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Abstract 

Solvated organics in the ocean are present in relatively small concentrations but contribute largely 
to ocean chemical diversity and complexity. Existing in the ocean as dissolved organic carbon 
(DOC) and enriched within the sea surface microlayer (SSML), these compounds have large 
impacts on atmospheric chemistry through their contributions to cloud nucleation, ice formation 
and other climatological processes. The ability to quantify the concentrations of organics in ocean 
samples is critical for understanding these marine processes. The work presented herein details an 
investigation to develop machine learning (ML) methodology utilizing infrared spectroscopy data 
to accurately estimate saccharide concentrations in complex solutions. We evaluated multivariate 
linear regression (MLR), K-Nearest-Neighbors (KNN), Decision Trees (DT), Gradient Boosted 
Regressors (GBR), Multilayer Perceptrons (MLP), and Support Vector Regressors (SVR) toward 
this goal. SVR models are shown to predict the accurate generalized saccharide concentrations 
best. Our work presents an application combining fast spectroscopic techniques with ML to 
analyze organic composition proxy ocean samples to target a generalized method for analyzing 
field marine samples more efficiently, without sacrificing accuracy or precision.  
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Introduction 
 

The sea surface microlayer (SSML) is a multifaceted, deeply complex region of the 

ocean.1–7 As the interface between the Earth’s atmosphere and ocean, the SSML performs vital 

functions that affect climate5,8–10 and ice formation.4,11–13 Because of unique interfacial 

anisotropy,14–17 the physical and chemical properties of the SSML are of interest for their 

divergence from bulk water behavior. Generally, the SSML is enriched with lipids, proteins, and 

saccharides (also referred to as sugars or carbohydrates) which contribute to the total dissolved 

organic carbon (DOC).18–22 Understanding the chemical composition of the SSML provides insight 

into the biological activity and productivity within the SSML and enables predictions of cloud 

condensation23 or ice nucleation,4 ultimately aiding climatological models.24–27 Recent analyses of 

saccharide concentrations in SSML have shown concentrations of about 500 nM from eight unique 

compounds.20 The dynamic nature and chemical complexity of the SSML make monitoring the 

region difficult, and yet increasingly necessary. 

Our work is motivated by the need for fast, accurate analysis of SSML samples to establish 

a method that enables exponentially more SSML chemical measurements. Traditional methods to 

analyze SSML samples are typically limited to mass spectrometry,5,28,29 which requires extensive 

organic, solid-phase extraction processes. Nevertheless, these methods have provided invaluable 

information on SSML (and sea spray aerosol) chemical composition. To reduce the sample 

preparation process and expedite analysis of results, we developed methods that utilize infrared 

(IR) spectroscopy methods, specifically, attenuated total reflectance Fourier transform infrared 

(ATR-FTIR) to estimate the saccharide concentration via machine learning (ML) 

implementations. IR methods provide information on chemical composition and concentration by 

probing the vibrations of chemical bonds, rather than relying on mass fragmentation. Identification 
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and quantification of specific chemical classes from IR spectra is carried out by analyzing peaks 

characteristic to specific chemical bonds.30 We note that the limit of detection for ATR-FTIR 

spectroscopy is higher than for mass spectroscopy, however the speed of analysis for this method 

is superior. 

ML provides a unique avenue to explore relationships among data that cannot be otherwise 

deduced. The applications to improve or expand chemical systems via ML are broad and present 

throughout all chemistry fields. Materials design,31,32 novel drug discovery,33,34 catalyst 

optimization,35,36 and clean energy production37,38 are some of the many fields where knowledge 

has expanded because of ML. Advances in molecular dynamics in combination with machine 

learning have also paved the way for bridging the connection between molecular structure and 

physical characteristics.39,40 Recent work emphasizes the improved application of FTIR 

spectroscopy, and more broadly vibrational spectroscopy, for qualitative and quantitative 

assignment, especially when combined with ML models.41,42 Takamura and colleagues explored 

methods to identify donor biological sex from urine samples.43 They presented several ML 

applications, including partial least-squares discriminant analysis with and without a genetic 

algorithm, to explore the chemical information contained in their FTIR spectra. They found that 

the increased computational complexity of an artificial neural network resulted in comparable 

results to their discriminant analysis model’s predictive power. Butler and coworkers presented 

successful use of support vector machines (SVM) in predicting brain cancer from ATR-FTIR 

spectra.44 Their high-throughput approach featured high sensitivity and specificity in the prediction 

of benign versus malignant samples.  

SVMs have also been employed in classification of Raman spectra to identify Alzheimer’s 

Disease in mice; a relevant features map is utilized to identify pertinent peaks that are from 
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molecules known to be associated with the disease. A study from 2022 reports comparable 

classification accuracy of microplastic Raman microscopy samples from k-nearest neighbors 

(KNN), multi-layer perceptron (MLP), and random forest (RF) models.45 These literature 

examples highlight the diverse applications of ML and develop techniques that expand the 

applications of chemistry, as we present herein. 

We chose ML methods of increasing complexity to evaluate the training data and 

investigate new data, including field samples with unknown composition. Fitting data to a linear 

model, or LR, is common for absorbance data, such as fitting to the Beer-Lambert Law to 

determine physical constants or identify concentrations of unknown samples.46 Absorbance FTIR 

spectra generally follow a linear relationship of intensity with respect to concentration, which is 

advantageous for determining new sample composition. Recent work has utilized multiple LR to 

identify heavy metals, including investigating the effect of surface chemistry on vanadium47 and 

lead48 toxicity. However, the simplicity of the method ultimately restricts the model’s usefulness 

in more complex, dynamic systems. The largest difference between Beer-Lambert Law linear 

regression and ML linear regression is that all features (in our work, wavenumbers)  are used 

simultaneously to make the multi-variate model’s assignments.49 

 Of the techniques considered here, SVR is the most mathematically advanced ML model.50 

SVR fits training data to the best function by minimizing the distance of each value from the fitting 

equation to be able to predict continuous values. Not all data is appropriate for SVR, but in cases 

where concentration is being predicted and is linearly correlated with absorbance, it can be a well-

suited model. A 2020 report by Mohammadi and colleagues presented an application of SVR to 

predict different functional group fractions in crude oil.51 As another example, ATR-FTIR and 

SVR were employed by Chen et al. 2022 to predict bio-oil characteristics quickly.52  

https://doi.org/10.26434/chemrxiv-2023-d2ztk-v3 ORCID: https://orcid.org/0000-0002-3747-5304 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-d2ztk-v3
https://orcid.org/0000-0002-3747-5304
https://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

The work described herein provides a discussion on an improved approach to monitoring 

the SSML. We explore ML approaches to achieve precise and accurate quantitative analysis of 

simplified proxies of glucose and egg serum albumin (ESA). Glucose is used as our saccharide 

proxy for training data as it is commonly observed in field measurements and saccharides are 

frequently reported as a concentration of glucose.28,53,54 We also use ESA in our training set 

because ESA, our SSML protein proxy, has been shown to have surface activity and form insoluble 

monolayers on aqueous interfaces, despite being a water soluble protein.55–57 While an unlikely 

protein to find in field samples, ESA provides a complex matrix of amino acids that are abundant 

in the ocean’s water column.5,7,58–60 The use of ML in conjunction with vibrational spectroscopy 

enables greater exploration of chemical space and identifying connections between data. Our 

results present, to our knowledge, a first account of predicting saccharide concentration from FTIR 

spectra of ocean proxy samples using ML. 

