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Lagrangians of the SA multiconfigurational self-consistent field(SA-MCSCF) and multi-

state extended second-order quasidegenerate perturbation theory (MS-XMCQDPT2) cou-

pled with the reference interaction site model self-consistent field constraint spatial elec-

tron density (RISM-SCF-cSED) are defined. In addition, variational equations were de-

rived to calculate the excitation energies of target molecules dissolved in various solvents.

The theory was applied to a phenol molecule in various solutions and the gradients and

Hessian matrices were calculated to evaluate the absorption spectral lines including the

broadening bandwidth. Numerical calculations revealed fine structures in any solvent sur-

roundings. The main intramolecular vibrational modes related to such fine structures were

stretching vibrations of the aromatic ring and the oxygen atom of the phenol molecule. The

present theory plays an important role when predicting the structure of potential energy

surfaces, such as Hessian matrices for various solvent types, during the photoexcitation

process.
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I. INTRODUCTION

It is important to evaluate the free energy and electron density distribution of a molecule to

improve the numerical performance of the condensed matter phase. Multiscale theories, such as

quantum mechanics molecular mechanics (QM/MM)1–3,frequently require a considerably more

accurate electron density distribution of a target system to simulate the chemical phenomena with

the chemical accuracy which are very sensitive to the chemical properties of the bath. For example,

solvatochromic effects on the chemical reactions,4,5 photoabsorption spectra,6 and photoemission

spectra7 are typically observed experimentally. The solvent type occasionally controls such chem-

ical properties.

Previous computational studies on multiscale theories provided significant evidence that the

methodology of ab initio calculation and the theoretical modeling of bath surroundings are essen-

tial only in terms of the single point energy.8–11 During photoexcitation processes, for example,

charge transfer after electronic excitation typically leads to destabilization by electrostatic interac-

tion between photoexcited molecules and solvents.12 Thus, it is necessary to accurately the charge

transfer calculated by ab initio and the electrostatic interaction field by theoretical modeling the

solvent surroundings. In addition, energy fluctuations causing the peak broadenings of absorption

spectral lines are dependent on the electron density.13,14

To simulate the photoexcitation process of target molecules, excited state calculations must

be performed. Time-dependent density functional theory (TDDFT) is one of the most famous

methods and is completed in combination with various solvation models such as the QM/MM, po-

larizable continuum model (PCM)10,11, and reference interaction site model (RISM)15–18. TDDFT

is an effective method in terms of the balance between its computational costs and accuracy. How-

ever, the quantitatively detailed analysis with chemical accuracy relative to experimental data ap-

pears to require a higher-level theory.

The multiconfigurational self-consistent field second-order quasidegenerate perturbation the-

ory (XMCQDPT2) via the SA complete-active-space self-consistent field (SA-CASSCF)19–21 is a

powerful method in terms of precision. The computational frameworks of the SA-CASSCF and

multistate XMCQDPT2 (MS-XMCQDPT2) combined with the RISM have already developed

and exhibited good performances.9,14,22,23 However, variational approaches have not yet been

proposed. Thus, we present a theoretical framework for introducing the SA-CASSCF and the

MS-XMCQDPT2 combined with the RISM self-consistent field constraint spatial electron density
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(RISM-SCF-cSED) to satisfy the accurate descriptions of the electronic excitation process and

external electrostatic field from the solvent surroundings.

The rest of the paper is organized as follows. Section II summarizes the theoretical framework

and describes the variational principle of the Lagrangian of the SA-CASSCF combined with the

RISM-SCF-cSED and that of the MS-XMCQDPT2 combined with its counterpart. Section III

describes the computational details. Section IV describes the implementation of the proposed

method applied to our previous study on the absorption spectral lines of a phenol molecule in

various solutions. Finally, the numerical results are compared with the experimental data.

