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Abstract

Much of computational chemistry is concerned with “bottom-up” calculations which

elucidate observable behavior starting from exact or approximated physical laws, a

paradigm exemplified by typical quantum mechanical calculations and molecular dy-

namics simulations. On the other hand, “top down” computations aiming to formulate

mathematical models consistent with observed data – e.g., parameterizing force fields,

binding or kinetic models – have been of interest for decades but recently have grown

in sophistication with the use of Bayesian inference (BI). Standard BI provides esti-

mation of parameter values, uncertainties, and correlations among parameters. Used

for “model selection,” BI can also distinguish between model structures, such as the

presence or absence of individual states and transitions. Fortunately for physical scien-

tists, BI can be formulated within a statistical mechanics framework and indeed BI has

led to a resurgence of interest in Monte Carlo (MC) algorithms, many of which have

been directly adapted from or inspired by physical strategies. Certain MC algorithms

– notably procedures using an “infinite temperature” reference state – can be success-

ful in a 5-20 parameter BI context which would be unworkable in molecular spaces
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of 103 coordinates and more. This Perspective provides a pedagogical introduction to

BI and reviews key aspects of BI through a physical lens, setting the computations in

terms of energy landscapes and free energy calculations, as well as describing promising

sampling algorithms. Statistical mechanics and basic probability theory also provide

a reference for understanding intrinsic limitations of Bayesian inference with regard to

model selection and the choice of priors.
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Introduction

Bayesian inference (BI) has become a standard tool for addressing “inverse problems” in

many fields of science, including chemistry and biophysics;1–5 applications have included

calorimetry analysis,6–8 analysis of single-molecule data,9,10 and development of Markov

state models from molecular dynamics data.11,12 BI takes observed data as input, poten-

tially from different measurement types, and outputs a “posterior” probability distribution

of parameters for a pre-set mathematical model that is consistent with the data and any

prior assumptions. This multi-dimensional distribution effectively scores different param-

eter choices, yielding not only most likely values but also possible ranges of parameters –

uncertainty ranges, in effect – as well as the correlation structure among parameters. To

the extent that suitable uncertainties are placed on experimentally derived inputs, BI auto-

matically “propagates” uncertainty without assuming linear relationships among variables.

Bayesian calculations additionally can perform “model selection,” which entails a quantita-

tive comparison of candidate models1,7,13 – each defined by a set of equations and parameters.
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Furthermore, BI can naturally be extended for nested and hierarchical models.1

There are important, but inexact, analogies between the probabilistic framework of BI

and equilibrium statistical mechanics (Figure 1). The task of model selection, for exam-

ple, requires estimation of integrals that sum over probabilities: these are akin to partition

functions.7 Procedurally, the BI inference process often uses Markov-chain Monte Carlo

(MCMC) frequently borrowing methods motivated by physical science, such as parallel tem-

pering and annealing.4,14 There are modern molecular sampling methods that employ an

implicitly Bayesian framework.15

Figure 1: Relationships between theory and simulation for Bayesian inference and statistical
mechanics. Although (exact) probability theory underpins both approaches, the physical
basis of statistical mechanics yields unique calculations in contrast to the intrinsic uncertainty
embedded in the Bayeisan prior. On the other hand, the much lower dimensional coordinate
(parameter) space of Bayesian inference enables use of more diverse sampling approaches,
including some developed for physical systems.

This Perspective aims to provide an introduction to the connections between statistical

mechanics and Bayesian inference. Multi-dimensional probability theory provides a common

basis for the two frameworks, which we discuss in a pedagogical way to demonstrate the

parallels and also subtle distinctions. The intrinsically subjective priors of BI are addressed

along with the related issue of parameter representation. We discuss MCMC sampling

methods that employ physical ideas as well as new approaches based in machine learning.
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We hope this article will provide readers from a physical science background the confi-

dence to engage productively in Bayesian studies, as well as to critically examine BI data

using a physical lens. Because many physical scientists have extensive experience with sam-

pling challenges, they should be well-positioned to perform high-quality Bayesian studies. In

this article, the introductory material and the range of topics covered should be of value to

students and more advanced researchers.

Probability theory and basic Bayesian inference formal-

ism

We review the key probability theory useful for understanding Bayesian inference, both as

a refresher and to establish nomenclature. For now, the essential structures are joint and

conditional probability densities as well as marginal densities. We begin with the simplest

case of two dimensions for illustration, and then generalize to higher dimensions.

We will use the terms “distribution,” “probability distribution,” and “probability den-

sity” interchangeably.

Elements of two dimensional probability theory

Bayesian inference relies on a division of variables into two groups, parameters and data, so

two-dimensional theory is a natural starting point. We consider the (“random”) variables x

and y which are distributed according to the joint probability density p(x, y). As always, a

probability density must be normalized, meaning that

∫
dx dy p(x, y) =

∫ +∞

−∞
dx

∫ +∞

−∞
dy p(x, y) = 1 (1)

where integrals written without limits implicitly mean integration over the full domain of

real numbers (−∞,+∞), in this case for both x and y.
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A marginal probability density or simply “marginal” describes the overall probability of x

or y alone, which is computed by integrating over all the probability density in the excluded

coordinate. Thus, the marginal for x, denoted px, must integrate over all possible y values

for any x, and we have

px(x) =

∫
dy p(x, y) (2)

Note that the marginal is (already) normalized because if we integrate
∫
dx px(x) we arrive

directly at the normalization condition for the joint distribution (1). The marginal for y,

denoted py(y) is derived in exactly analogous fashion and must also be normalized.

Joint and marginal probabilities are shown for two discretized examples in Figure 2.

Analogous to x and y integrations for the respective marginals, in the discrete case simple

sums of probability are performed in horizontal and vertical directions in the tables.

The conditional probability density p(x|y) describes the distribution of x values (only) for

a fixed value of y which is considered a “condition.”

p(x|y) = p(x, y)∫
dx p(x, y)

=
p(x, y)

py(y)
(3)

where the integral in the denominator ensures normalization and the second equality uses

the definition of the py marginal analogous to (2). In a precise analogy, the conditional

distributions for a discrete system (Figure 2) can be derived by renormalizing any row or

column based on the corresponding marginal.

We can derive the key Bayesian relation by re-arranging (3) to yield p(x, y) = p(x|y) py(y).

Combining this equality with the analogous relation based on swapping x and y, we have

p(x|y) = p(y|x) px(x)
py(y)

(4)

which is Bayes’ rule.1 This is an exact mathematical result that is exploited – and adjusted

– in Bayesian inference. In words, the “opposing” conditional probabilities p(x|y) and p(y|x)
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are proportional to one another, after correction by the ratio of marginals px/py. Note that

the denominator depends only on y and so does not affect relative values of x.

Figure 2: Joint probabilities and marginals: the discrete case. (a) An idealized joint prob-
ability distribution over ‘macro’ (closed/open) and ‘micro’ features (helix/coil-RotA/RotB)
of protein conformations, where a certain group of residues may be in an alpha-helix or not
and one residue has two alternative rotameric conformations (RotA/RotB). All possibilities
must sum to 1, but we can also consider the marginal distributions by summing horizontally
over micro-features for a given macro-conformation, or vertically over macro-conformations
for each set of micro-features. (b) A hypothetical joint distribution of coin types (based on
probability of heads P (H)) and possible coin tosses. Going across each row, the relative
probabilities for each toss pair are as expected, but the absolute probabilities are based on
the imposed marginal of coin types. This example takes as prior knowledge that 90% of coins
are fair with P (H) = 0.5 and 10% are weighted with P (H) = 0.1. Although formally iden-
tical, the analogy between joint distributions (a) and (b) is imperfect on physical grounds
because (a) describes a true joint distribution of possibilities for a single experimental con-
dition, whereas (b) encompasses two different types coin-toss ‘experiments’.