Methods 

Training Solution Preparation, Data Collection, and Data Preprocessing 

All chemicals were used as received and all solutions requiring water were prepared using 

ultrapure water (18 mΩ) from a MilliQ system. For training spectra, stock solutions of 1M glucose 

(Sigma Aldrich, 99.5% (GC)) in ultrapure water and 5 mg/mL egg serum albumin (ESA) (Sigma 

Aldrich, 62-88%, agarose gel electrophoresis) in ultrapure water were prepared. The solution 

matrix was produced by dispensing the relevant amount of each stock solution via auto pipette and 

diluting with the requisite amount of water. Briefly, we selected this system and concentrations to 

have reasonable complexity.  

Both the protein and saccharide have IR absorbances from 1800 to 900 cm-1. The peaks 

were well resolved, with minimal convolution. Inorganic salts were excluded in our matrix, but 
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we provide spectra of the O-H stretching region in the SI to emphasize the limited effect that they 

have on the IR spectra. Concentrations were selected based on literature precedent from field study 

results.26,27,29 Solutions were measured in triplicate via ATR-FTIR spectroscopy (PerkinElmer 

Spectrum 3) with a single beam KRS-5/diamond ATR assembly. Spectra were acquired in the 

“SingleBeam” mode without the use of a continuous reference and were detected using a liquid 

nitrogen cooled HgCdTe (MCT) detector over 32 scans (approximately one minute) from 4000 to 

450 cm-1 with a resolution of 1 cm-1. Spectra were converted to absorbance with a water-only 

background spectrum (Ro) using the established relationship of -log(R/Ro). Baseline correction 

was done using a linear fit model to correct for inconsistent baseline between measurements. 

Water-only backgrounds were obtained every 5 sample measurements. Triplicate measurements 

were used as individual spectra, rather than an average of the three, to provide more machine 

learning training and testing data (Figure 1). 

 
Figure 1. Schematic flow chart of data collection process to the ML pipeline. 
 
Lab Generated Simplified and Ocean Proxy Sample Preparation and Sampling 

To test the models’ accuracies with increasing chemical complexity, ocean proxy samples 

were made in the lab with a greater diversity of chemical constituents than the simplified proxies. 

For these test data, stock ocean proxy-solution was prepared to have 0.1 M sucrose (Sigma Aldrich, 

99.5% (GC)), 0.1 M glucose, 0.5 mg/mL ESA, 3.323 mg/mL bovine serum albumin (BSA) 

(Sigma Aldrich, ≥ 98%, heat shock fraction, pH 7), and 0.1 M 1-butanol (Sigma Aldrich, 99.9%). 

Two additional solutions were prepared via dilution of the stock. The higher concentration dilution 
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was 7.5 mL of stock and 2.5 mL of water and the lower was 5 mL of stock and 5 mL of water. The 

three solutions were analyzed using the data collection and preprocessing described above.  

 Ocean Proxy 
A 

Ocean Proxy 
B 

Ocean Proxy 
C 

Concentration of Sucrose (M) 0.1 0.075 0.05 
Concentration of Glucose (M) 0.1 0.075 0.05 

Concentration of Saccharide (M) 0.2 0.150 0.1 
Concentration of ESA (mg/mL) 0.5 0.375 0.250 
Concentration of BSA (mg/mL 3.323 2.492 1.662 

Concentration of 1-Butanol (M) 0.1 0.075 0.05 
Table 1. Concentrations of all species in the lab-made ocean proxy samples for evaluation of 
model accuracy on more chemically diverse conditions. 
 

Machine Learning Methods 

All machine learning (ML) methods were implemented using Python scripts and scikit 

learn packages. These are available online at: 

 https://github.com/Ohio-State-Allen-Lab/Saccharide_Quantification_2024. 

Preprocessing 

All data, the entire training set of simplified proxy and the ocean proxy samples were 

standardized using the scikit-learn standard scalar function. The function subtracts the mean of 

each feature (wavenumber) and divides each feature by the standard deviation of that feature. After 

standardization, the ocean proxy data was separated from the data that would then be used for 

training. The data was then split 70::30 into training and test/validation sets. The latter of which 

was then split 50::50 into testing and validation datasets. A random state was set to to split the data 

the same way every time into the training, testing, and validating datasets each time to ensure 

consistency in the datasets. The training and testing sets were used to train each of the models (210 

spectra for training 45 for testing). The withheld validation data (45 spectra) were then used to 

further explore the models’ accuracy on previously unseen data that was similar to the data the 
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models were trained on. After training of the models, the results were then reverse transformed 

back to molar quantities by mathematically undoing the scaling that occurred prior to training 

allowing for the direct interpretation of the results. 

A total of 6 machine learning methods were utilized in this work. They will be described 

here in order of increasing computational complexity. 

Multivariate Linear Regression (MLR) 

MLR is the least computationally complex method that we utilized. All features are fit with 

a hyperplane in which the dimensionality is determined by the number of features, each feature 

has an associated weight. This hyperplane is then used to identify concentrations of new samples 

in the same way that a line would be used for regression with only one feature. Multiple linear 

models including Lasso, ElasticNet, and Orthogonal Matching Pursuit were tested, but the highest 

performing estimator was the Ridge regressor.61 This method tends to perform well when you have 

a large number of features compared to your number of spectral samples. 

K-Nearest Neighbors (KNN) 

KNN is a method of supervised learning that uses the proximity of previously explored 

data to make predictions by looking at the Euclidian distance (calculating distance using the 

Pythagorean theorem) between the neighbors and the test datapoint and using that to adjust the 

predictions.62 Numbers of utilized neighbors between 2 and 10 neighbors were tested, but the 

model performed the highest when 5 were used. 

Decision Trees (DT) 

DT work to separate the large dataset into smaller pieces repeatedly based on optimized 

features to be used as split points.63 These smallest components, or leaves, then are used to identify 

predictions for new data. The model utilized in this work terminated splitting once 2 features were 
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unable to be split further. The model then worked to minimize squared error between training 

predictions and true values. The original splits were randomized. 