II. THEORY

A. EQUATIONS FOR STATE AVERAGED RISM-CASSCF

We defined the Lagrangian of the SA-CASSCF combined with the RISM-SCF-cSED to obtain

variational equations that minimize the Lagrangian. We defined the SA energy in solution GSA as,

GSA = ∑
α∈P

wα{〈α|Ĥ|α〉+ tV(0)(d(α)
CAS−d(0)

CAS)}+∆µ(d(0)
CAS) (1)

|α〉= ∑
I∈CSF

CI
α |I〉 . (2)

GSA denotes the sum of the free energy of the target state and the energies of the Franck-Condon

states. The first term of Eq.(1) denotes the SA CAS energy, where α and I denote the CAS-

configuration interaction (CI) state and the configuration state function (CSF), respectively.20

Here, P in Eq.(1) denotes the CAS-CI space. The CAS-CI states comprise linear combinations

of CSFs under the CI coefficient C in Eq.(2). wα is the weight of the α-th SA-CASSCF wave-

function and holds the sum rule as ∑α∈P wα = 1. Ĥ is the electronic Hamiltonian of the target

molecule. The second term is the average of the interaction energies between the solute and sol-

vent, which denotes the transition from the 0-th state to the α-th state. The column vector V(0) is

the electrostatic potential derived from the solvent structure as

V (0)
ζ

=
∂∆µ

∂ (d(0)
CAS)ζ

=−∑
s

ρsqs

β

∫
d3r

∫
d3r′hγs(r)

fζ (r′)
|r− r′|

, for(ζ ∈ γ) (3)

where h is the total correlation function between the atomic sites of the solute represented by γ and

the solvent sites represented by s. fζ is the ζ -th auxiliary basis set (ABS) representing the electron
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density distribution of the solute molecule under the RISM-SCF-cSED framework. ρ and q are the

number density and charge of atoms in the solvent, respectively, and β is the inverse temperature.

The ∆µ(d(0)) of the second term in Eq.(1) is the excess chemical potential in Ref.24. The RISM

equation and closure relation are given in Eqs.(1) and (6) in Ref.15 if using the Hyper-netted chain

(HNC)25, respectively. The interaction between the solute and solvent is given by Eqs.(4) and

(6) in Ref.26. d(α)
CAS is the column vector of the fitting coefficients denoting the electron density

distribution of the α-th CAS-CI state under the RISM-SCF-cSED framework in Eq.(5) in Ref.26.

α = 0 represents the target state in which the solvent structure is relaxed.

The most important point herein is how to define the fitting coefficients d(α)
CAS. We define d(α)

CAS

as

d(α)
CAS = [Ξ+Γ(dSA)]

−1
MO

∑
pq

Rpq 〈α|â†
pâq|α〉 (4)

dSA = ∑
α∈P

wαd(α)
CAS, (5)

where matrices Ξ and Γ and the column vector R are defined in Ref.24. â†
p and âp are creation and

annihilation operators of the p-th molecular orbital (MO) respectively.

We defined the Lagrangian of the SA-CASSCF combined with the RISM-SCF-cSED LSA to

minimize the SA free energy in Eq.(1).

LSA = LSA[C,φ,Λ,λ]

= GSA + ∑
α,β∈P

Λαβ

(
∑

I∈CSF
CI

αCI
β
−δαβ

)
+

MO

∑
pq

λpq
(
(p|q)−δpq

)
(6)

where tφ = (φ1,φ2, ...) denotes the vector of the MOs. (p|q) denotes the overlap integral under

the MO representation.27 We assumed that the electrostatic potential V(0) was rigid for the change

in the electronic structure of the solute as

∂V(0)

∂d(0)
CAS

= 0. (7)

Thereafter, we applied the variational principle to the LSA to optimize the CI coefficients and
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orbitals. The differentials of the ∆µ and d(0)
CAS using Eqs.(4) and (5) are given by

∂∆µ

∂CI
α

= tV(0)∂d(0)
CAS

∂CI
α

(8)

∂∆µ

∂φp
= tV(0)∂d(0)

CAS
∂φp

(9)

∂dSA

∂CI
α

= [Ξ+(m−1)Γ(dSA)]
−1 wα

∂ 〈α|R̂|α〉
∂CI

α

(10)

∂dSA

∂φp
= [Ξ+(m−1)Γ(dSA)]

−1
∑

α∈P
wα

∂ 〈α|R̂|α〉
∂φp

, (11)

, respectively, where R̂ is equal to ∑
MO
pq Rpqâ†

pâq and m is the parameter of the penalty matrix

Γ(d(0)
SA) in Ref.24. Thus, the variational equations derived from the Lagrangian in Eq.(6) using

Eqs.(7)–(11) are as follows.