Looking ahead to the practical goal of parameter inference from data, if y represents the

observed data and x represents a model parameter, then Bayes theorem (4) tells us how to

calculate the so-called “posterior” distribution p(x|y) of possible parameter values given the

data. This posterior evidently is proportional to the likelihood p(y|x) of observing the data

given the parameter, a function we will examine in detail below. Likewise, we will delve into

the other functions, especially the marginal px which is used to represent prior information

in Bayesian inference.

A final important concept concerns independence vs. correlation. In most cases of physical

interest, two variables x and y will be correlated and thus p(x, y) ̸= px(x) py(y). If instead,
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equality holds for every possible (x, y) pair, that means the two variables are independent,

because the value of one variable does not affect the distribution of the other.

Higher dimensional probability theory

In generalizing the preceding framework to higher dimensions, we maintain a division of vari-

ables into two groups, because the separation between data and parameters is fundamental

in Bayesian inference. We also adopt the standard θ notation for “parameters”, which are

not variables in a physical sense (because in nature, they should have unique values for a

correct physical model) but are the key variables whose distribution we would like to know,

based on their consistency with available data and prior knowledge.

Thus, we define a vector for the parameter variables θ⃗ = (θ1, θ2, . . . , θm) to take the place

of the scalar variable x from the two dimensional case, and y⃗ = (y1, y2, . . . , yn) representing

multi-dimensional data instead of the scalar y. Note that the dimensionalities of the two sets

m and n generally will differ. For integrals we will use the shorthand d⃗θ = dθ1 dθ2 · · · dθm

and d⃗y = dy1 dy2 · · · dyn.

Maintaining a probability theory perspective (leaving inference for later), there is no

fundamental difference between the θ⃗ and y⃗ variables, and we assume that a joint distribution

p(θ⃗, y⃗) is a standard, normalized probability distribution. That is,

∫
d⃗θ d⃗y p(θ⃗, y⃗) = 1 (5)

With overall dimensionality m+n, we can construct marginals of any dimensionality up

to m+ n− 1. An example one-dimensional (1D) marginal is

p1(θ1) =

∫
dθ2 dθ3 · · · dθm d⃗y p(θ⃗, y⃗) (6)

and any other 1D marginal can be written as an integral of the joint distribution over all

coordinates not marginalized. Any such marginal is properly normalized as can be seen by
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integrating (6) over θ1 and comparing to (5). Extending the marginal concept, we can define

an example (normalized) two dimensional (2D) marginal via

p1,2(θ1, θ2) =

∫
dθ3 dθ4 · · · dθm d⃗y p(θ⃗, y⃗) (7)

Two-dimensional marginals will prove very useful in analyzing BI data.

Any other variables can be chosen for marginalization by excluding the chosen set from

integration. Two other marginals of great importance for BI theory consider the overall sets

of parameters and data variables, namely,

pθ⃗(θ⃗) =

∫
dy⃗ p(θ⃗, y⃗) (8)

py⃗(y⃗) =

∫
dθ⃗ p(θ⃗, y⃗) (9)

Although the subscripts on these marginals may seem redundant, we include them to denote

marginals defined strictly from probability theory. During Bayesian inference, the apparent

marginals have different interpretations.

We can also define conditional probabilities using the marginals

p(θ⃗ | y⃗) = p(θ⃗, y⃗)

py⃗(y⃗)
(10)

p(y⃗ | θ⃗) = p(θ⃗, y⃗)

pθ⃗(θ⃗)
(11)

Finally, we write down the key precursor equation for Bayesian inference, the multi-

dimensional Bayes’ theorem, derived by equating the joint distributions in (10) and (11).

p(θ⃗ | y⃗) =
p(y⃗ | θ⃗) pθ⃗(θ⃗)

py⃗(y⃗)
(12)

We emphasize that this equation is a direct consequence of the definitions of basic probability

theory.
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When (12) is put to use for statistical inference of parameters, we must tread carefully

to avoid confusion. Ambiguous nomenclature arises because the marginal pθ⃗ of the full joint

distribution gets replaced by the “prior” distribution, as discussed below. In turn, the main

distribution of interest becomes the conditional probability p(θ⃗ | y⃗), known as the “posterior”

distribution, also discussed at length below.

Bayesian inference as a bridge from theory to useful information

The goal of Bayesian inference is to derive the distribution of parameters θ⃗ consistent with

the observed data y⃗ and prior assumptions about the parameters. We now bridge between the

exact probability theory discussed so far and the inference process which necessarily involves

assumptions. On the one hand, it is important to realize that (subjective) assumptions must

enter Bayesian inference, so the sensitivity of the final results to any assumptions should

be checked. On the other hand, the explicit inclusion of assumptions in Bayesian inference

should not be taken as a weakness of the approach compared to other methods because any

inference method will involve assumptions that may or may not be explicit.

What is a model?

For physical scientists, the notion of a model is quite intuitive. A model is simply an equation

or set of equations describing the behavior of a system. In Bayesian inference, the model

yields the numerical prediction ŷi(θ⃗) for measurement i, given model parameters θ⃗ and the

experimental conditions for that measurement. A complete Bayesian model also makes

explicit assumptions about the sources of uncertainty, such as the mathematical forms of

measurement noise and systematic measurement bias, leading to a probabilistic description

of data based on parameters.

As one example, consider the case of isothermal titration calorimetry (ITC), in which

changes in heat are measured during a binding process.6,8 For binding with 1:1 stoichiometry,

in the simplest case, the mathematical model governing ITC data expresses a measured set
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of heat increments dQi in terms of the presumed known receptor and ligand concentrations,

as well as in terms of the model thermodynamic parameters, i.e., the enthalpy of binding

∆H and the dissociation constant Kd. That is, there is an equation that yields the set

of predicted data values ŷi = dQi based on the known concentrations and on the model

parameters ∆H and Kd. Therefore, two components of the parameter vector θ⃗ will be ∆H

and Kd (or its log).

Although our primary interest will be in determining the physical parameters of interest

– e.g., ∆H and Kd in the ITC setting – there are additional, unavoidable “nuisance” param-

eters. Because measurements always have noise, there will be a noise parameter, typically σ

representing the standard deviation of Gaussian noise, assumed independent and identically

distributed for each measurement, although in principle other noise models may be used.

Typically there are additional parameters. In ITC, for example, an additional parameter

∆H0 represents heat evolved due to experimental imperfections, and a careful treatment

accounts for the fact that concentrations cannot be measured perfectly and so these also

should be treated as (partially) unknown model parameters.6,8

Mathematically, then, the set of parameters θ⃗ includes both the real parameters of in-

terest as well as nuisance parameters. As we will see below, the BI distribution of nuisance

parameters sometimes provides valuable lessons.

We should bear in mind that not every model will be appropriate for a given set of

data and that even the best models will typically build in some unwarranted assumptions.

