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Abstract

We recently introduced a polarizable embedding scheme based on an integral-exact

reformulation of the direct reaction field method (IEDRF) that accounts for differen-

tial solvation of ground and excited states in QM/MM simulations. The polarization

and dispersion interactions between the quantum-mechanical (QM) and molecular-

mechanical (MM) regions are described by the DRF Hamiltonian, while the Pauli

repulsion between explicitly treated QM electrons and the implicit electron density
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around MM atoms is modeled with effective core potentials. A single Hamiltonian

is used for all electronic states, so that Born-Oppenheimer states belonging to the

same geometry are orthogonal and state crossings are well-defined. In this work, we

describe the implementation of the method using graphical processing unit accelera-

tion in TeraChem, where it is combined with multiple electronic structure methods,

including Hartree-Fock, Time-dependent Density Functional Theory, and Complete Ac-

tive Space Self-Consistent Field. In contrast with older implementations of the DRF

method, integrals of the polarization operators are evaluated exactly. Expressions for

ingredients needed to construct analytical gradients and non-adiabatic coupling vectors

are derived and tested by optimizing a conical intersection between two excited states

in the presence of a polarizable solvent shell. The method is applied to estimating the

solvent shifts of absorption energies of a series of donor-acceptor dyes having low-lying

charge-transfer states. Even for a non-polar solvent such as n-hexane, the inclusion

of its static polarizability leads to non-negligible shifts that improve the agreement to

essentially quantitative levels (0.03 eV) with full-system calculations. Good agreement

with the positions of experimental absorption maxima measured in solution is also

observed.

1 Introduction

Photochemical reactions can often be understood by concentrating on relatively small molec-

ular components, the chromophores, which are responsible for absorption of light. Light-

induced processes of technological interest, or those occurring in nature such as photo-

synthesis,1 happen in the condensed or liquid phase, where the environment affects the

photophysical properties of the chromophores. Some solvent effects can be understood by

modeling the solvent as a structureless dielectric continuum2–5 or viscous medium: the color

of some chromophores changes depending on the solvent polarity6 and aggregation induced

emission7 is observed when non-radiative deactivation channels are blocked mechanically by
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the surrounding molecules. However, other solvent effects defy simple explanations in terms

of macroscropic solvent properties or steric hinderance and require an atomistic model. A

particularly important example is the unidirectional charge separation in certain photosyn-

thetic systems, such as the purple bacteria reaction center.8 These protein complexes contain

two identical branches of pigments, but only one of them is active. Although the electronic

excitation is strictly localized to the chromophores, the functioning of the reaction center is

fine-tuned by the protein matrix. Several theoretical9,10 and experimental11,12 studies have

concluded that the asymmetry, which directs the charge transfer exclusively along the active

branch, is produced by the unequal dielectric screening in the protein matrix. Since the pro-

tein complex contains thousands of atoms, a fully quantum-mechanical treatment is out of

the question. This motivates the division of such complex systems into a small part treated

with quantum mechanics (QM) and a larger environment treated with a classical molecular

mechanics (MM) force field.13 The coupling between the two systems can be decomposed

into electrostatic and steric interactions as well as polarization and dispersion. Although the

electrons in the MM part are not explicitly accounted for, one must not forget that all these

interactions are quantum mechanical in nature: Steric effects arise from Pauli repulsion and

static polarization and dispersion are the result of the correlated motion of electrons both

in the MM and QM part. Classical approximations for the coupling in the form of pairwise

Lennard-Jones potentials, fixed point charges and polarizable force fields do not necessar-

ily carry over without adjustments to the situation where the QM region is electronically

excited.

While QM/MM simulations with polarizable embedding schemes are routinely performed

for ground-state reactions, the extension to excited states is complicated by the fact that

different electronic states react differently to the polarizable environment.14 Charge-transfer

states, for instance, induce a much larger reaction field than local excitations. The polariz-

ability of a molecule, and with it the dispersive attraction to the surrounding MM region,

also change in the excited state.
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It is important to note that in polar solvents, most of the dielectric response to long-

lived excited states comes from the slow reorientation of the solvent molecules, which could

be captured by running electrostatic embedding QM/MM molecular dynamics simulations

in the excited state. What this simple QM/MM approach misses is the screening due to

the instantaneous reaction of the environment’s electrons to the new charge distribution

in the excited state. Macroscopically, this instantaneous polarization is quantified by the

high-frequency dielectric constant, which for most saturated organic solvents amounts to

approximately ϵ∞ ≈ 2.0 and does not vary among solvents as much as the static (or zero-

frequency) dielectric constant (e.g. ϵr = 1.8 for n-hexane versus ϵr = 78 for water). However,

in apolar solvents, the dielectric screening is exclusively due to the fast response of the

electrons. Even then, the Coulomb interaction (ϵ∞r)−1 is only about half as strong as in

vacuum and the stabilization of long-range charge transfer in the excited state can be very

large.