∂LSA

∂CI
α

= wα ∑
J∈CSF

〈I|Ĥsol|J〉CJ
α + ∑

β∈P
ΛαβCI

β
+(c.c)

= 0 (12)
∂LSA

∂φp
= ∑

α∈P
wα

〈
∂α

∂φp

∣∣∣∣ Ĥsol
∣∣∣∣α〉+∑

q
λpqφq +(c.c.)

= 0, (13)

where

Ĥsol = Ĥ +t V(0)[Ξ+(m−1)Γ(dSA)]
−1R̂ (14)

and constraint conditions by considering the differentiation of the Lagrange multipliers Λ and λ.

Eq.(12) is the generalized eigenvalue problem for CI coefficients as follows.

∑
J∈CSF

HIJ
CASCJ

α = Eα
CASCI

α , (15)

∑
J∈CSF

CJ
αCJ

β
= δαβ , (16)

HIJ
CAS = 〈I|Ĥsol|J〉 , (17)

where Eα
CAS is the α-th CAS-CI eigenenergy. We employed the orbital gradient method to solve

Eq. (13) as follows:

∑
α∈P

wα 〈α|[â†
pâq, Ĥsol]|α〉= 0, (18)

(p|q) = δpq, (19)
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Thereafter, we optimized the CASSCF orbitals. There are choices of representation of orbitals

such as natural orbitals or canonical MOs in the SA state. This study selected canonical MOs in

the SA state, and canonical Fock matrix is given by

f solv
pq = hpq +

t V(0)[Ξ+(m−1)Γ(dSA)]
−1Rpq

+ ∑
α∈P

MO

∑
r,s

wα 〈α|â†
r âs|α〉

{
(pq|rs)− 1

2
(pr|qs)

}
,

= εpδpq, (20)

where hpq and εp are the one-electron integral and p-th canonical orbital energy, respectively.

We describe the novel point of our introduction of the free energy GSA and the difference be-

tween GSA and other averaged energies in Refs.28 and23, respectively. Ref.28 regards the averaged

energy G′SA as

G′SA = ∑
α∈P

wα 〈α|Ĥ|α〉+∆µ(d(0)
CAS) (21)

corresponding to neglecting the third term of Eq.(1). Ref.28 assumed that the excess chemical

potentials of all the states were equal. Oppositely, Ref.23 regards the averaged energy G′′SA as

G′′SA = ∑
α∈P

wα(〈α|Ĥ|α〉+∆µ(d(α)
CAS)). (22)

µ(d(α)
CAS) denotes the excess chemical potential determined by d(α)

CAS and indicates that the solvent

structure is relaxed in the α-th electronic structure of the solute molecule. The second term of

Eq.(22) corresponds to the average of the excess chemical potentials whose solvent structures are

relaxed in the electronic states of the solute molecule. The most important difference between

the present theory and Refs.23,28 is the existence of formalisms through a variational approach. It

is not guaranteed that the equations solved in Ref.23,28 to optimize the CAS states stem from the

variational principle for G′SA and G′′SA. Thus, their solutions could not be self-consistent fields and

may not minimize G′SA and G′′SA. However, the present methodology provides a self-consistent

field for minimizing the GSA.

B. LAGRANGIAN OF RISM-XMCQDPT2

We defined the XMCQDPT wavefunction |i〉, using linear combinations of the CASSCF wave-

functions |α〉 as follows:

|i〉= ∑
α∈P

Dα
i |α〉 , (23)
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D is the rotation matrix from the CAS states to the QDPT states.21 We defined the coefficients

of the ABSs of the electron density or the transition density matrices in the criteria of the RISM-

SCF-cSED dαβ as

dαβ = [Ξ+(m−1)Γ(dSA)]
−1

MO

∑
pq

Rpq 〈α|â†
pâq|β 〉 . (24)

The i-th XMCQDPT2-RISM energy E(i)
QDPT was defined as

E(i)
QDPT = ∑

α,β∈P
Dα

i Dβ

i Hαβ
gas +∆µ(d(0)

