3). doi:10.1145/1970392.1970395.881

URL https://doi.org/10.1145/1970392.1970395882

[103] T. Defard, A. Setkov, A. Loesch, R. Audigier, Padim: A patch distribution modeling framework for anomaly detection and localization, in:883

A. Del Bimbo, R. Cucchiara, S. Sclaroff, G. M. Farinella, T. Mei, M. Bertini, H. J. Escalante, R. Vezzani (Eds.), Pattern Recognition. ICPR884

International Workshops and Challenges, Springer International Publishing, Cham, 2021, pp. 475–489.885

[104] F. T. Liu, K. M. Ting, Z.-H. Zhou, Isolation forest, in: 2008 Eighth IEEE International Conference on Data Mining, 2008, pp. 413–422.886

doi:10.1109/ICDM.2008.17.887

[105] M. Breunig, P. Kröger, R. Ng, J. Sander, Lof: Identifying density-based local outliers., Vol. 29, 2000, pp. 93–104. doi:10.1145/342009.888

335388.889

[106] T. Kohonen, Self-Organizing Maps, Springer Berlin, Heidelberg, 2012.890

[107] A. Smola, R. Williamson, S. Mika, B. Schölkopf, Regularized principal manifolds, Vol. 1, 1999, pp. 67–67. doi:10.1007/891

3-540-49097-3_17.892

[108] C. Bishop, M. Svensen, C. Williams, Gtm: The generative topographic mapping, Neural Computation 10 (1997) 215–234. doi:10.1162/893

089976698300017953.894

[109] L. Ruff, J. R. Kauffmann, R. A. Vandermeulen, G. Montavon, W. Samek, M. Kloft, T. G. Dietterich, K.-R. Müller, A unifying review of895

deep and shallow anomaly detection, Proceedings of the IEEE 109 (5) (2021) 756–795. doi:10.1109/JPROC.2021.3052449.896

[110] P. Baldi, K. Hornik, Neural networks and principal component analysis: Learning from examples without local minima, Neural Networks897

2 (1) (1989) 53–58. doi:https://doi.org/10.1016/0893-6080(89)90014-2.898

URL https://www.sciencedirect.com/science/article/pii/0893608089900142899

[111] G. E. Hinton, R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science 313 (5786) (2006) 504–507. arXiv:900

https://www.science.org/doi/pdf/10.1126/science.1127647, doi:10.1126/science.1127647.901

URL https://www.science.org/doi/abs/10.1126/science.1127647902

[112] L. van der Maaten, K. Weinberger, Stochastic triplet embedding, in: 2012 IEEE International Workshop on Machine Learning for Signal903

Processing, 2012, pp. 1–6. doi:10.1109/MLSP.2012.6349720.904

[113] C.-C. Chang, C.-J. Lin, Libsvm : a library for support vector machines, LIBSVM : a library for support vector machines Software available905

at http://www.csie.ntu.edu.tw/ cjlin/libsvm.906

[114] J. M. Hernández-Lobato, R. P. Adams, Probabilistic backpropagation for scalable learning of bayesian neural networks (2015). arXiv:907

1502.05336.908

[115] A. Damianou, N. D. Lawrence, Deep Gaussian processes, in: C. M. Carvalho, P. Ravikumar (Eds.), Proceedings of the Sixteenth Inter-909

national Conference on Artificial Intelligence and Statistics, Vol. 31 of Proceedings of Machine Learning Research, PMLR, Scottsdale,910

Arizona, USA, 2013, pp. 207–215.911

URL https://proceedings.mlr.press/v31/damianou13a.html912

[116] Database of properties of chemical elements.913

URL http://phases.imet-db.ru/elements/main.aspx914

[117] P. Villars, J. DAAMS, Y. SHIKATA, K. Rajan, S. Iwata, A new approach to describe elemental-property parameters.915

[118] P. Raccuglia, K. C. Elbert, P. D. F. Adler, C. Falk, M. B. Wenny, A. Mollo, M. Zeller, S. A. Friedler, J. Schrier, A. J. Norquist, Machine-916

learning-assisted materials discovery using failed experiments, Nature 533 (2016) 73 EP –.917