For now, we will assume that some model – bad or good – has been chosen, and examine

the implications for Bayesian inference of the parameters of that model. If a model is

inappropriate for the data, we can expect that a wide range of parameter values, possibly

unphysical, will be evaluated to have relatively high probability. There is indeed “signal” in

the inferred parameter distribution about the validity of a given model compared to another,

which we will discuss below when considering “model selection.”
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Recasting Bayes’ theorem to define the posterior

Before we recast Bayes’ theorem in practical form for parameter inference, it’s useful to ad-

dress a question that may occur to physical scientists: Is the joint distribution of parameters

p(θ⃗, y⃗) a “real” thing? Is it measureable?

In deriving Bayes’ theorem (12), we assumed the existence of a joint distribution of

both parameters θ⃗ and datasets y⃗. But this is not a directly observable distribution of

physical variables – e.g., molecular coordinates – in the sense that physical scientists may

be accustomed to considering. However, we can reconcile the joint distribution p(θ⃗, y⃗) and

physical intuition based on two points: (i) For every physically realizable dataset y, which is

assumed to include noise and any other errors in measurement, there are indeed more and

less likely model parameters based on the assumed model; these probabilities are embodied

in the posterior distribution p(θ⃗ | y⃗), which cannot be observed via experiments but can

be estimated in the inference process as shown below. (ii) Given the experimental setup

including noise and possibly systematic errors, there are more and less likely data sets,

embodied in py⃗(y⃗). We generally will not know this distribution, but we can see it has a

physical basis: in principle, it could be measured based on many experiments. The product

of the two functions just referenced indeed yields the full joint distribution, based on (10).

We now rewrite Bayes’ theorem very slightly to make it usable for inference. The issue

with the original form (12) is that we have no idea what the marginal pθ⃗(θ⃗) should be, nor

any unbiased way to estimate it. Instead, with the goal of performing parameter inference

where we wish to explicitly build in any assumptions about the parameters, the marginal

of θ⃗ from (12) is replaced with an assumed prior distribution Prior(θ⃗). We also adopt

more direct notation for the posterior and likelihood, namely, Post(θ⃗ | y⃗) = p(θ⃗ | y⃗) and

Like(y⃗ | θ⃗) = p(y⃗ | θ⃗).

The desired posterior distribution of parameters consistent with data and prior assump-
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Figure 3: The components of Bayesian inference. Bayes’ rule is an exact, basic result of
probability theory, but Bayesian inference is a way of combining previous knowledge about
a parameter of interest θ, encoded in the the Prior distribution, with data values y1, y2, . . ..
The Likelihood function effectively weights different parameter (θ) values based on the data.
When prior assumptions and data likelihood are combined together, the un-normalized Pos-
terior distribution (‘after data’) is obtained.

tions is therefore

Post(θ⃗ | y⃗) = Like(y⃗ | θ⃗) Prior(θ⃗)
py⃗(y⃗)

∝ Like(y⃗ | θ⃗) Prior(θ⃗) (13)

Two important points should be understood about (13). (i) Even though the prior distribu-

tion plays the formal role of the marginal in Bayes theorem (12) – more on this below – the

logic here strictly describes a random process for both parameters and data: the posterior

probability of a given parameter set θ⃗ depends on the probability that θ⃗ occurs in the first

place (the prior) weighting the conditional probability of the data y⃗ once the parameters have

been selected (the likelihood). However, in actuality, there is no random process generating

parameters, and instead the prior is subjectively chosen. The posterior necessarily depends

on the choice of prior, hopefully weakly as discussed below. (ii) In BI, we are interested in

the (posterior) distribution of parameters for a single set of data y⃗, and we are not concerned

with all possible datasets. Hence, BI calculations safely ignore the denominator py⃗(y⃗), as
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implied by the proportionality symbol in (13). This is exactly analogous to sampling a

Boltzmann-factor distribution without considering the partition function, a concept we shall

return to later.

The likelihood at the heart of Bayesian inference

As we can see from the fundamental Bayesian inference equation (13), to obtain the desired

posterior distribution of physical (and nuisance) parameters Post(θ⃗ | y⃗), we require a function

called the “likelihood,” Like(y⃗ | θ⃗). The likelihood is the dominant function in Bayesian

inference (at least whenever there is enough data to do reliable parameter inference – see

below). Fortunately, the likelihood is also the most intuitive component of the BI pipeline:

it simply tells us the probability of observing a given set of data given the physical model

including the full set of experimental conditions and the noise model. In many cases, the

noise is taken to have a Gaussian distribution about the model-predicted value, which is

what we shall assume.

The equation for the likelihood derives from considering one measurement at a time

under the assumed fixed set of conditions θ⃗, with the addition of a noise model. We first

note that each data point yi has been generated under conditions c⃗i, for which the model

makes a prediction – dependent on the parameters θ⃗ – called ŷi = ŷi(c⃗i, θ⃗). With a Gaussian

noise model parameterized by variance σ2 (assuming a mean of zero), the overall likelihood

is simply the product of the probabilities for each individual point. For N data points, we

have

Like(y⃗ | θ⃗) =
N∏
i=1

1√
2πσ

e−(yi−ŷi)
2/2σ2

(14)

This equation models the assumption that the noise for every data point is independent.

Note that σ is considered part of the parameter set θ⃗, and the physical parameters are

implicit in ŷi values because those are determined from the parameter-dependent model.
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Figure 4: Bayesian inference for a simple linear model. The parameter of interest is the
terminal velocity of a coin dropped in water. Measured distance (y) values are linearly
related to the parameter of interest, velocity (θ = y/∆t), given the constant observation
time ∆t. When a relatively small amount of data is available, the peak of the estimated
posterior likely will be displaced from “true” values based on a large amount of data.

A simple example

Several key lessons regarding Bayesian inference are revealed by a simple model which per-

mits closed-form evaluation of the likelihood function. We consider terminal velocity mea-

surements (Figure 4) where the velocity “parameter” of interest θ is simply linear in the

measured distance value y. The model-predicted data value is simply ŷ = θ∆t based on the

single velocity parameter θ, and it is the same for all datapoints, i.e., ŷi = ŷ = θ∆t. Thus,

the likelihood is

Like(y⃗ | θ, σ) =
N∏
i=1

1√
2πσ

e−(yi−θ∆t)2/2σ2

(15)

for the vector of data values y⃗ = (y1, y2, . . . , yN). Note that by definition the likelihood is

normalized for integration over yi values, and not for integration over parameters θ or σ.

The product of Gaussians in (15) can be trivially expressed as the exponential of a sum

of terms, which in turn can be re-written in a revealing way by completing the square:

Like(y⃗ | θ, σ) =
(

1√
2πσ

)N

exp

{
− 1

2σ2/N

[
(θ∆t− y)2 + σ2

y

]}
(16)
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where σ2
y = y2−y2 is the variance in the measurements, with y and y2 denoting the averages

of the data measurements and their squares, respectively.