Gradient Boosted Regression (GBR) 

GBR is an example of an ensemble algorithm that allows for the utilization of many smaller 

models, in this context decision trees.64 This method is more computationally complex than a 

single DT and can identify more complex patterns. The model presented here utilizes a Huber loss 

function, and 2,000 estimators with a learning rate of 0.5 and a max depth of 1.  

Multilayer Perceptron (MLP) 

MLP is an example of an artificial neural network, a framework of interconnected nodes 

referred to as neurons.65 Each neuron has an associated weight, which is adjusted with each training 

step through a mathematical process of backpropagation. The model presented in this work uses a 

tanh activation function, an Adam solver, and 500 training steps. 

Support Vector Regression (SVR) 

SVR utilizes the power of high dimensionality data to identify patterns.66 By pulling the 

data into a higher dimensionality space, it allows for the fitting of the model with different 

mathematical approaches. The kernel describes the function used to fit the data that has been pulled 

into the high dimensionality hyperplane. This model utilizes a radius bias function as the kernel 

for fitting the dataset. 

Model Analysis 

To evaluate the models after training, the R2 values are calculated to quantify the closeness 

of fit of the model to the data. Error was also calculated at three different places within the training 

set. First, the error within the training set is evaluated by comparing the predicted values to the 

true values with each model. This also describes how well the model was able to fit the training 
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data. Next, the error of the testing data was calculated in the same way. This highlights the final 

accuracy of the training as the training and datasets are both used to adjust model parameters. 

Finally, the error within the validation data focuses on the ability of the model to evaluate data that 

it has not previously been exposed to. We also evaluate the prediction of the models on the ocean 

proxy samples to determine how well they perform on data that is chemically different than the 

data that the models were trained on. 

Results and Discussion 

Evaluating Feasibility of Using IR Spectra to Quantify Saccharide Concentration 

 

 

Figure 2. Molecular structures of both glucose (left) and sucrose (right). 
 

The chemical complexity of simplified proxy and ocean proxy samples is explored with 

ATR-FTIR spectroscopy and quantitative machine learning approaches to develop a simple and 

accurate method of analysis. The FTIR spectra provide chemical information about the sample 

components and their concentrations, which have a linear correlation with absorbance. The 

correlation diverges from a linear relationship at high absorbance values, which is not of concern 

in the presently studied concentration ranges. A single figure containing all the acquired spectra is 

presented in the SI (Figure S1). Glucose has many vibrational modes that can be used for analysis 

(Figure S2). 
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Heat maps can be used to visualize the spectral dataset in its entirety. The data was sorted 

with respect to the concentration of glucose and then plotted against the wavenumber and the 

intensity at that wavenumber for a given spectrum. This allows for the visualization of the entire 

dataset in the context of changing glucose concentration and is presented as a heat map in Figure 

3. A band of increasing intensity can be seen between 1200 and 1000 cm-1 correlating to the 

increasing concentration of glucose in solution, specifically with the C-C and C-O vibrational 

modes. The presence of this band supports the ability of the machine learning models to have 

representative features that will allow for the concentration analysis of glucose. 

 

 

Figure 3. Heat map of the ATR-FTIR dataset as sorted by the concentration of glucose (0 – 1 M). 
The band of intensity growing in between 1100 and 1000 cm-1 corresponds to the increasing C-O 
stretching within the IR fingerprint region from the increased concentration of glucose. We do not 
see a strong spectral signature for the ESA relative to that of glucose also in solution (0 – 5 mg/mL) 
where we would expect the amide bands to exist between 1700 and 1500 cm-1. 
 

It is also possible to describe the ability of the ATR-FTIR dataset to be fit through pre-

training feature selection analysis. Typically, this approach is utilized to reduce data 

dimensionality and avoid overfitting large datasets or to reduce computational costs. For our 
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uses, we can analyze the feature selection scores (Figure 4) to determine how much of the 

variance with respect to concentration is described in each wavenumber. Ideally, these scores 

would correlate a higher score with the areas of the spectrum where we see vibrational 

contributions from glucose. To do this analysis, we used the SelectKBest function within scikit 

learn. This function explores each feature (wavenumber) independently and calculates a score 

quantifying the degree to which that feature describes the target variable (concentration). The 

function is provided to all of the testing dataset so it is exposed not only to peaks from the 

analyte of interest but also any species in the matrix. For solutions, it is ideal to see peaks 

associated with the analyte of interest having high scores and any peaks associated with the 

matrix to be minimized. In Figure 4 the C-O and C-H bands from 1150 to 500 cm-1 appear to 

describe the majority of the variation within the data. This is likely due to the fact that they have 

a much higher relative intensity compared to the bending modes around 1400 cm-1. The feature 

selection analysis also contains additional features between 1500 and 1400 cm-1, which arise as 

artifacts within the glucose data from mathematically removing water from the samples via -

log(R/R0).  
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Figure 4. Feature selection scores as calculated by the SelectKBest function from Scikit Learn.  
 
 
Evaluating Machine Learning Models’ Fit of the Simplified Proxy Dataset 

After training, the accuracy of the model’s ability to identify the concentrations of the test 

and validation sets was evaluated to explore the influence of the true concentration of the 

simplified proxy dataset on the error. Ideally, there wouldn't be any effect and the error would be 

consistent regardless of concentration range. Figure 5 visualizes these results. MLR had the 

smallest errors and apart from the GBR none of the models had a strong error response with respect 

to concentration range. Also, there is little variance between the accuracies of the training and 

validation datasets suggesting that there is good fit amongst the models. R2 values for each model 

have also been calculated and are presented in the SI (Table S2). 
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Figure 5 (a-f). Scatter plots depicting the accuracy of each of the utilized machine learning models 
on the simplified proxy dataset. The y-axis represents the difference between the model assigned 
and the actual concentrations of the testing dataset (darker circles) and the withheld validation 
dataset (lighter triangles). Apart from the gradient boosted regression model, the models are robust 
with respect to concentration meaning that the error changes minimally as the actual concentration 
increases.  
 

https://doi.org/10.26434/chemrxiv-2023-d2ztk-v3 ORCID: https://orcid.org/0000-0002-3747-5304 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-d2ztk-v3
https://orcid.org/0000-0002-3747-5304
https://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

To perform a more in-depth error analysis, the models’ error was calculated between each 
step of the training by evaluating the training, testing, and validation sets’ final accuracies. All of 
the models had smaller than 60 mM in error amongst the different steps. These results have been 
visualized in Figure 6. 