QDPT)+
∂∆µ(d(0)

QDPT)

∂d(0)
QDPT

(d(i)
QDPT−d(0)

QDPT), (25)

where

Hαβ
gas = 〈α|Ĥ|β 〉+ 1

2 ∑
I∈CSF

〈α|V̂ |I〉〈I|V̂ |β 〉
Eα

0 −EI
0

+(α ↔ β ) (26)

Eα
0 = ∑

p
εp 〈α|â†

pâp|α〉 (27)

EI
0 = ∑

p
εp 〈I|â†

pâp|I〉 (28)

d(i)
QDPT = ∑

α,β∈P
Dα

i dαβ Dβ

i (29)

∑
α∈P

Dα
i Dα

i = 1, (30)

and i = 0 represents the target state of the QDPT states. Here, we assumed that the fitting coef-

ficients of the target state of the XMCQDPT2-RISM were practically equal to those of the CAS

states as d(0)
QDPT ' d(0)

CAS. In such a case, we approximated the ∆µ(d(0)
QDPT) to

∆µ(d(0)
QDPT) = ∆µ(d(0)

CAS)+
t V(0)(d(0)

QDPT−d(0)
CAS) (31)

∂∆µ(d(0)
QDPT)

∂d(0)
QDPT

=
∂∆µ(d(0)

CAS)

∂d(0)
CAS

= tV(0). (32)

The approximated XMCQDPT2-RISM energy was given by

E(i)
QDPT = ∑

α,β∈P
Dα

i Dβ

i Hαβ
gas +∆µ(d(0)

CAS)+
t V(0)(d(i)

QDPT−d(0)
CAS)

= ∑
α,β∈P

Dα
i Dβ

i

[
Hαβ

gas +
t V(0)dαβ

]
+∆µ(d(0)

CAS)−
t V(0)d(0)

CAS (33)
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We introduced the XMCQDPT2-RISM Lagrangian Li to optimize the solvated free energy of the

i-th state as

Li = ∑
α,β∈P

Dα
i Dβ

i

[
Hαβ

gas +
t V(0)dαβ

]
+λ ∑

α∈P

{
(Dα

i )
2−1

}
+ ∑

α,β∈P
∑

I,J∈CSF

{
KI

α(H
IJ
CAS−Eβ

CASδIJ)CJ
β
−καβ (C

I
αCJ

β
δIJ−δαβ )

}
+

MO

∑
pq

{
Zpq( f solv

pq − εpδpq)+ zpq(xpq− xqp)+ζpq((p|q)−δpq)
}
, (34)

where

xpq = ∑
α∈P

wα

{
MO

∑
r

(
hpr +

t V(0) [Ξ+(m−1)Γ(dSA)]
−1 Rpr

)
〈α|â†

qâr|α〉

}

+ ∑
α∈P

wα

{
MO

∑
r,s,t

(pr|st)〈α|â†
qâ†

s ât âr|α〉

}
(35)

using Lagrange multipliers λ , K, κ, Z, z, and ζ to create the constraints for the equations of the

SA-CASSCF. Ĥ, F̂ , and V̂ are the total electronic Hamiltonian, the SA Fock operator, and the

operator of the perturbation term in the XMCQDPT2 framework, respectively. (pq|rs) denotes a

two-electron integral under the MO representation.27Considering the variations of all the Lagrange

multipliers in Eq.(34), we obtained the equations of the SA-CASSCF calculations as follows:

xpq = xqp, (36)

and we simplified the matrix HCAS as

HIJ
CAS = EI

0δIJ + 〈I|V̂ |J〉 , (37)

and

〈α|Ĥsol|β 〉= Eα
CASδαβ . (38)

The sum of the first and second terms in Eq.(34) was simplified as

Hαβ
gas +

t V(0)dαβ = 〈α|Ĥsol|β 〉

+
1
2 ∑

I∈CSF

〈α|V̂ |I〉〈I|V̂ |β 〉
Eα

0 −EI
0

+(α ↔ β )