In standard polarizable QM/MM approaches, only a single electronic state (usually the

ground state) is considered and the point dipoles in the MM region are induced by the mean

field arising from the electron density and the fields from all classical point multipoles.14 The

induced dipoles are determined by minimizing the total energy of the combined QM and

MM-Pol subsystems, including the work required to create the dipoles. Since the electron

density and induced dipoles mutually depend on each other, the electronic structure and

electrostatic problem are intertwined and have to be solved self-consistently. Effectively this

introduces a complicated dependence of the QM Hamiltonian on the expectation value of

the electron density. While this does not pose a conceptual problem for a single electronic

state, extending the mean-field solvation approach to multiple electronic states is fraught

with inconsistencies because it is not clear how the mean field should be obtained. Possible

choices, none of which are entirely satisfactory, are the mean field arising from each state’s

density one at a time (i.e. state-specific solvation discussed below), the average density of

multiple electronic states of interest, or the density of the ground state.
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Previous efforts to combine polarizable embedding schemes with excited-state calcula-

tions can be roughly divided into linear-response9,15,16 and state-specific formulations.17–20

In linear-response approaches to finding electronic excitations, the ground state and the ex-

cited states are not treated on the same footing. In a first step, the reaction field of the

induced dipole moments is determined self-consistently with the charge distribution of the

ground-state wavefunction. In the second step, electronic excitation energies are determined

from the response of the electronic and dipole degrees of freedom to an oscillating electric

field. When solving for the response states in the second step, the reaction of the induced

dipoles to the transition density of the response state is retained to linear order. As pointed

out for the related polarizable continuum models (PCM), linear response then recovers only

a dispersion-like portion of the solvation’s influence on the excitation energy,21 and the sol-

vent response to long-range (dark) CT states is largely missed.22 As a result, linear-response

polarization will tend to overestimate photoexcited CT state energies.

In contrast to linear response, state-specific approaches17–20 determine the polarization

response self-consistently for a specific electronic state. This idea appears to originate with

a similar approach used for PCM23 and even earlier in analytic solvation models.24 A sepa-

rate calculation has to be performed for each state. Since the Hamiltonian depends on the

wavefunction through the induced dipole moments, different electronic states are not eigen-

functions of the same Hamiltonian anymore. Therefore transition matrix elements and state

crossings become ill-defined.18,25,26 In addition, root-flipping issues are commonly observed,

particularly between states that are close in energy.18,26

In a previous paper,26 we showed that an early polarizable embedding method called

direct reaction field (DRF),27,28 which, although seems to have fallen out of use, overcomes

the problems of both linear-response and state-specific solvation models and allows one to

obtain several excited states in a single run. This section briefly reviews the history of

the DRF27 and dipole interaction models.29 In one of the earliest mixed quantum-classical

simulations of an enzymatic reaction, Warshel and Levitt already realized the importance
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of the polarizable environment for stabilizing reaction intermediates.30,31 They represented

the solvent molecules as a collection of polarizable dipoles that react to the charge dis-

tribution of the substrate. The effective polarizability of such an ensemble of interacting

dipoles can be estimated from atomic parameters using Applequist’s model.29 Based on

these initial developments, the DRF method was invented by Thole and van Duijnen in the

early 1980s.27,28 They considered a system divided into a quantum-mechanical region and

an atomistic environment of point charges and interacting polarizable dipoles. The starting

point is the classical expression for the polarization energy of the dipoles, Upol = −1
2
fTAf ,

where f are the electric fields created by the QM charge distribution and A is the effec-

tive polarizability of the environment. By replacing the electrostatic fields, f , with their

quantum-mechanical equivalents, f̂ , which depend on the electronic coordinates, one arrives

at a quantum-mechanical operator for the polarization energy.