 

Figure 6. Bar graphs depicting the associated root mean squared error (RMSE) in each part of the 
training process for the simplified proxy dataset. Note, the training error for each model was 0.000 
M, suggesting that each of the models fully converged on the training dataset. All models have a 
final validation error of less than 0.06 M, but the MLR performed the best in this evaluation.  
 
Evaluating Machine Learning Models’ Fit of the Ocean Proxy Dataset 

The ocean proxy samples were then estimated using these same ML models. The “true” 

saccharide concentrations are defined as the sum of the concentrations of glucose and sucrose. 

This additive concentration, coupled with the increased complexity of the matrix extends these 

proxies beyond the chemical space that the models were originally trained on. For the purpose of 

identifying a generalized saccharide concentration, it is important to select for the models with the 

highest combined accuracy without valuing one sample over the others. A model performing 

poorly here doesn’t suggest that the model is poorly trained, just that it doesn’t have the capacity 

to generalize that far beyond the training. For example, MLR had the lowest error in test and 

validation datasets as seen in Figure 6 for the simplified proxies, however MLR only has an 

accuracy of 50-60% on the ocean proxies. This suggests that the MLR model is highly fit to glucose 

to the point that it does not generalize to sucrose which for other chemical contexts would be ideal.  
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The highest accuracy in identifying the combined saccharide concentrations came from the SVR 

model. It had a slight bias towards high concentrations but was fairly accurate, with over 90% 

accuracy in all 3 samples. The MLP also performed well, having an accuracy of 99.9% on the 

0.1001 M saccharide but just below 90% accuracy on the other two proxies. These results are 

shown in Figure 7. 

 

Figure 7. Accuracy of estimates from each of the models on interpreting the ocean proxy 
saccharide concentrations. The darkest markers in each column represent the highest concentration 
of saccharide in ocean proxy (0.2002 M) and the lightest represent the least concentrated (0.1001 
M). The models have varied levels of success at identifying samples that are far removed from the 
original training set. The highest performers were MLP and SVR with SVR having a higher total 
accuracy for all three proxies.  
 

Summary of Discussion  

 Our quantitative results indicate that a computationally inexpensive model, SVR, provides 

predictions of saccharide concentration within 10 mM of the true value. In comparison to LR, the 

SVR has a slightly lower coefficient of determination, but provides much more accurate 

concentrations on more chemically complex test samples with more than just glucose and ESA. 

Even with increased sample complexity, including additional saccharide, protein, and lipid 

molecules, the SVR model accurately predicts the total saccharide concentration.  
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Conclusions 

 To develop efficient, less-expensive analytical techniques for analysis of the SSML, 

several ML methods were applied to ATR-FTIR spectra and used to determine saccharide 

concentration and chemical composition of aqueous samples. Our results indicate that SVR is 

viable for complex solutions, especially considering the training sample data is relatively simple. 

The research presented herein provides a unique approach to studying the contributions to the DOC 

and as a result the SSML utilizing the advanced computational tools available and reduces the time 

needed to perform analyses of marine samples. Further work should focus on finding an optimal 

training data set, investigating other concentration quantification, and intercalating other 

spectroscopic or spectrometric data, to name a few. An improved understanding and quantification 

of the marine organics is achievable, wherein more frequent measurements and analysis can occur, 

ultimately providing more information about the productivity of the marine organics and thus their 

effects on our atmosphere and climate. 

Supplemental Information 

Appendix A. ATR-FTIR Spectra of all Training Samples. 

Appendix B. Vibrational Analysis of Glucose and ESA 

Appendix C. Highest Concentration of ESA and Glucose 

Appendix D. Selected Single Peak Beer’s Law Analysis 

Appendix E. Analysis of MLR and SVR Weights 

Appendix F. Tabulated Values for Accuracy and Fit for Each ML Model 

Appendix G. Concentration Predictions for Ocean Proxy Solutions for Each ML Model 
 

Acknowledgements  

N.M.N. acknowledges funding support from NASA’s Future Investigators of NASA Earth and 

Space Science Technology (FINESST) grant number 20-PLANET20-0067. A.A.E. and H.C.A. 

https://doi.org/10.26434/chemrxiv-2023-d2ztk-v3 ORCID: https://orcid.org/0000-0002-3747-5304 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-d2ztk-v3
https://orcid.org/0000-0002-3747-5304
https://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

acknowledge funding from the National Science Foundation through the Center for Aerosol 

Impacts on Chemistry of the Environment (CAICE) under Grant No. CHE-1801971. J.B.C. 

acknowledges funding support from the National Science Foundation through Grant No. CHE-

2102313.  

 
References 
(1) Carlson, D. J. Dissolved Organic Materials in Surface Microlayers: Temporal and Spatial 

Variability and Relation to Sea State. Limnol. Oceanogr. 1983, 28 (3), 415–431. 
https://doi.org/10.4319/lo.1983.28.3.0415. 

(2) Cunliffe, M.; Engel, A.; Frka, S.; Gašparović, B.; Guitart, C.; Murrell, J. C.; Salter, M.; 
Stolle, C.; Upstill-Goddard, R.; Wurl, O. Sea Surface Microlayers: A Unified 
Physicochemical and Biological Perspective of the Air–Ocean Interface. Prog. Oceanogr. 
2013, 109, 104–116. https://doi.org/10.1016/j.pocean.2012.08.004. 

(3) Engel, A.; Bange, H. W.; Cunliffe, M.; Burrows, S. M.; Friedrichs, G.; Galgani, L.; 
Herrmann, H.; Hertkorn, N.; Johnson, M.; Liss, P. S.; Quinn, P. K.; Schartau, M.; Soloviev, 
A.; Stolle, C.; Upstill-Goddard, R. C.; van Pinxteren, M.; Zäncker, B. The Ocean’s Vital 
Skin: Toward an Integrated Understanding of the Sea Surface Microlayer. Front. Mar. Sci. 
2017, 4 (MAY), 1–14. https://doi.org/10.3389/fmars.2017.00165. 

(4) Chance, R. J.; Hamilton, J. F.; Carpenter, L. J.; Hackenberg, S. C.; Andrews, S. J.; Wilson, 
T. W. Water-Soluble Organic Composition of the Arctic Sea Surface Microlayer and 
Association with Ice Nucleation Ability. Environ. Sci. Technol. 2018, 52 (4), 1817–1826. 
https://doi.org/10.1021/acs.est.7b04072. 