= Eα
CASδαβ +

1
2 ∑

I∈CSF

〈α|V̂ |I〉〈I|V̂ |β 〉
Eα

0 −EI
0

+(α ↔ β ). (39)
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Using the simpler formula of Eq.(39), we performed the perturbation scheme in the solution phase

similarly to that of a gas phase as written in the second and third terms of the second line of the

right-hand-side of Eq.(39). Finally, we obtained the free energies in the solution of XMCQDPT2

E(i)
QDPT by taking the derivative of matrix D about the Lagrangian in Eq.(34) given by

∑
β∈P

[
Hαβ

gas +
t V(0)dαβ

]
Dβ

i = E (i)Dα
i , (40)

where

E(i)
QDPT = E (i)+∆µ(d(0)

CAS)−
t V(0)d(0)

CAS, (41)

and solving the eigenvalue problem in Eq.(40).

III. COMPUTATIONAL DETAILS

We simulated a phenol (PhOH) molecule in various solutions using the GAMESS program

package29,30. Acetonitrile (ACN), methanol (MeOH), and water (WAT) were selected as solvents.

The CAM-B3LYP functional was employed for geometry optimization and Hessian calculations

in each solvent using the RISM-SCF-cSED, as in previous studies.26,31 In the Hessian calcula-

tions, the analytical method was employed in all simulations. After the evaluation of equilibrium

geometries and Hessian matrices in the solutions, we performed MS-XMCQDPT2(7o,8e) to eval-

uate vertical excitation energies after the calculation of three states SA-CASSCF(7o,8e) whose

averaged weights were uniform. The aug–cc–pv(D+d)Z basis sets32 were employed for all atoms.

Here, we approximately drew the potential energy surfaces (PESs) of a PhOH molecule in

solutions using the MS-XMCQDPT2 under the theoretical framework previously constructed in

Ref.14. This enabled the evaluation of the electronic photoabsorption spectral lines including

the broadening bandwidth. We modeled multimodal harmonic oscillators for drawing the PESs,

which were approximated using a five-point central finite difference method with a grid width of

δQ = 0.01 Bohr. The mode coordinates were set to those obtained through the analytical Hessian

method. The number of grids N was 220=1048576 and the grid width in the time domain ∆t was

7.49 a.u. (∼ 0.18 fs), where the spectral line was given by Eqs.(16)–(20) in Ref.14.

We applied the site—site Coulombic and Lennard—Jones potential to the intermolecular inter-

action between the solute and solvent using Singer and Chandler’s hypernetted–chain approxima-

tion as the closure for the RISM. The atomic charge and Lennard-–Jones parameters used for the
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TABLE I. Atomic charges and LJ parameters of the PhOH solute and the solvents. H(C) and H(O) denote

the hydrogen atoms bonding with the carbon and oxygen atoms of phOH, respectively.

site σs (Å) εs (kcal/mol) qs

ACN

CH3 3.775 0.207 0.150

C 3.650 0.150 0.280

N 3.070 0.170 -0.430

MeOH

CH3 3.775 0.207 0.265

O 3.070 0.170 -0.700

H 1.000 0.056 0.435

WAT

O 3.166 0.155 -0.820

H 1.000 0.056 0.410

PhOH

C 3.550 0.070

O 3.070 0.170

H(C) 2.420 0.030

H(O) 1.000 0.056

RISM calculations were taken from OPLS-AA 33 and are provided with the solvent parameters

in the Table I. In addition, we set the constraint condition for the fitting method of {dα
CAS} using

type II for the geometry optimization and Hessian matrices. Type III restrains were used for the

excitation energies given by Eqs.(11) and (22) in Ref.31 because of the computational stability in

the RISM-SCF-cSED. Finally, we used d(i)
QDPT to evaluate the fluctuations in the energy during

photoabsorption, as studied in Ref.14.

IV. RESULTS AND DISCUSSION

The absorption spectral lines in the solutions are shown in FIG.1. In addition, vertical excitation

energies Evert and the energies of the maximum point of the spectral lines Emax are summarized in
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FIG. 1. Absorption spectrum of a PhOH molecule in solution. The left shows the numerical result of P(E)

defined in Ref.14. The experimental data on the right were digitized from Ref.34. The absorption strength

was normalized to the maximum point of each spectral line.

TABLE II. We only focused on the S0 to S1 transition in evaluating the absorption spectral lines.