Several lessons emerge readily from the form (16). (i) As we would expect intuitively, for

any pair of (θ, σ) parameters, the likelihood is always larger if the data has lower variance,

i.e., if the strictly positive σ2
y is smaller. (ii) For any fixed value of the noise parameter σ, the

θ distribution is a simple Gaussian with mean y/∆t and standard deviation σ/(
√
N∆t). The

linearity of the model makes the θ distribution Gaussian, even though that form was applied

to the yi distribution, so this is not generally true for any model type. Nevertheless, the

narrowing of the distribution of θ with
√
N is statistically expected behavior. (iii) Finally,

examining the σ behavior at the most likely θ = y/∆t value, we can estimate the most likely

σ2 ∼ σ2
y, which is the intuitive result that the Bayesian noise parameter mirrors the spread in

the data. Putting this together with point (ii), we estimate the most likely overall variance

for θ as σ2
θ ∼ (σy/∆t)2/N .

Figure 5: Relative effects of likelihood and prior. Based on the available data, there is
some fixed width in the likelihood function (red curve) for a parameter of interest θ based
on the most likely noise parameter(s). In a linear model, the width is simply related to the
measured data variance, but more generally there is some distribution of θ values. The width
of the likelihood will depend on the quality (noise) and quantity (N) of the data. The prior,
however, is independent of these factors and may be broader or narrower than likelihood.
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Considering the prior, and a contrast with statistical mechanics

Given our derivation in terms of conditional and marginal probabilities, a potentially confus-

ing question that naturally arises is, “Does the prior impose itself as the marginal probability

observed by sampling the posterior?” A superficial glance at the equations suggests that this

is the case because the prior in (13) takes the place of the true mathematical marginal for

the joint distribution that appears in (12). However, this is tantamount to stating that the

posterior distribution (over model parameters) must be identical to the prior distribution

(over the same marginal parameters), which certainly is not true.

How should we understand the probabilistic logic here? The prior would indeed be the

marginal if we were to integrate over (or sample) all possible datasets y⃗, but that is not done in

Bayesian inference. BI considers only a single fixed set of data, and samples parameter values

consistent with that data. But the prior still affects the posterior, and this unavoidable effect

of subjectivity is a contrast to statistical mechanics. Because the prior is always subjectively

chosen (albeit with the aim of encoding empirical knowledge), the BI practitioner should

check the degree to which their choice affects the posterior. Some sensitivity to the prior

should be expected, and this does not invalidate BI findings, but rather adds information

to the inference results, which after all attempt to assess how precisely determined the

parameters are.

It is important to realize that even a broad uniform prior, equivalent to setting a range

for a parameter, intrinsically represents a subjective choice. The reason stems from the sub-

jective nature of parameter representation, and the multiplicity of ways to include the same

parameter values. As common examples, consider representing a rate constant or binding

affinity. Both quantities are known to depend exponentially on (free) energetic quantities, so

physical scientists may find the energy representations to be more “natural.” But a uniform

distribution of a given parameter is very different from a uniform distribution of the log of

the parameter, and there is no fundamental way to prefer one over the other in Bayesian

inference. This is a contrast to statistical mechanics where the partition function is defined
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explicitly as an integral over Cartesian coordinates – and thus there is an unambiguous

mathematical route to employing other coordinates using a Jacobian.16

A practical question that natural arises for BI practitioners is, how much data is needed

so that the posterior is insensitive to the choice of prior? Superficially, one might assume

that with more than 10 data points in the full likelihood (14) which is a product over single-

data-point distributions, that the effects of the single prior distribution in (13) would be

inconsequential. However, the situation depends on the system, data, and model – and the

effects of the prior can vary significantly from parameter to parameter.8 The practitioner

should not assume that a certain number of data points provide immunity to the effects of

the prior; instead, the sensitivity needs to be checked empirically by varying the prior. To

frame this more theoretically, the real issue is whether the full likelihood is much narrower

than the prior for a given parameter – and this is unknown until the distribution is sampled.

Figure 5 illustrates schematically the relative importance of prior and posterior. Although

generically “enough” data should make the posterior relatively independent of the choice of

the prior, there is no simple number of data points which guarantees this independence.

In addition to the number of data points, the quality of the data, i.e., the level of noise

or intrinsic variance, plays a key role. Thus, it is not correct, in general, to say that the

prior plays the role of a single data point; this only holds if the width of the prior matches

the intrinsic variance in the data. Based on this reasoning, it is sensible to quantify – on

a problem-specific basis – the amount of information extracted from the data, compared to

the prior.17

Posterior marginals and uncertainty ranges

For many inference applications, the estimation of uncertainty for parameters of interest is

a key goal. The high-dimensional posterior Post(θ⃗ | y⃗) embodies essentially all the informa-

tion gathered in Bayesian inference including the “credibility regions” (akin to confidence

intervals) that quantify the ranges of likely parameter values, given the data and prior as-
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sumptions. These Bayesian uncertainty ranges are derived by marginalizing the posterior

along the parameters of interest.

We introduce a special function name, Marg, for the marginals of the posterior distribu-

tion p(θ⃗ | y⃗), exemplified for one and two parameters as

Marg(θ1) =

∫
dθ2 dθ3 · · · dθm Post(θ⃗ | y⃗) (17)

Marg(θ1, θ2) =

∫
dθ3 dθ4 · · · dθm Post(θ⃗ | y⃗) (18)

which can be similarly defined for any subset of θ⃗ parameters. Note that these functions do

not involve integration over y⃗, in contrast to (6) and (7) because y⃗ is assumed fixed. Thus,

more completely Marg(θ1) = Marg(θ1|y⃗), indicating the marginals depend on the data.

The credibility regions, i.e., uncertainty ranges, are derived from the posterior marginals

in a straightforward way: to obtain a 95% credibility region, for example, one takes the 2.5

and 97.5 percentile values. Because the posterior defined in (13) accounts for all possible

parameter values via integration – weighted by the likelihood and prior – the credibility region

also does. This contrasts with approximations sometimes employed within a maximum

likelihood framework18 which can fail to include information about all parameter values

despite use of the likelihood function.19

As a technical aside, note that (17) and (18) are not standard marginals if we consider θ⃗

and y⃗ to be the full set of variables – as was assumed in the derivation of Bayes’ theorem (12).

In the context of parameter inference, however, the real concern is the validity of different

parameter sets based on a fixed dataset y⃗, motivating the use of the posterior marginals (17)

and (18).
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Model selection and the connection to free energy cal-

culations

Even though parameter inference may be done systematically in a BI pipeline, by itself,

knowing parameter values does not tell us whether the original model is valid. That is, once

a certain model is assumed (e.g., possible states and transitions among them), Bayesian

inference provides a systematic framework for evaluating possible parameter values for that

model but does not automatically generate an overall assessment of the assumed model. The

process of model selection 13 enables comparison among specific models, with some caveats

that can be learned from statistical mechanics.

Defining the model selection problem

Assume we want to compare the ability of two models, M1 and M2, for describing a single

set of data y⃗. The models will be assumed to have different sets of parameters θ⃗(1) and θ⃗(2),

even though nominally some parameters could describe the same physical process in both

models. For example, one model could describe a set of states with transition rate constants

for parameters, and the other model could include some or all of the same states but perhaps

with fewer allowed transitions. In the schematic example of Figure 6, two different binding-

event orders are compared based on a titration of both ligands simultaneously.