(5) Cochran, R. E.; Laskina, O.; Trueblood, J. V.; Estillore, A. D.; Morris, H. S.; Jayarathne, T.; 
Sultana, C. M.; Lee, C.; Lin, P.; Laskin, J.; Laskin, A.; Dowling, J. A.; Qin, Z.; Cappa, C. D.; 
Bertram, T. H.; Tivanski, A. V.; Stone, E. A.; Prather, K. A.; Grassian, V. H. Molecular 
Diversity of Sea Spray Aerosol Particles: Impact of Ocean Biology on Particle Composition 
and Hygroscopicity. Chem 2017, 2 (5), 655–667. 
https://doi.org/10.1016/j.chempr.2017.03.007. 

(6) Ault, A. P.; Moffet, R. C.; Baltrusaitis, J.; Collins, D. B.; Ruppel, M. J.; Cuadra-Rodriguez, 
L. A.; Zhao, D.; Guasco, T. L.; Ebben, C. J.; Geiger, F. M.; Bertram, T. H.; Prather, K. A.; 
Grassian, V. H. Size-Dependent Changes in Sea Spray Aerosol Composition and Properties 
with Different Seawater Conditions. Environ. Sci. Technol. 2013, 47 (11), 5603–5612. 
https://doi.org/10.1021/es400416g. 

(7) Bertram, T. H.; Cochran, R. E.; Grassian, V. H.; Stone, E. A. Sea Spray Aerosol Chemical 
Composition: Elemental and Molecular Mimics for Laboratory Studies of Heterogeneous 
and Multiphase Reactions. Chem. Soc. Rev. 2018, 47 (7), 2374–2400. 
https://doi.org/10.1039/c7cs00008a. 

(8) Abraham, J. P.; Baringer, M.; Bindoff, N. L.; Boyer, T.; Cheng, L. J.; Church, J. A.; Conroy, 
J. L.; Domingues, C. M.; Fasullo, J. T.; Gilson, J.; Goni, G.; Good, S. A.; Gorman, J. M.; 
Gouretski, V.; Ishii, M.; Johnson, G. C.; Kizu, S.; Lyman, J. M.; Macdonald, A. M.; 
Minkowycz, W. J.; Moffitt, S. E.; Palmer, M. D.; Piola, A. R.; Reseghetti, F.; Schuckmann, 
K.; Trenberth, K. E.; Velicogna, I.; Willis, J. K. A Review of Global Ocean Temperature 

https://doi.org/10.26434/chemrxiv-2023-d2ztk-v3 ORCID: https://orcid.org/0000-0002-3747-5304 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-d2ztk-v3
https://orcid.org/0000-0002-3747-5304
https://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

Observations: Implications for Ocean Heat Content Estimates and Climate Change. Rev. 
Geophys. 2013, 51 (3), 450–483. https://doi.org/10.1002/rog.20022. 

(9) Burrows, S. M.; Ogunro, O.; Frossard, A. A.; Russell, L. M.; Rasch, P. J.; Elliott, S. M. A 
Physically Based Framework for Modeling the Organic Fractionation of Sea Spray Aerosol 
from Bubble Film Langmuir Equilibria. Atmospheric Chem. Phys. 2014, 14 (24), 13601–
13629. https://doi.org/10.5194/acp-14-13601-2014. 

(10) Cheng, S.; Li, S.; Tsona, N. T.; George, C.; Du, L. Insights into the Headgroup and Chain 
Length Dependence of Surface Characteristics of Organic-Coated Sea Spray Aerosols. ACS 
Earth Space Chem. 2019, 3 (4), 571–580. 
https://doi.org/10.1021/acsearthspacechem.8b00212. 

(11) Wilson, T. W.; Ladino, L. A.; Alpert, P. A.; Breckels, M. N.; Brooks, I. M.; Browse, J.; 
Burrows, S. M.; Carslaw, K. S.; Huffman, J. A.; Judd, C.; Kilthau, W. P.; Mason, R. H.; 
McFiggans, G.; Miller, L. A.; Najera, J. J.; Polishchuk, E.; Rae, S.; Schiller, C. L.; Si, M.; 
Temprado, J. V.; Whale, T. F.; Wong, J. P. S.; Wurl, O.; Yakobi-Hancock, J. D.; Abbatt, J. 
P. D.; Aller, J. Y.; Bertram, A. K.; Knopf, D. A.; Murray, B. J. A Marine Biogenic Source of 
Atmospheric Ice-Nucleating Particles. Nature 2015, 525 (7568), 234–238. 
https://doi.org/10.1038/nature14986. 

(12) Ting Katty Huang, W.; Ickes, L.; Tegen, I.; Rinaldi, M.; Ceburnis, D.; Lohmann, U. 
Global Relevance of Marine Organic Aerosol as Ice Nucleating Particles. Atmospheric 
Chem. Phys. 2018, 18 (15), 11423–11445. https://doi.org/10.5194/acp-18-11423-2018. 

(13) DeMott, P. J.; Hill, T. C. J.; McCluskey, C. S.; Prather, K. A.; Collins, D. B.; Sullivan, R. 
C.; Ruppel, M. J.; Mason, R. H.; Irish, V. E.; Lee, T.; Hwang, C. Y.; Rhee, T. S.; Snider, J. 
R.; McMeeking, G. R.; Dhaniyala, S.; Lewis, E. R.; Wentzell, J. J. B.; Abbatt, J.; Lee, C.; 
Sultana, C. M.; Ault, A. P.; Axson, J. L.; Martinez, M. D.; Venero, I.; Santos-Figueroa, G.; 
Stokes, M. D.; Deane, G. B.; Mayol-Bracero, O. L.; Grassian, V. H.; Bertram, T. H.; 
Bertram, A. K.; Moffett, B. F.; Franc, G. D. Sea Spray Aerosol as a Unique Source of Ice 
Nucleating Particles. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (21), 5797–5803. 
https://doi.org/10.1073/pnas.1514034112. 

(14) Carter-Fenk, K. A.; Dommer, A. C.; Fiamingo, M. E.; Kim, J.; Amaro, R. E.; Allen, H. 
C. Calcium Bridging Drives Polysaccharide Co-Adsorption to a Proxy Sea Surface 
Microlayer. Phys. Chem. Chem. Phys. 2021, 23 (30), 16401–16416. 
https://doi.org/10.1039/d1cp01407b. 

(15) Yao, X.; Liu, Q.; Wang, B.; Yu, J.; Aristov, M. M.; Shi, C.; Zhang, G. G. Z.; Yu, L. 
Anisotropic Molecular Organization at a Liquid/Vapor Interface Promotes Crystal 
Nucleation with Polymorph Selection. J. Am. Chem. Soc. 2022, 144 (26), 11638–11645. 
https://doi.org/10.1021/jacs.2c02623. 