The height of the spectral lines of the present numerical results and experiments34 were normalized

to the maximum point of the respective lines. In all the solvents, ∼0.1 eV overestimations of the

maximum point of the peak from the experimental data Eexpt. were observed.

Considering the degree of freedom of molecular vibration, the maximum points of the absorp-

tion spectral lines obtained by the present method are corrected closer to the respective points

of the experimental data than the vertical excitation energies obtained through this method. We

verified the precision of a computational method in an excited state calculation by comparing the

vertical excitation energies and the energies at the peak top in experimental data uto date. The

present method might not be chemically accurate under the criterion of the gap energies between

the theory and the experiment larger than ∼0.2 eV. However, correction by intramolecular vibra-

tion plays an important role in predicting the excitation energies of molecules, at least for a phenol

molecule. The results indicate that the XMCQDPT2-RISM is not necessarily out of chemical

accuracy.

In terms of the broadening bandwidth, differences exist between an aprotic solvent (ACN) and

protic solvents (MeOH and WAT). The aprotic solvent shows multiple sharp peaks, probably cor-

responding to the fine structure of molecular vibration. However, protic solvents exhibit more

broadened peaks, which appeared to indicate that the fine structures were hidden. The tendencies
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TABLE II. Vertical energies, peak top energies of respective solutions, and thermal fluctuations of the

electro-vibronic transition of the solvents (unit eV.)

solvent ACN MeOH WAT

Evert 4.75 4.76 4.81

Emax 4.65 4.75 4.74

Eexpt 4.55 4.55 4.60

σV 0.042 0.044 0.037

σU 0.152 0.174 0.161

of the peak resolution of such fine structures are also observed in the experimental results. Never-

theless, fine structures were observed for all the solvents. Considering that we only considered the

S0 to S1 transitions, it was confirmed that the fine structures of the spectral lines originated from

the vibronic transition from the electronically ground state to the excited state. The broadening

band originated from the thermal fluctuations of solvent σV given by

σ
V =

(
(∆d10)

tσ∆d10
) 1

2 (42)

∆d10 = d(1)
QDPT−d(0)

QDPT, (43)

(σ)ζ η = ∑
s

β
−1

ρsqs

∫ ∫
drdr′

fζ (r)
|r− r′|

∂hγs(r′)

∂ (d(0)
CAS)η

(ζ ∈ γ), (44)

in our previous study. Thereafter, we summarized the σV for the solvents in TABLE II to compare

the width of the broadening band for each electro-vibronic transition. All σV values are <400

cm−1 typically less than the eigenfrequency of the bending or stretching intramolecular vibrational

mode. Unexpectedly, WAT, which forms the strongest hydrogen bonding with the hydroxy group

of a PhOH molecule, exhibited smaller thermal fluctuation σV than ACN. However, the σV was

dependent on the strength of the electrostatic interaction between the solutes and solvents as shown

in Eqs.(42)-(44). Thus, for PhOH, the peak resolution of the vibronic transition from the electronic

ground to the excited state was sufficiently high to observe fine structures in any solvent because

of the weak solvent fluctuation.

Next, we analyzed the vibrational modes to which the multiple peaks observed in the fine
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structures were assigned. The absorption spectral line P(E) from the S0 to S1 state was given by

P(E) = EP1(E)

P1(E) ∝

∫
dt exp

[
−1

2
(σVt)2− i(E−V min

1 +V min
0 )t

][
∏

l
pl(t)

]
(45)

pl(t) = ξ
(1)
l (t)exp

{
−η

(1)
l (t)

}
(46)

where V min
k denotes the minimum free energy of the k-th PES and ζ

(1)
l and η

(1)
l are defined in

Eqs.(18)–(20) in Ref.14. pl(t) denotes the time correlation function of the l-th harmonic oscillator

modeling the intramolecular vibration. When multiple peaks were observed, the absorption spec-

tral line was largely distributed by the main vibrational modes characterizing the fine structure in

terms of energy distribution. Here, we assumed that such vibrational modes contributed to the

standard deviation of the spectral lines σU given by

(σU)2 =

∫
∞

−∞
dEE2P(E)∫

∞

−∞
dEP(E)