28

https://doi.org/10.26434/chemrxiv-2024-cr0q8 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.1145/3097983.3098052
http://dx.doi.org/10.1145/3097983.3098052
https://doi.org/10.1145/3097983.3098052
https://doi.org/10.1561%2F2200000056
http://dx.doi.org/10.1561/2200000056
https://doi.org/10.1561%2F2200000056
http://arxiv.org/abs/1807.02588
https://doi.org/10.1145/2689746.2689747
http://dx.doi.org/10.1145/2689746.2689747
https://doi.org/10.1145/2689746.2689747
http://arxiv.org/abs/1411.1784
https://proceedings.neurips.cc/paper_files/paper/2018/file/5e62d03aec0d17facfc5355dd90d441c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/5e62d03aec0d17facfc5355dd90d441c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/5e62d03aec0d17facfc5355dd90d441c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/5e62d03aec0d17facfc5355dd90d441c-Paper.pdf
https://doi.org/10.1214/aoms/1177704472
http://dx.doi.org/10.1214/aoms/1177704472
https://doi.org/10.1214/aoms/1177704472
https://doi.org/10.1145/1970392.1970395
http://dx.doi.org/10.1145/1970392.1970395
https://doi.org/10.1145/1970392.1970395
http://dx.doi.org/10.1109/ICDM.2008.17
http://dx.doi.org/10.1145/342009.335388
http://dx.doi.org/10.1145/342009.335388
http://dx.doi.org/10.1145/342009.335388
http://dx.doi.org/10.1007/3-540-49097-3_17
http://dx.doi.org/10.1007/3-540-49097-3_17
http://dx.doi.org/10.1007/3-540-49097-3_17
http://dx.doi.org/10.1162/089976698300017953
http://dx.doi.org/10.1162/089976698300017953
http://dx.doi.org/10.1162/089976698300017953
http://dx.doi.org/10.1109/JPROC.2021.3052449
https://www.sciencedirect.com/science/article/pii/0893608089900142
http://dx.doi.org/https://doi.org/10.1016/0893-6080(89)90014-2
https://www.sciencedirect.com/science/article/pii/0893608089900142
https://www.science.org/doi/abs/10.1126/science.1127647
http://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.1127647
http://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.1127647
http://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.1127647
http://dx.doi.org/10.1126/science.1127647
https://www.science.org/doi/abs/10.1126/science.1127647
http://dx.doi.org/10.1109/MLSP.2012.6349720
http://arxiv.org/abs/1502.05336
http://arxiv.org/abs/1502.05336
http://arxiv.org/abs/1502.05336
https://proceedings.mlr.press/v31/damianou13a.html
https://proceedings.mlr.press/v31/damianou13a.html
http://phases.imet-db.ru/elements/main.aspx
http://phases.imet-db.ru/elements/main.aspx
https://doi.org/10.1038/nature17439
https://doi.org/10.1038/nature17439
https://doi.org/10.1038/nature17439
https://doi.org/10.26434/chemrxiv-2024-cr0q8
https://creativecommons.org/licenses/by-nc-nd/4.0/


URL https://doi.org/10.1038/nature17439918

[119] N. Kireeva, V. S. Pervov, Materials space of solid-state electrolytes: unraveling chemical composition–structure–ionic conductivity relation-919

ships in garnet-type metal oxides using cheminformatics virtual screening approaches, Phys. Chem. Chem. Phys. 19 (2017) 20904–20918.920

doi:10.1039/C7CP00518K.921

URL http://dx.doi.org/10.1039/C7CP00518K922

[120] N. Kireeva, V. S. Pervov, Materials informatics screening of li-rich layered oxide cathode materials with enhanced characteristics using923

synthesis data, Batteries & Supercaps 3 (5) (2020) 427–438. arXiv:https://chemistry-europe.onlinelibrary.wiley.com/doi/924

pdf/10.1002/batt.201900186, doi:https://doi.org/10.1002/batt.201900186.925

URL https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/batt.201900186926

[121] N. V. Kireeva, A. Y. Tsivadze, V. S. Pervov, Modeling ionic conductivity and activation energy in garnet-structured solid electrolytes: The927

role of composition, grain boundaries and processing, Solid State Ionics 399 (2023) 116293. doi:https://doi.org/10.1016/j.ssi.928