The approach is called the direct reaction field in contrast to the self-consistent reaction

field. In the self-consistent reaction field, another name for state-specific solvation, the re-

sponse of the solvent is introduced only after determining the solute wavefunction and charge

distribution, which then creates a field that acts back on the solute. Since the electric fields

enter the polarization energy in the form of an expectation value, U classical
pol = −1

2
⟨f̂⟩TA⟨f̂⟩,

the Hamiltonian acquires a complicated non-linear dependence on the electronic state of

interest.27 In the DRF method, on the other hand, the reaction field is added directly in

the form of a polarization Hamiltonian. Crucially, there are no non-linear terms, as in the

self-consistent reaction field method, and the same Hamiltonian is used for all electronic

states. Thus, solvent effects are incorporated directly into the Hamiltonian matrix elements

such that the polarizable solvent molecules effectively screen the Coulomb interaction be-

tween all charged solute particles. The polarization Hamiltonian alters both the one- and

two-electron operators and thus introduces additional correlations between electrons through

their interaction with the solvent. The polarization energy is determined in the usual way

as an expectation value of the polarization Hamiltonian, UDRF
pol = ⟨−1

2
f̂TAf̂⟩.27 Due to the
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assumption of an instantaneous response of the induced MM dipoles to the electronic co-

ordinates of the QM region, the method also approximately captures correlations between

the electrons and MM dipoles, i.e. dispersion interactions between QM and MM particles,

discussed in detail in our previous paper.26

DRF has seen a number of applications over the years, some of which are summarized in

Ref. 32. While initial applications of the method focused on the electronic ground state, DRF

was used to compute solvatochromic shifts of the π∗ ← n transition of acetone in various

solvents.33 Random conformations were sampled from a Monte Carlo simulation using a

classical force field to average over the solvent degrees of freedom. The shifts were estimated

from two self-consistent field calculations: a restricted HF calculation for the ground state

S0 and a restricted open-shell calculation for the S1 state. The blue shift in polar solvents

was predicted in good agreement with experimental data.

Since DRF provides an atomistic description of the solvent, it is suitable to investigate

situations where the interaction with the environment breaks the symmetry of degenerate

excited states. An asymmetric solvent shell can break two charge resonances with no net

dipole moment into charge-separated states with large dipole moments.34,35 Grozema et al.

studied the relaxation of the S1 state of bianthryl in solution with the help of semiempirical

configuration interaction combined with DRF.35 They showed that even non-polar solvents

can create considerable local electric fields that fluctuate with the reorientation of the solvent

molecules, but cancel on average.35 The DRF method has also been applied to the study of

excitations in solids using the embedded cluster approach.36

If there is no quantum-mechanical region, DRF turns into a polarizable force field,

which goes by the name discrete reaction field and unfortunately has the same acronym

as DRF.37–40 The discrete reaction field itself has a polarizable QM/MM extension, which

treats the solvent atomistically, but takes the expectation value of the electric fields arising

in the QM region to polarize the MM region and therefore formally requires a self-consistent

solution.32 The discrete reaction field idea has also been extended to a form of polarizable

7

https://doi.org/10.26434/chemrxiv-2022-j8rgj-v3 ORCID: https://orcid.org/0000-0002-2908-5680 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2022-j8rgj-v3
https://orcid.org/0000-0002-2908-5680
https://creativecommons.org/licenses/by-nc-nd/4.0/


continuum model, which may be combined with a polarizable atomistic treatment of some

of the solvent.32

Although the direct reaction field method is in some sense simpler than the self-consistent

solvation models, it has not been widely adopted. This might be due to difficulties in the

implementation. Technical details of the implementation of DRF can be found in Ref. 41.

The additional matrix elements of the polarization operators were evaluated as a Taylor

expansion around arbitrary atomic centers. While this simplifies the resulting expressions,

this can introduce symmetry-breaking artefacts32 and seems to preclude the evaluation of

analytical gradients of the energy.

In a previous study, we described a preliminary implementation of DRF that was limited

to neutral atomic solvents and Hartree-Fock (HF) and complete active space self-consistent

field (CASSCF) electronic structures.26 Building on this previous study, the aim of this work

is to revive the direct reaction field method by making a number of technical improvements:

(a) All integrals are evaluated exactly using a special library for polarization integrals.42,43

Therefore matrix elements of the polarization Hamiltonian are smooth functions of the nu-

clear coordinates. (b) TeraChem is chosen as a development platform because of its clever

abstraction of molecular integral routines and GPU acceleration.44 This code formulates

many electronic structure methods in terms of a core Hamiltonian and Coulomb and ex-

change operators applied to generalized density matrices (“J- and K-builds”). By modifying

only those few integral routines, many quantum-chemistry methods such as HF, density

functional theory (DFT), time-dependent density functional theory (TD-DFT), configura-

tion interaction singles (CIS), and CASSCF can be combined straightforwardly with the

explicit solvent model provided by DRF. (c) Expressions for the analytical gradients of the

solvation energy are derived. In TeraChem the gradients of the energy or the non-adiabatic

coupling vectors are expressed as contractions of derivatives of the core Hamiltonian and the

J- and K-operators with generalized density matrix-like objects. Similar to energies, modi-

fication of a handful of routines then provides analytical gradients for all of the mentioned
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electronic structure methods in combination with DRF. To reflect these developments, we

call the method integral-exact direct reaction field (IEDRF). We demonstrate the method

on vertical excitation energy calculations with QM/MM-IEDRF embedding and conical in-

tersection optimizations in a polarizable environment.