−
(∫ ∞

−∞
dEEP(E)∫

∞

−∞
dEP(E)

)2

− (σV)2

= ∑
l

[
−
{

∂ 2

∂ t2 pl(t)
}

t=0
+

[{
∂

∂ t
pl(t)

}
t=0

]2
]
, (47)

where the numerical results are summarized in TABLE.II. We selected the four modes whose time

correlation functions {pl(t)} exhibited the four largest standard deviations defined as

(σU
l )2 =−

{
∂ 2

∂ t2 pl(t)
}

t=0
+

[{
∂

∂ t
pl(t)

}
t=0

]2

. (48)

The four modes are commonly observed in all kinds of solvents. The modes are summarized

in FIG.2 and their details are presented in TABLEIII. We observed that all the modes are within

the plane parallel to the aromatic ring. Mode 1 and 2 in FIG.2 denote the stretching modes of the

carbon atoms in the aromatic ring, whereas Mode 3 denotes the bending mode of the hydrogen

atoms bonding with the carbon atoms. The vibrational transition of these three modes from the

electronically ground state to the excited state was observed in many aromatic compounds like

benzene, naphthalene, and anthracene. In addition, we observed that Mode 4 corresponding to the

stretching vibration between the oxygen and carbon atoms is one of the main contributions of σU.

All the modes in TABLEIII exhibited very weak solvatochromism in terms of the eigenfrequencies

and the standard deviations. Considering the weak solvatochromism of σV, the peak resolution of

the absorption spectral line was unlikely to be dependent on the kind of solvent in the case for a

phenol molecule because the fine structures were observed in any solvent type in the experimental
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Mode 1 Mode 2

Mode 3 Mode 4

C
H

O

FIG. 2. Four vibrational modes with time correlation functions {pl(t)} showing the four largest standard

deviations. The mode coordinates are shown as blue arrows obtained from the Hessian calculation in the

ACN solvent surroundings. We omit the view parallel to the aromatic ring because all mode coordinates

were within its plane.

TABLE III. Eigenfrequencies and standard deviations defined in Eq.(48) for a phenol molecule in solvents

l ωl cm−1 σU
l eV

ACN MeOH WAT ACN MeOH WAT

Mode 1 838 838 839 0.054 0.054 0.055

Mode 2 1017 1018 1020 0.071 0.072 0.072

Mode 3 1055 1055 1053 0.060 0.059 0.060

Mode 4 1293 1288 1283 0.076 0.076 0.075

data. The tendency of protic solvents to exhibit a broader bandwidth should be explained by the

distortion of potential energy curves of other vibrational modes caused by the solvation effect.

14

https://doi.org/10.26434/chemrxiv-2024-2zlrs ORCID: https://orcid.org/0000-0002-8291-9963 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-2zlrs
https://orcid.org/0000-0002-8291-9963
https://creativecommons.org/licenses/by-nc/4.0/


V. CONCLUSION

We present the Lagrangian of the SA-CASSCF and the MS-XMCQDPT2 coupled with the

RISM-SCF-cSED. This study derived their variational equations to calculate the excitation ener-

gies of target molecules in various solvents. After drawing the PESs and evaluating the thermal

fluctuations of solvents, our previous theory was implemented for the absorption spectra of a phe-

nol molecule dissolved in ACN, MeOH, and WAT. The numerical results exhibited that aprotic

solvents (ACN) have the fine structure of the molecular vibration and protic solvents (MeOH and

WAT) exhibited one or two broader peaks which appeared to be slightly hidden fine structures.

We conclude that it is essential to predict the structure of PESs such as the Hessian matrices, on

the kinds of solvents in terms of the photoexcitation process. Thus, the present theory is a very

valuable method.

We also comfirmed that the difference in the thermal fluctuations between aprotic and protic

solvents was negligible and not intrinsic in the peak resolution of the absorption spectral lines for

a phenol molecule. The fine structures that were observed in any solvent surroundings stemmed

from the vibrational transition of the four modes shown in FIG.2 all of which were stretching

vibrations of the aromatic ring and oxygen atom of the phenol molecule. The vibrational transi-

tions of these modes were closely related to the fine structure typically observed in many aromatic

compounds.
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