(16) Neal, J. F.; Rogers, M. M.; Smeltzer, M. A.; Carter-Fenk, K. A.; Grooms, A. J.; Zerkle, 
M. M.; Allen, H. C. Sodium Drives Interfacial Equilibria for Semi-Soluble Phosphoric and 
Phosphonic Acids of Model Sea Spray Aerosol Surfaces. ACS Earth Space Chem. 2020, 4 
(9), 1549–1557. https://doi.org/10.1021/acsearthspacechem.0c00132. 

(17) Vazquez De Vasquez, M. G.; Carter-Fenk, K. A.; McCaslin, L. M.; Beasley, E. E.; Clark, 
J. B.; Allen, H. C. Hydration and Hydrogen Bond Order of Octadecanoic Acid and 
Octadecanol Films on Water at 21 and 1°c. J. Phys. Chem. A 2021, 125 (46), 10065–10078. 
https://doi.org/10.1021/acs.jpca.1c06101. 

https://doi.org/10.26434/chemrxiv-2023-d2ztk-v3 ORCID: https://orcid.org/0000-0002-3747-5304 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-d2ztk-v3
https://orcid.org/0000-0002-3747-5304
https://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

(18) Myklestad, S. M. Dissolved Organic Carbon from Phytoplankton. In Marine Chemistry; 
Wangersky, P. J., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2000; pp 111–148. 
https://doi.org/10.1007/10683826_5. 

(19) Lønborg, C.; Carreira, C.; Jickells, T.; Álvarez-Salgado, X. A. Impacts of Global Change 
on Ocean Dissolved Organic Carbon (DOC) Cycling. Front. Mar. Sci. 2020, 7 (June), 1–24. 
https://doi.org/10.3389/fmars.2020.00466. 

(20) Jayarathne, T.; Sultana, C. M.; Lee, C.; Malfatti, F.; Cox, J. L.; Pendergraft, M. A.; 
Moore, K. A.; Azam, F.; Tivanski, A. V.; Cappa, C. D.; Bertram, T. H.; Grassian, V. H.; 
Prather, K. A.; Stone, E. A. Enrichment of Saccharides and Divalent Cations in Sea Spray 
Aerosol during Two Phytoplankton Blooms. Environ. Sci. Technol. 2016, 50 (21), 11511–
11520. https://doi.org/10.1021/acs.est.6b02988. 

(21) Gericke, A.; Hühnerfuss, H. Investigation of Z- and E-Unsaturated Fatty Acids, Fatty 
Acid Esters, and Fatty Alcohols at the Air/Water Interface by Infrared Spectroscopy. 
Langmuir 1995, 11 (1), 225–230. https://doi.org/10.1021/la00001a039. 

(22) Li, Y.; Shrestha, M.; Luo, M.; Sit, I.; Song, M.; Grassian, V. H.; Xiong, W. Salting up of 
Proteins at the Air/Water Interface. Langmuir 2019, 35 (43), 13815–13820. 
https://doi.org/10.1021/acs.langmuir.9b01901. 

(23) Orellana, M. V.; Matrai, P. A.; Leck, C.; Rauschenberg, C. D.; Lee, A. M.; Coz, E. 
Marine Microgels as a Source of Cloud Condensation Nuclei in the High Arctic. Proc. Natl. 
Acad. Sci. U. S. A. 2011, 108 (33), 13612–13617. https://doi.org/10.1073/pnas.1102457108. 

(24) Ogunro, O. O.; Burrows, S. M.; Elliott, S.; Frossard, A. A.; Hoffman, F.; Letscher, R. T.; 
Moore, J. K.; Russell, L. M.; Wang, S.; Wingenter, O. W. Global Distribution and Surface 
Activity of Macromolecules in Offline Simulations of Marine Organic Chemistry. 
Biogeochemistry 2015, 126 (1–2), 25–56. https://doi.org/10.1007/s10533-015-0136-x. 

(25) Burrows, S. M.; Easter, R.; Liu, X.; Ma, P.-L.; Wang, H.; Elliott, S. M.; Singh, B.; 
Zhang, K.; Rasch, P. J. OCEANFILMS Sea-Spray Organic Aerosol Emissions – Part 1: 
Implementation and Impacts on Clouds. Atmospheric Chem. Phys. Discuss. 2018, 1–27. 
https://doi.org/10.5194/acp-2018-70. 

(26) Elliott, S.; Menzo, Z.; Jayasinghe, A.; Allen, H. C.; Ogunro, O.; Gibson, G.; Hoffman, F.; 
Wingenter, O. Biogeochemical Equation of State for the Sea-Air Interface. Atmosphere 
2019, 10 (5), 1–17. https://doi.org/10.3390/atmos10050230. 

(27) Elliott, S.; Burrows, S.; Cameron-Smith, P.; Hoffman, F.; Hunke, E.; Jeffery, N.; Liu, Y.; 
Maltrud, M.; Menzo, Z.; Ogunro, O.; Van Roekel, L.; Wang, S.; Brunke, M.; Jin, M.; 
Letscher, R.; Meskhidze, N.; Russell, L.; Simpson, I.; Stokes, D.; Wingenter, O. Does 
Marine Surface Tension Have Global Biogeography? Addition for the OCEANFILMS 
Package. Atmosphere 2018, 9 (6), 216. https://doi.org/10.3390/atmos9060216. 

(28) Jayarathne, T.; Sultana, C. M.; Lee, C.; Malfatti, F.; Cox, J. L.; Pendergraft, M. A.; 
Moore, K. A.; Azam, F.; Tivanski, A. V.; Cappa, C. D.; Bertram, T. H.; Grassian, V. H.; 
Prather, K. A.; Stone, E. A. Enrichment of Saccharides and Divalent Cations in Sea Spray 
Aerosol During Two Phytoplankton Blooms. Environ. Sci. Technol. 2016, 50 (21), 11511–
11520. https://doi.org/10.1021/acs.est.6b02988. 

(29) Cochran, R. E.; Laskina, O.; Jayarathne, T.; Laskin, A.; Laskin, J.; Lin, P.; Sultana, C.; 
Lee, C.; Moore, K. A.; Cappa, C. D.; Bertram, T. H.; Prather, K. A.; Grassian, V. H.; Stone, 
E. A. Analysis of Organic Anionic Surfactants in Fine and Coarse Fractions of Freshly 
Emitted Sea Spray Aerosol. Environ. Sci. Technol. 2016, 50 (5), 2477–2486. 
https://doi.org/10.1021/acs.est.5b04053. 

https://doi.org/10.26434/chemrxiv-2023-d2ztk-v3 ORCID: https://orcid.org/0000-0002-3747-5304 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-d2ztk-v3
https://orcid.org/0000-0002-3747-5304
https://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

(30) Enders, A. A.; North, N. M.; Fensore, C. M.; Velez-Alvarez, J.; Allen, H. C. Functional 
Group Identification for FTIR Spectra Using Image-Based Machine Learning Models. Anal. 
Chem. 2021. https://doi.org/10.1021/acs.analchem.1c00867. 