2023.116293.929

URL https://www.sciencedirect.com/science/article/pii/S0167273823001510930

[122] N. Kireeva, A. Y. Tsivadze, V. S. Pervov, Predicting ionic conductivity in thin films of garnet electrolytes using machine learning, Batteries931

9 (9). doi:10.3390/batteries9090430.932

URL https://www.mdpi.com/2313-0105/9/9/430933

[123] R. Guha, J. H. Van Drie, Structure-activity landscape index: Identifying and quantifying activity cliffs, Journal of Chemical Information and934

Modeling 48 (3) (2008) 646–658, pMID: 18303878. arXiv:https://doi.org/10.1021/ci7004093, doi:10.1021/ci7004093.935

URL https://doi.org/10.1021/ci7004093936

[124] J. D. Hunter, Matplotlib: A 2d graphics environment, Computing in Science & Engineering 9 (3) (2007) 90–95. doi:10.1109/MCSE.937

2007.55.938

[125] M. Waskom, O. Botvinnik, D. Kane, P. Hobson, S. Lukauskas, D. Gemperline, et al., mwaskom/seaborn: v0.8.1 (September 2017). Zenodo.939

(2017).940

29

https://doi.org/10.26434/chemrxiv-2024-cr0q8 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.1038/nature17439
http://dx.doi.org/10.1039/C7CP00518K
http://dx.doi.org/10.1039/C7CP00518K
http://dx.doi.org/10.1039/C7CP00518K
http://dx.doi.org/10.1039/C7CP00518K
http://dx.doi.org/10.1039/C7CP00518K
https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/batt.201900186
https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/batt.201900186
https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/batt.201900186
http://arxiv.org/abs/https://chemistry-europe.onlinelibrary.wiley.com/doi/pdf/10.1002/batt.201900186
http://arxiv.org/abs/https://chemistry-europe.onlinelibrary.wiley.com/doi/pdf/10.1002/batt.201900186
http://arxiv.org/abs/https://chemistry-europe.onlinelibrary.wiley.com/doi/pdf/10.1002/batt.201900186
http://dx.doi.org/https://doi.org/10.1002/batt.201900186
https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/batt.201900186
https://www.sciencedirect.com/science/article/pii/S0167273823001510
https://www.sciencedirect.com/science/article/pii/S0167273823001510
https://www.sciencedirect.com/science/article/pii/S0167273823001510
http://dx.doi.org/https://doi.org/10.1016/j.ssi.2023.116293
http://dx.doi.org/https://doi.org/10.1016/j.ssi.2023.116293
http://dx.doi.org/https://doi.org/10.1016/j.ssi.2023.116293
https://www.sciencedirect.com/science/article/pii/S0167273823001510
https://www.mdpi.com/2313-0105/9/9/430
http://dx.doi.org/10.3390/batteries9090430
https://www.mdpi.com/2313-0105/9/9/430
https://doi.org/10.1021/ci7004093
http://arxiv.org/abs/https://doi.org/10.1021/ci7004093
http://dx.doi.org/10.1021/ci7004093
https://doi.org/10.1021/ci7004093
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1109/MCSE.2007.55
https://doi.org/10.26434/chemrxiv-2024-cr0q8
https://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Materials and methods
	Experimental data: garnet-structured solid electrolytes
	Investigated alternatives to the conventional Zr and Ta containing precursors
	Machine learning in a design of synthesis
	Methods of novelty/anomalies detection
	Methods of dimensionality reduction
	Machine learning methods used for regression problem
	Descriptors
	Computational procedures
	Validation and statistical parameters of models
	Configuration of the models


	Results and analysis
	Identification of different types of "outliers"/"novelty" in the synthesis in relation with the influence of the complexity of the data description
	Quantitative results of outliers identification using the Area Under Curve (AUC) values
	Relationship between the outliers detection and the performance of composition-synthesis conditions-structure-property relationship modeling using the coefficient of determination R2, root mean squared error RMSE and p-value statistics as the selected criteria
	Distinguishing outliers by means of dimensionality reduction techniques using associated information of novelty detection

	Conclusions
	Acknowledgements
	Data availability