The marginal likelihood in model selection

A primary (though not unique) approach for assessing the overall suitability of a given model

is via its marginal likelihood, also known as Bayesian evidence which is a partition-function-

like quantity that sums over the posterior probability associated with all possible parameter

values. If the parameters θ⃗ and the prior distribution Prior(θ⃗|M) are associated with the
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Figure 6: Model comparison in Bayesian inference. A hypothetical system in which a protein
(blue) that binds two ligands (A and B) is analyzed based on experimental readout of
the doubly-bound protein population as the concentrations of A and B are simultaneously
increased. A given set of experimental data (top) is analyzed using two different models (1
and 2). Each independent analysis produces its own posterior over the parameters specific
to that model (bottom). Note that the posterior distributions, Prior(θ) × Like(θ), are not
normalized over parameters, implying integration over parameters will yield different values
known as marginal likelihoods.
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model M, then given the set of data y⃗, the marginal likelihood for the model is

p( y⃗ |M) =

∫
dθ⃗ Post(θ⃗| y⃗ ) =

∫
dθ⃗ Like(y⃗ |θ⃗) Prior(θ⃗|M) ≡ ZM (19)

The “marginal” nomenclature arises because if the integrand Like(y⃗ |θ⃗) Prior(θ⃗) is taken to

be a true joint probability distribution – following (11) – then the integral over θ⃗ represents

the marginal py⃗ as in (9).

The marginal likelihood (19) is analogous to a partition function (Figure 1) with the

posterior playing the role of the Boltzmann factor. The defining integral represents the

“sum” over all the probability embodied in the posterior. Also in analogy to a partition

function, the marginal likelihood p(M| y⃗ ) is the normalization constant for the posterior,

given the fixed dataset y⃗. Note that in (19) the modelM and data y⃗ are fixed “constants” and

not variables to be integrated over: in a physics context, these might be called (confusingly

in the present context) “parameters”; they are analogous to N, V, T which are held fixed

in a canonical partition function. Also, in the special but common case where the priors

are uniform distributions that simply set ranges for parameters, the likelihood by itself is

analogous to the Boltzmann factor.

If we want to estimate the relative probability of two models M1 and M2, we can form

the Bayes factor ,13 which is the simple ratio of the two marginal likelihoods.

Bayes Factor =
p( y⃗ |M1)

p( y⃗ |M2)
=

Z1

Z2

(20)

where Zi = Z(Mi). Note that the ratio (20) can be adjusted by the prior likelihood for the

models themselves, if these differ;13 here we assume there is no difference, so (20) is valid

as written. Below, we consider computational strategies for computing Bayes factors, which

are akin to partition function ratios, albeit of much lower dimensionality in typical cases of

interest.

A natural, powerful feature of the comparison invoked by the Bayes factor (20) is that
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it automatically penalizes overfitting, i.e., models with more parameters.9 To see this, con-

sider the marginal likelihood (19), which is an integral over all parameters weighted by the

(normalized) prior. On the one hand, models with more parameters may well exhibit better

fits and hence higher likelihood values; however, given that the likelihood itself is essentially

a Gaussian of the mean-squared error (14), there is a limit to how much the likelihood can

increase once the mean-squared error is below the variance σ2. On the other hand, as more

parameters are included beyond what is physically appropriate to the data, we expect that

the fraction of parameter space occupied by high-likelihood parameters to decrease signifi-

cantly and overwhelm the slightly larger likelihood.

Limitations of the partition function analogy

The partition function analogy has its limitations, and these could be of practical importance.

We can consider whether the logic of the Bayes factor, i.e., of a ratio of integrals over the

posterior distribution of parameters, is well founded. Although the marginal likelihood (19)

is mathematically analogous to a partition function, this is not quite true in the physical

sense. In a physical system, we wish to sum over all possible system configurations because

they are expected to occur: the configurational integral of the partition function, after all,

is equivalent to a time average for ergodic systems.16 In contrast, in Bayesian inference, all

possible sets of parameters are not expected to occur – and physically we know there is only

one true set if the model is correct. One can make a “robustness” argument, namely, that

we expect more high-probability sets of parameters for a better model; further, that given

the noise intrinsic to data, one can argue we have no choice but seek such robust models.

However, it is not unreasonable to appeal to a maximum likelihood or maximum posterior

perspective in seeking the single best model, and this approach does play an important role

in modern model selection.7

The well-defined statistical mechanics partition function also points us to a fundamental

mathematical ambiguity in the marginal likelihood defined in (19). Whereas a partition
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function is strictly defined as an integral over Cartesian coordinates and a Jacobian cor-

rection is required for different variables,16 no such fundamental integration measure can

be defined for the marginal likelihood. Returning to our examples of having rate constants

and/or binding affinities as BI parameters, we can equally describe these parameters by

their direct values or by their energy-like logarithms. It seems impossible to consider either

representation more fundamental, yet the resulting marginal likelihoods will be different.

Thus, despite the appealing analogy with statistical mechanics, it seems that unavoidable

ambiguities are intrinsic to Bayesian model selection.

This statistical inexactness of Bayesian model selection – as with Bayesian parameter

inference – should not be interpreted as a reason to disregard the approach, but rather

to proceed with caution. That is, always try more than one reasonable prior to test the

sensitivity of results to the prior.

Monte Carlo in Bayesian inference

The main practical task in Bayesian inference is sampling the posterior distribution Post(θ⃗|y⃗)

in order to obtain estimates for parameters θ⃗ given the data at hand y⃗. BI will not only

provide (i) the most likely parameter values, but also yields (ii) confidence intervals – techni-

cally known as “credibility regions” in BI – (iii) parameter correlations, and, when synthetic

data is used, (iv) key information for experimental design.

Sampling the BI posterior is formally identical to equilibrium molecular simulation, but

the much lower dimensionality in BI dramatically alters the slate of algorithms that can be

considered. Instead of trying to sample the Boltzmann-factor distribution e−U(x⃗)/kBT where

U is the potential energy and x⃗ is the full set of configurational coordinates – typically 105

or more coordinates – we are sampling Post(θ⃗) = Post(θ⃗|y⃗), where typically there are often

10-100 components of θ⃗ and y⃗ is fixed data that is not sampled. By analogy to molecular

simulation, we can say that y⃗, along with the prior and noise model, set the effective “energy
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landscape” for the BI coordinates θ⃗. See (13) and (14).

Here, we primarily restrict ourselves to Markov chain Monte Carlo (MCMC) algorithms,

less formally called Monte Carlo (MC) in much of the physical sciences. As described in

greater detail later, there are many classes of algorithms, such random walk Metropolis-

Hastings,20 Hamiltonian MC,7,21 and ensemble methods that sample the posterior, each with

their own performance characteristics. Of particular interest in this paper are ‘temperature’

based methods, as described below.

The relatively low dimensionality of Bayesian inference problems, compared to biomolec-

ular systems, opens up the possibility to exploit high and effectively infinite temperature

in MC sampling for BI. Although high-temperature-based sampling protocols are common

for biomolecular systems,22,23 there are intrinsic limitations in that arena, including the

challenge of sampling an unfolded biomolecule and the potentially minimal overlap between

distributions at different temperatures.24,25 The authors are unaware of sampling protocols

that employ infinite temperature, i.e., a uniform distribution in all coordinates, for biomolec-

ular systems. Because of its importance in BI, ‘temperature’-based annealing is discussed

below in greater detail.