(31) Schleder, G. R.; Acosta, C. M.; Fazzio, A. Exploring Two-Dimensional Materials 
Thermodynamic Stability via Machine Learning. ACS Appl. Mater. Interfaces 2020, 12 (18), 
20149–20157. https://doi.org/10.1021/acsami.9b14530. 

(32) Moosavi, S. M.; Jablonka, K. M.; Smit, B. The Role of Machine Learning in the 
Understanding and Design of Materials. J. Am. Chem. Soc. 2020, 142 (48), 20273–20287. 
https://doi.org/10.1021/jacs.0c09105. 

(33) Batra, K.; Zorn, K. M.; Foil, D. H.; Minerali, E.; Gawriljuk, V. O.; Lane, T. R.; Ekins, S. 
Quantum Machine Learning Algorithms for Drug Discovery Applications. J. Chem. Inf. 
Model. 2021, 61 (6), 2641–2647. https://doi.org/10.1021/acs.jcim.1c00166. 

(34) Polykovskiy, D.; Zhebrak, A.; Vetrov, D.; Ivanenkov, Y.; Aladinskiy, V.; Mamoshina, 
P.; Bozdaganyan, M.; Aliper, A.; Zhavoronkov, A.; Kadurin, A. Entangled Conditional 
Adversarial Autoencoder for de Novo Drug Discovery. Mol. Pharm. 2018, 15 (10), 4398–
4405. https://doi.org/10.1021/acs.molpharmaceut.8b00839. 

(35) Zhang, J.; Hu, P.; Wang, H. Amorphous Catalysis: Machine Learning Driven High-
Throughput Screening of Superior Active Site for Hydrogen Evolution Reaction. J. Phys. 
Chem. C 2020, 124 (19), 10483–10494. https://doi.org/10.1021/acs.jpcc.0c00406. 

(36) Ting, K. W.; Kamakura, H.; Poly, S. S.; Takao, M.; Siddiki, S. M. A. H.; Maeno, Z.; 
Matsushita, K.; Shimizu, K.; Toyao, T. Catalytic Methylation of M-Xylene, Toluene, and 
Benzene Using CO2 and H2 over TiO2-Supported Re and Zeolite Catalysts: Machine-
Learning-Assisted Catalyst Optimization. ACS Catal. 2021, 11 (9), 5829–5838. 
https://doi.org/10.1021/acscatal.0c05661. 

(37) Miyake, Y.; Saeki, A. Machine Learning-Assisted Development of Organic Solar Cell 
Materials: Issues, Analyses, and Outlooks. J. Phys. Chem. Lett. 2021, 12 (51), 12391–12401. 
https://doi.org/10.1021/acs.jpclett.1c03526. 

(38) Masood, H.; Toe, C. Y.; Teoh, W. Y.; Sethu, V.; Amal, R. Machine Learning for 
Accelerated Discovery of Solar Photocatalysts. ACS Catal. 2019, 9 (12), 11774–11787. 
https://doi.org/10.1021/acscatal.9b02531. 

(39) Al Ibrahim, E.; Farooq, A. Transfer Learning Approach to Multitarget Temperature-
Dependent Reaction Rate Prediction. J. Phys. Chem. A 2022, 126 (28), 4617–4629. 
https://doi.org/10.1021/acs.jpca.2c00713. 

(40) Freitas, R. S. M.; Lima, Á. P. F.; Chen, C.; Rochinha, F. A.; Mira, D.; Jiang, X. Towards 
Predicting Liquid Fuel Physicochemical Properties Using Molecular Dynamics Guided 
Machine Learning Models. Fuel 2022, 329, 125415. 
https://doi.org/10.1016/j.fuel.2022.125415. 

(41) Brandt, J.; Mattsson, K.; Hassellöv, M. Deep Learning for Reconstructing Low-Quality 
FTIR and Raman Spectra─A Case Study in Microplastic Analyses. Anal. Chem. 2021, 93 
(49), 16360–16368. https://doi.org/10.1021/acs.analchem.1c02618. 

(42) Fan, X.; Wang, Y.; Yu, C.; Lv, Y.; Zhang, H.; Yang, Q.; Wen, M.; Lu, H.; Zhang, Z. A 
Universal and Accurate Method for Easily Identifying Components in Raman Spectroscopy 
Based on Deep Learning. Anal. Chem. 2023. https://doi.org/10.1021/acs.analchem.2c03853. 

(43) Takamura, A.; Halamkova, L.; Ozawa, T.; Lednev, I. K. Phenotype Profiling for Forensic 
Purposes: Determining Donor Sex Based on Fourier Transform Infrared Spectroscopy of 

https://doi.org/10.26434/chemrxiv-2023-d2ztk-v3 ORCID: https://orcid.org/0000-0002-3747-5304 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-d2ztk-v3
https://orcid.org/0000-0002-3747-5304
https://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

Urine Traces. Anal. Chem. 2019, 91 (9), 6288–6295. 
https://doi.org/10.1021/acs.analchem.9b01058. 

(44) Butler, H. J.; Brennan, P. M.; Cameron, J. M.; Finlayson, D.; Hegarty, M. G.; Jenkinson, 
M. D.; Palmer, D. S.; Smith, B. R.; Baker, M. J. Development of High-Throughput ATR-
FTIR Technology for Rapid Triage of Brain Cancer. Nat. Commun. 2019, 10 (1), 1–9. 
https://doi.org/10.1038/s41467-019-12527-5. 

(45) Lei, B.; Bissonnette, J. R.; Hogan, Ú. E.; Bec, A. E.; Feng, X.; Smith, R. D. L. 
Customizable Machine-Learning Models for Rapid Microplastic Identification Using Raman 
Microscopy. Anal. Chem. 2022. https://doi.org/10.1021/acs.analchem.2c02451. 

(46) Richardson, P. I. C.; Muhamadali, H.; Ellis, D. I.; Goodacre, R. Rapid Quantification of 
the Adulteration of Fresh Coconut Water by Dilution and Sugars Using Raman Spectroscopy 
and Chemometrics. Food Chem. 2019, 272 (January 2018), 157–164. 
https://doi.org/10.1016/j.foodchem.2018.08.038. 

(47) Gillio Meina, E.; Niyogi, S.; Liber, K. Multiple Linear Regression Modeling Predicts the 
Effects of Surface Water Chemistry on Acute Vanadium Toxicity to Model Freshwater 
Organisms. Environ. Toxicol. Chem. 2020, 39 (9), 1737–1745. 
https://doi.org/10.1002/etc.4798. 