Finally, although the topic has not been investigated systematically to our knowledge,

we expect the choice of parameter representation could affect sampling. In a molecular

system, one would expect internal coordinates to be more natural and effective for Monte

Carlo sampling, as opposed to Cartesian coordinates.26,27 Likewise, in Bayesian inference, it

may prove more natural to consider a transformed coordinate, e.g., based on exponential,

logarithm, or trigonometric function.

Annealing algorithms

Although temperature plays no direct role in Bayesian inference (even though experimental

data being analyzed has been collected at finite temperature), the BI problem can usefully

be reformulated to include an artificial temperature.14 Instead of considering only the true
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posterior, we introduce an inverse temperature parameter β and consider distributions of

the form

pβ(θ⃗) ≡
[
Like(y⃗|θ⃗)

]β
Prior(θ⃗) (21)

With this definition, p1(θ⃗) = Like(y⃗|θ⃗) ·Prior(θ⃗) = Post(θ⃗) corresponds to the true posterior

and p0(θ⃗) = Prior(θ⃗) represents the infinite temperature limit and yields the prior. The prior

is typically a distribution that can be sampled exactly, such as a uniform distribution over

a finite range for each parameter in θ⃗ or a multi-dimensional Gaussian.

Figure 7: The annealed importance sampling (AIS) algorithm. A set of independent systems
is started at a high temperature (colored circles, top row), followed by three steps. (i) The
systems are instantaneously “cooled” to a slightly lower temperature (larger β, second row
from top), which results in the association of a weight to each system – the ratio of prob-
abilities for the two β values, given the θ value at the preceding temperature. (ii) The
systems are then resampled according to their weights, leading to the elimination of some
systems and multiple copies of others (color corresponds to ‘parent’ system of top row).
(iii) A brief amount of dynamics or MC sampling for each system is then performed to “re-
lax” or decorrelate the systems (horizontal displacements along θ axis). These three steps
of cooling-resampling-relaxing are repeated until the target temperature of interest (β = 1,
bottom row) is reached. In Bayesian inference, the parameter β is non-physical but acts to
smooth the landscape in the same manner as the physical analog β = 1/kBT .

Annealed importance sampling (AIS),14,28 in physical terms, uses a valid high-temperature

(low β) sample – i.e., an ensemble of many systems – that is gradually cooled in order to

obtain a representative sample at a lower temperature (β = 1). See Figure 7. Cooling is grad-

ual in the sense that finite temperature decreases are alternated with constant-temperature

simulation (e.g., MC or MD). Each cooling step adjusts a weight factor that is tracked for
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every system in the ensemble, and a resampling process may be used to suppress low-weight

samples and replicate those with higher weights.28

Importantly, AIS is formally equivalent to a stochastic Jarzynski-relation29 protocol, and

permits the calculation of free energies or partition functions.14 AIS therefore can yield

estimates of the marginal likelihood (19) for Bayesian model selection.

When using an annealing protocol for sampling, the infinite-temperature limit (β = 0)

is attractive for several reasons. First, it can be sampled exactly, enabling the use of an

annealing process initiated from truly independent β = 0 samples. In BI problems with ∼10

or tens of parameters, typically there are finite values of β > 0 with sufficient overlap with the

β = 0 ensemble to permit practical sampling in an annealing protocol that gradually “cools”

the system until β = 1 is reached. In a biomolecular system, generically one would expect

effectively zero overlap with any numerically realizable finite β because of the huge number of

degrees of freedom. A second point is that the ability to conduct multiple independent runs

using fully random initial samples for β = 0 readily enables the confirmation of sampling

quality. This type of complete independence of runs is essentially out of reach for complex

biomolecular systems.

Third, when it is necessary to perform model selection via the Bayes factor (20), the

AIS algorithm has the unique advantage of being able to compute the partition-function-

like marginal likelihood (19).14 That is, based on the trivially computable β = 0 reference

system, AIS can yield what amounts to absolute free energies at the target β = 1 value.

This is an important strength of AIS, given the importance of model selection in biophysical

systems.7,9

In principle, AIS can be used with any constant-temperature canonical sampler, and

some of these are discussed below. Note that the use of “walkers” at multiple temperatures

is a feature shared in common with parallel tempering (PT) methods4,22,30,31 which also are

commonly used for Bayesian inference. In practical situations, PT sampling typically cannot

exploit the β = 0 limit,24 unlike AIS.
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New and old fixed-temperature algorithms

As noted above, methods such as AIS or parallel tempering are meta-samplers, and can use

any one of a host of fixed-temperature (fixed β) methods to generate probability distributions

of interest. Fixed-temperature algorithms are stand-alone sampling procedures that can be

integrated into a larger multi-temperature sampler. While we only discuss a few selected

algorithms and their trade-offs, it is important to note that there are hybrid approaches that

combine multiple methods.32

The random walk Metropolis-Hastings (MH) algorithm20 is a well established, basic

method for Markov chain Monte Carlo sampling. Briefly, for each iteration a random jump

from the current parameter set to a new parameter set is performed using a proposal (jump)

distribution. The new candidate parameter set is either accepted or rejected based on the

comparative probabilities of the old and proposed parameter sets. This generates a list of θ⃗

values that eventually will converge to the target (in this case Posterior) distribution; how-

ever, the method is well-known to require significant tuning leading to potential convergence

problems.1,33

A more advanced approach commonly used in BI is Hamiltonian Monte Carlo (HMC),

which constructs trial moves based on approximate “dynamics” computed from gradients of

the effective energy landscape (negative log of the probability distribution).7,21 Hamiltonian-

based methods build off of MH, utilizing information of the posterior’s shape via its gradient

to efficiently generate independent samples to inform the proposed moves. Briefly, HMC

introduces a momentum variable associated with each parameter, that are combined to

create a fictitious Hamiltonian. The Hamiltonian dynamics are simulated (via integration)

for a given step size and number of steps, generating a new proposal. A popular extension of

HMC is the No-U-Turn sampler34 which adaptively determines that simulate step size and

length, reducing the need for hyperparameter tuning. However, while Hamiltonian-based

methods are able to efficiently sample from high dimensional posterior distributions, they

require gradient calculations which may infeasible to calculate. Furthermore, these methods
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may also struggle with multi-modal distributions (i.e., multiple energy basins). We refer the

interested reader to a conceptual introduction of HMC35 for more details on this popular

approach.

An alternative method that does not require gradients, the affine invariant ensemble

sampler36 evolves a set of walkers (MCMC chains) through the posterior landscape. For

each sampling step, each walker is proposed a new position in the parameter space based

on the position of other randomly selected walkers. In the “stretch” move, for example, a

walker is moved in a direct line towards or away from another randomly selected walker,

based on a random scale factor. The proposed move is then accepted/rejected based on

the MH acceptance probability criterion. Critically, this proposal strategy is invariant to

stretching, rotation, and translation, i.e., affine-invariant. In effect, the affine invariant

ensemble sampler is able to transform the complex geometry of a posterior distribution

into a simpler distribution that can be sampled more efficiently. In our hands, this approach

proved effective at sampling small-to-medium sized models of isothermal titration calorimetry

(< 10 parameters)8 but required extensive computing. Relatedly, this algorithm requires an

adequate number of walkers to densely cover the posterior, which can be well suited for multi-

modal distributions, but may become computationally infeasible for large dimensionality.