(48) Esbaugh, A. J.; Brix, K. V.; Mager, E. M.; De Schamphelaere, K.; Grosell, M. Multi-
Linear Regression Analysis, Preliminary Biotic Ligand Modeling, and Cross Species 
Comparison of the Effects of Water Chemistry on Chronic Lead Toxicity in Invertebrates. 
Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2012, 155 (2), 423–431. 
https://doi.org/10.1016/j.cbpc.2011.11.005. 

(49) sklearn.linear_model.LinearRegression. scikit-learn. https://scikit-
learn/stable/modules/generated/sklearn.linear_model.LinearRegression.html (accessed 2023-
11-02). 

(50) Akinpelu, A. A.; Ali, Md. E.; Owolabi, T. O.; Johan, M. R.; Saidur, R.; Olatunji, S. O.; 
Chowdbury, Z. A Support Vector Regression Model for the Prediction of Total Polyaromatic 
Hydrocarbons in Soil: An Artificial Intelligent System for Mapping Environmental 
Pollution. Neural Comput. Appl. 2020, 32 (18), 14899–14908. 
https://doi.org/10.1007/s00521-020-04845-3. 

(51) Mohammadi, M.; Khanmohammadi Khorrami, M.; Vatani, A.; Ghasemzadeh, H.; 
Vatanparast, H.; Bahramian, A.; Fallah, A. Genetic Algorithm Based Support Vector 
Machine Regression for Prediction of SARA Analysis in Crude Oil Samples Using ATR-
FTIR Spectroscopy. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2021, 245, 118945. 
https://doi.org/10.1016/j.saa.2020.118945. 

(52) Chen, C.; Liang, R.; Ge, Y.; Li, J.; Yan, B.; Cheng, Z.; Tao, J.; Wang, Z.; Li, M.; Chen, 
G. Fast Characterization of Biomass Pyrolysis Oil via Combination of ATR-FTIR and 
Machine Learning Models. Renew. Energy 2022, 194, 220–231. 
https://doi.org/10.1016/j.renene.2022.05.097. 

(53) Schill, S. R.; Burrows, S. M.; Hasenecz, E. S.; Stone, E. A.; Bertram, T. H. The Impact of 
Divalent Cations on the Enrichment of Soluble Saccharides in Primary Sea Spray Aerosol. 
Atmosphere 2018, 9 (12), 13–17. https://doi.org/10.3390/atmos9120476. 

(54) Roy, S. Distributions of Phytoplankton Carbohydrate, Protein and Lipid in the World 
Oceans from Satellite Ocean Colour. ISME J. 2018, 12 (6), 1457–1472. 
https://doi.org/10.1038/s41396-018-0054-8. 

https://doi.org/10.26434/chemrxiv-2023-d2ztk-v3 ORCID: https://orcid.org/0000-0002-3747-5304 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-d2ztk-v3
https://orcid.org/0000-0002-3747-5304
https://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

(55) Cheng, Y. C.; Bianco, C. L.; Sandler, S. I.; Lenhoff, A. M. Salting-out of Lysozyme and 
Ovalbumin from Mixtures: Predicting Precipitation Performance from Protein-Protein 
Interactions. Ind. Eng. Chem. Res. 2008, 47 (15), 5203–5213. 
https://doi.org/10.1021/ie071462p. 

(56) Kudryashova, E. V.; Meinders, M. B. J.; Visser, A. J. W. G.; Van Hoek, A.; De Jongh, H. 
H. J. Structure and Dynamics of Egg White Ovalbumin Adsorbed at the Air/Water Interface. 
Eur. Biophys. J. 2003, 32 (6), 553–562. https://doi.org/10.1007/s00249-003-0301-3. 

(57) Langmuir, I.; Waugh, D. F. The Adsorption of Proteins at Oil-Water Interfaces and 
Artificial Protein-Lipoid Membranesthe Adsorption of Proteins at Oil-Water Interfaces and 
Artificial Protein-Lipoid Membranes. J. Gen. Physiol. 1938, 745–755. 
https://doi.org/10.1085/jgp.21.6.745. 

(58) Angle, K. J.; Nowak, C. M.; Davasam, A.; Dommer, A. C.; Wauer, N. A.; Amaro, R. E.; 
Grassian, V. H. Amino Acids Are Driven to the Interface by Salts and Acidic Environments. 
J. Phys. Chem. Lett. 2022, 13 (12), 2824–2829. https://doi.org/10.1021/acs.jpclett.2c00231. 

(59) Benner, R.; Kaiser, K. Abundance of Amino Sugars and Peptidoglycan in Marine 
Particulate and Dissolved Organic Matter. Limnol. Oceanogr. 2003, 48 (1), 118–128. 
https://doi.org/10.4319/lo.2003.48.1.0118. 

(60) Borkowski, M.; Orvalho, S.; Warszyński, P.; Demchuk, O. M.; Jarek, E.; Zawala, J. 
Experimental and Theoretical Study of Adsorption of Synthesized Amino Acid Core Derived 
Surfactants at an Air/Water Interface. Phys. Chem. Chem. Phys. 2022, 24 (6), 3854–3864. 
https://doi.org/10.1039/D1CP05322A. 

(61) sklearn.linear_model.Ridge. scikit-learn. https://scikit-
learn/stable/modules/generated/sklearn.linear_model.Ridge.html (accessed 2023-12-21). 

(62) sklearn.neighbors.KNeighborsRegressor. scikit-learn. https://scikit-
learn/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html (accessed 
2023-12-21). 

(63) sklearn.tree.DecisionTreeRegressor. scikit-learn. https://scikit-
learn/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html (accessed 2023-12-
21). 

(64) sklearn.ensemble.GradientBoostingRegressor. scikit-learn. https://scikit-
learn/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html (accessed 
2023-12-21). 

(65) sklearn.neural_network.MLPRegressor. scikit-learn. https://scikit-
learn/stable/modules/generated/sklearn.neural_network.MLPRegressor.html (accessed 2023-
12-21). 

(66) sklearn.svm.SVR. scikit-learn. https://scikit-
learn/stable/modules/generated/sklearn.svm.SVR.html (accessed 2023-12-21). 

 

  

https://doi.org/10.26434/chemrxiv-2023-d2ztk-v3 ORCID: https://orcid.org/0000-0002-3747-5304 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-d2ztk-v3
https://orcid.org/0000-0002-3747-5304
https://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

For TOC use only 

 

 

https://doi.org/10.26434/chemrxiv-2023-d2ztk-v3 ORCID: https://orcid.org/0000-0002-3747-5304 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-d2ztk-v3
https://orcid.org/0000-0002-3747-5304
https://creativecommons.org/licenses/by-nc-nd/4.0/