Finally, recent machine learning advances for density estimation using normalizing flows37,38

can be incorporated into MCMC sampling methods. These generative models use neural net-

works with a series of differentiable and invertible transformations to learn a mapping from

a simple distribution (e.g., Gaussian) to a complex distribution (e.g., the Posterior). One in-

teresting application is the use of normalizing flows for preconditioning39 within an annealed

importance sampler. Here the normalizing flows are trained using the previous tempera-

ture stage and used to transform the current posterior into a standard Normal distribution.

Metropolis-Hastings with a standard Normal distribution is used, enabling efficient indepen-

dant samples to be drawn from the posterior – subject to the accuracy of transformation.

We have found this method to be valuable for the Bayesian inference of dynamic models of
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membrane transporters with 10-20 parameters.40

While we have only scratched the surface of the available sampling algorithms here,

we advise the reader that each algorithm has trade-offs, and that the “best” sampler will

depend on the specific problem at hand – such as the feasibility of gradient calculations or

multimodality of the posterior.

Challenges for Bayesian inference and Monte Carlo

While Bayesian inference and Markov chain Monte Carlo are robust approaches to quanti-

fying parameter estimates and uncertainities, they are not without challenges. First, as we

have described previously, BI methods require the choice of a model, prior, and likelihood

for a given dataset in order to generate a posterior – which inherently requires some sub-

jectivity and assumptions. However, the sensitivity of the inference results to these choices

can be readily analyzed, and we find that explicitly integrating and testing our modeling

assumptions to be a valuable aspect of Bayesian inference.

Another potential challenge for Bayesian inference is how to deal with complex data

structures and models. For heirarchical data such as data generated from a population and

individuals, BI can be extended into hierarchical Bayesian inference.1 This approach uses

priors, likelihoods, and models for both the individual and population levels, and introduces

hyperparameters that govern how tightly coupled the different levels are. In effect, this

systematically embeds individual BI models into a larger interconnected framework that

can account for the uncertainties and dependencies of the data. A related concern is how

to incorporate multiple data sets while accounting for batch effects (i.e., unique nuisance

parameters for each dataset). Two possible solutions to this are to use the posterior of one

dataset as the priors of the next dataset, and use importance sampling between the posterior

of the one dataset and next.41

Moving to MCMC sampling algorithms specifically, the primary challenge is efficiently

generating independent samples of the posterior distribution which are often due to complex
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posterior geometries and/or poor hyperparameter selection of the MCMC method. In partic-

ular, sampling challenges arising from strong correlations, multiple modes, and heavy tails in

the posterior are exacerbated by high dimensionality and will prove difficult for any sampling

method. Unfortunately, there is no silver bullet approach. Relatedly, MCMC algorithms may

be susceptible to initial state bias, which can be tested using multiple independent runs.

As an alternative to MCMC, variational inference provides a deterministic optimization

approach to estimate intractable or high dimensional posteriors.1,42 Here a tractable distri-

bution (e.g., Gaussian) is selected to represent the posterior. Then the parameters of the

tractable distribution, such as the mean and variance of a Gaussian, are adjusted such that

the difference between the tractable distribution and true posterior is minimized. Since the

true posterior isn’t known we cannot directly calculate this divergence, but instead use an

approximation – the evidence (marginal likelihood) lower bound. Maximizing this quan-

tity will generate the optimal set of model parameters for the chosen surrogate posterior

distribution. While computationally efficient these methods are approximate and introduce

stronger assumptions on the posterior distribution that may yield significant inaccuracies if

not validated.

For certain problems, the likelihood function may be unknown or complex enough that

it is intractable to calculate. In this case, there are “simulation-based” inference meth-

ods that calculate the posterior by comparing simulated data under different conditions to

the observed data.43 Approximate Bayesian computation1,44 typically computes a similarity

measure between the simulated and observed data or related summary statistics, only keep-

ing the parameter sets that yield data below some threshold of similarity. These methods

are sensitive to the choice of similarity measure and cutoff threshold, suffer from the curse

of dimensionality, and may yield less informative and accurate estimates of the posterior

than typical MCMC methods. However, recent neural-network based methods for density

estimation such as normalizing flows45,46 described previously have shown promise to address

the limitations of approximate Bayesian computation.
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Finally, while this perspective focuses on BI methods, we note alternative frequentist

methods for parameter estimation and uncertainty quantification, such as maximum likeli-

hood estimation with likelihood profiling,47 or bootstrapping.48 These approaches may be

more computationally efficient than BI but do not generate an exact posterior distribution

which fully and transparently describes the uncertainties and correlations of the model and

data.

Tools for Bayesian inference in practice

We have found that successful BI in practice requires an appropriate choice of sampling

algorithm and hyperparameters for a given model and data of interest. We recommend uti-

lizing modern probabilistic programming frameworks which provide an array of efficiently

implemented sampling algorithms. Popular examples include STAN,21 pyMC,49 Pyro,50 and

Turing.jl.51 In certain cases, more specialized sampling implementations may be useful, such

as preconditioned Monte Carlo with normalizing flows39,52 or the affine invariant ensemble

sampler.36,53 In either case, we suggest examining parameter identifiability54 and correla-

tions when doing BI. Also, we suggest validating the sampling results with ground truth

values (i.e., synthetic data), checking for convergence using independent runs, comparing

predicted posterior data with the observed data, and evaluating the sensitivity of posterior

to your modeling assumptions. Fortunately, many of the above frameworks can aid with ex-

ploring and diagnosing BI models and sampling data, in addition to stand-alone tools such

as ArviZ.55 Finally, we highlight recent work that aims to integrate many of these practices

into a comprehensive workflow for dynamic models.56
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Interpreting data from Bayesian Monte Carlo

Confirming MC sampling quality

Although true equilibrium sampling is effectively out of reach for many atomistic biomolec-

ular systems, with some possible exceptions,57 in Bayesian inference the guiding mindset

should be to obtain validated full sampling. The effective energy landscapes encountered in

BI will not often be trivial, but we have a chance to sample them. If we trust the poste-

rior distribution, then we can in turn trust the uncertainty ranges – ‘credibility regions’ –

provided by BI.

This article is not a manual for performing BI or assessing sampling, but we do recom-

mend performing multiple independent MC simulations from different start points to ensure

the same distributions are obtained. Visual comparison of the one and two-dimensional

marginals of the posterior for all parameters is a key step, we have found.8

Maximum likelihood and sampling

It is worthwhile to revisit the maximum-likelihood approach to characterizing a model –

analogous to global energy minimization – in the context of challenging-to-sample distribu-

tions – i.e., rugged landscapes. On the one hand, in contrast to molecular systems, there

is no true physical heterogeneity in BI parameter space: if the model structure is correct,

then there is a single set of correct parameters, not an equilibrium ensemble as in a physical

system. Of course, in reality, finite data, noise, and experimental bias are likely to obscure

the truly most likely parameters.

But aside from data-centric issues, there is a key practical issue in a maximum-likelihood/

energy-minimization strategy: it may be extremely difficult to do global maximization in a

landscape that is rugged and challenging to sample. In other words, can you trust maxi-

mum likelihood estimates? In our hands, working with systems that are challenging – but

possible – to sample, optimization algorithms do not provide reproducible, truly optimal re-
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sults.40 We know this because we can simply compare to the maximum likelihood observed

in MC sampling, which is reproducible when sampling is adequate. While computationally

expensive, we have found that good MC sampling is a robust way to find globally optimal

parameters.

Parameter credibility regions and identifiability

The main strength of Bayesian inference, in the authors’ view, is the ability to provide

not only parameter values but also uncertainty ranges consistent with the observed data.

Any fitting (optimization) method can give a point estimate of most likely parameters for

an assumed model, but uncertainties that do not include information about all possible

parameter values make an uncontrolled approximation.19 In BI, the posterior distribution

of parameters consistent with model and data (13) tells us whether we really “know” the

parameter value: the parameter may be characterized by a narrow posterior marginal (17),

suggesting it is indeed identified by the data or the posterior marginal may be very broad

indicating the most likely value is nearly meaningless. See Figure 8. The rationale here is

in direct analogy to molecular simulation estimates, which always provide average values of

observables, but the associated uncertainties indicate whether the averages are reliable.58,59

What “narrow” and “broad” mean will depend on the context, and domain expertise

will play a key role in evaluating this, but comparison with the prior distribution provides

a natural reference point. If the prior distribution correctly characterizes the prior state of

knowledge before considering the data, then it is highly appropriate to characterize what is

learned from the data via the concepts of information theory.17

It is important to note that it may be strictly impossible to gain information on cer-

tain parameters, based on the mathematically formal concept of identifiability.60 Intuitively,

the concept is straightforward for physical systems based on examples: equilibrium bind-

ing measurements cannot reveal on or off-rates but can determine their (equilibrium) ratio;

measurement of binding in one domain of a decoupled two-domain system cannot reveal
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properties of the second domain. There is, however, a gray zone framed as “practical identi-

fiability.” For example, in a two-step binding process, if the first binding step is much weaker

than the second, binding parameters for the first step may be practically non-identifiable

given insufficient data.8 It is important to be aware of these issues, although the posterior

implicitly includes identifiability information even if it is unknown beforehand: if a posterior

marginal does not differ from the prior for a given parameter, then the data has not helped

to identify that parameter.17 For further discussion of identifiability analysis in a Bayesian

pipeline, see the discussion in recent work.5

We also note that BI credibility regions can help to reveal bias in experimental measure-

ments. This can be done directly if an explicit ‘nuisance’ parameter is used to represent

bias in experimental measurements.40 Alternatively, bias can be assessed implicitly based on

nuisance parameters describing uncertainty for input experimental values: if the posterior

marginal for such a nuisance parameter is found to have significant probability at the ex-

tremes of the assumed range, that suggests the original experimental range for the parameter

was under-estimated (assuming the model itself is correct).

Parameter correlations

The posterior may contain significantly more information than can be gleaned from 1D

posterior marginals because some parameters will exhibit correlations. Such correlations, if

present, are easily noticeable in the 2D marginals typically shown in “corner plots” (Figure

8) which can be visualized as contour plots.8 Bear in mind that correlations may be linear

or non-linear.16

Such correlations provide important information in two ways. First, if two parameters are

correlated, that suggests that a different experiment measuring one of the parameters sepa-

rately could be used as prior information to identify the second by narrowing its marginal.

Consider for example the two concentrations [Pep] and [LC8] which lie along a clear diag-

onal in their 2D marginal in Figure 8. This posterior marginal indicates that, based on
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Figure 8: Corner plot showing 2D and 1D marginals from Bayesian inference.8 The plots
show various projections of the full eight-dimensional posterior distribution for an example
system based on MC simulation of synthetic experimental binding data mimicking isothermal
titration calorimetry. Contour lines indicate probability densities (darker = higher proba-
bility) for the corresponding parameters noted, with red lines indicating known true values.
Correlations among parameters are clearly visible in diagonal contours of 2D marginals. The
1D marginals reveal how “identifiable” each parameter is based on the width of the distri-
bution. The prior distribution for each parameter was taken to be uniform.
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the data used, neither concentration is well identified, but if one could be refined, then the

other would also be better determined. Note that these two concentrations are considered

nuisance parameters: they are not the binding parameters of interest, but a full analysis

requires accounting for realistic uncertainty in experimental measurements.8

A second, related value of correlations concerns different representations of parameters,

which may prove revealing. That is, depending on the specific nature of the correlations,

it may be the case that a function of two (or more) parameters may be well-identified,

i.e., exhibit a narrower marginal than either of the original parameters. In the example

data of Figure 8, the strong correlations between ∆G (standard free energy change of first

binding event) and ∆∆G (free energy difference between first and second binding events)

ultimately reveal that the marginal distribution of the total free energy for double binding

(2∆G + ∆∆G) is much narrower than either of the components.8 Thus, correlations may

have a readily interpretable physical meaning.

Synthetic data and experimental design

While Bayesian inference methods are agnostic to the type of data used, we have found it

valuable to utilize computer-generated “synthetic” data for several reasons. Firstly, unlike

with experimental data, synthetic data provides ground truth values since it is generated

using a known model and parameter set. These ground truth parameter values help facilitate

the testing and validation of a particular model and BI sampling implementation – such as

confirming that the most likely parameter estimates correspond to their expected “true”

values (within noise). Similarly, synthetic data may be used to examine the sensitivity to

different choices of priors or model parameterizations.

A second use for synthetic data is the cost-effective design of experiments. As discussed

above, the width of the parameter estimates from the posterior distribution can be compared

to that of the prior distributions in order to gauge how informative a given dataset is. In

other words, if the data does not significantly change the posterior as compared to the prior,
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then we have not gained information, as seen from Bayes’ law (13). Operationally, BI is per-

formed using the same physical model and priors but different synthetic datasets generated

across a range of experimental conditions. Quantitative measures such the Kullback-Leibler

(KL) divergence (i.e., relative entropy) may be used to compare separation of the posterior

and prior distributions.17,40 These quantities can then be used to determine the optimal

experiment that maximizes the information gain. Here the use of synthetic data saves the

valuable experimental costs needed to generate the data.

Generally speaking, BI can be broadly applied for optimal decision making with a given

objective function (e.g., KL divergence). For further details we refer the interested reader

to texts on Bayesian experimental design.1,61

Conclusions

This Perspective has attempted to connect the dots between Bayesian inference and statisti-

cal mechanics, with a practical focus on Monte Carlo sampling (Figure 1). On the one hand,

multi-dimensional probability theory – of which Bayes’ rule is one example – is a point of rig-

orous commonality. On the other, whereas classical statistical mechanics is uniquely defined

by the Boltzmann factor and Cartesian integration measure over phase space, the Bayesian

framework is intrinsically ambiguous due to the need for prior specification of existing knowl-

edge and of the parameters themselves. Yet regardless of those differences, the key message is

that knowledge of statistical mechanics in the realm of physical chemistry/chemical physics

provides a solid basis for understanding of Bayesian inference theory and practice.

The relationship between practical Monte Carlo calculations in the two realms is perhaps

more interesting. Approaches based on physical ideas, such as faster sampling at higher tem-

peratures and the annealing idea, have proven of great value in Bayesian inference, arguably

more than for the physical systems which motivated development of some of the approaches.

Fundamentally, this is due to the vast gap in dimensionality between typical Bayesian and
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biomolecular systems: the relatively low dimensionality (often 10-100 parameters) typically

encountered in exact Bayesian calculations enables practical use of high, and even infinite,

effective temperatures in sampling.
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