The rest of the article is structured as follows: First the working equations of the direct

reaction field are rederived (sections 2.1 and 2.2). Then the ingredients for assembling an-

alytical gradients are worked out (2.3). As a proof of principle, solvatochromic shifts of a

series of bichromophoric dyes in n-hexane are computed at the TD-DFT level of theory (3.1).

The minimum-energy conical intersection between two excited states of one of the dyes is op-

timized in a shell of polarizable solvent molecules (3.2). The polarizable embedding method

is verified by comparing with DFT calculations where a large number of solvent molecules

are included in the QM region (3.3). Finally, the scaling of the method, convergence with

system size and its computational cost are explored in section 3.4. The article concludes

with some justifications for combining DRF with DFT (section 4).

2 Theoretical Methods

Atomic units are used throughout.

2.1 Polarization Hamiltonian

The distribution of all free charges in the whole system is denoted by

ρ(r) =

Nelec∑
a=1

(−1)δ(r − r̂a) +

Npt.chrgs∑
n=1

Qnδ(r −Rn), (1)

The first term corresponds to the electrons, while the second term captures all Npt.chrgs =

NQM + NMM classical point charges, of which there are NQM QM nuclei with charge equal

to the atomic number, Qn = Zn, as well as NMM MM atoms with partial charges. r̂a is
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the quantum-mechanical position operator for electron a, while Rn is the position vector

of a classical particle. In addition to charged particles, a number of polarizable sites are

included in the MM region. Not all MM atoms will be made polarizable in order to save

computational time, and typically we include polarizable sites on only the first few solvation

shells around the QM region. Therefore it is preferable to keep separate counts of the point

charges and the polarizable atoms denoted by indices i and j (running over 1, . . . , Npol).

An electric field, E, induces a dipole, pi, proportional to the atomic dipole polarizability

αi of the atom :

pi = αiE(Ri). (2)

The induced dipole itself also generates an electrostatic field which can induce other dipoles.

Therefore, if there is more than one polarizable atom, the total electric field that enters

Eqn. 2 consists of two parts: (1) The electric field fi[ρ] generated by the free charges, ρ(r),

and (2) the electric field generated by the induced dipoles:

E(Ri) = Echarges(Ri) +Edipoles(Ri)

= fi[ρ]−
Npol∑
j ̸=i

T (ij)pj.
(3)

Here T (ij) is the the dipole field tensor,29 of dimensions 3×3×Npol×Npol, which describes the

electrostatic interaction between point dipoles.45,46 When two point dipoles come closer than

the typical extension of an atom, the dipole field tensor is damped to avoid the polarization

catastrophe.45 We refer the reader to the supporting information for expressions of T (ij) and

the damping functions.

Combining the electric fields into a supervector, the operator for the polarization energy

can be expressed as a quadratic form in f ,

Ûpol = −
1

2
fTAf , (4)
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where A is the effective dipole polarizability of the MM system (see SI for details),

A =
(
α−1 + T

)−1
. (5)

It is important to note that Ûpol is a many-electron operator. The fields depend on the

quantum mechanical operator for the electronic charge density and are therefore functions

of the instantaneous positions of all electrons, f(r̂1, . . . , r̂Nele
). This sets the direct reaction

field apart from mean-field solvation models, where f depends on the expectation value of

the electronic charge density.

2.2 Modified one- and two-electron integrals

In the DRF formalism, the presence of polarizable atoms modifies the Hamiltonian of the

QM system. It changes not only the one-electron part of the Hamiltonian, as external point

charges or traditional self-consistent polarizable embedding does, but also the two-electron

part. In this way, the DRF method accounts for screening effects induced by a polarizable

environment. In this section, the corrections to the two-electron, one-electron and constant

parts of the Hamiltonian are derived.

Notation. For convenience, we tabulate some of the frequently used symbols and index

conventions below (Table 1).

Following Eq. 1, the electric field created by the free charges on a polarizable atom at Ri
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Table 1: Frequently used symbols and index conventions.

Symbol Description
ρ(r) Total charge density
a, b Indices for Nelec electrons
m,n Indices for Npt.chrgs point charges (nuclei and MM charges)
i, j Indices for Npol polarizable atoms
α, β Enumerate Cartesian components of three-dimensional space
µ, ν, λ, σ, γ, δ Indices for NAO atomic orbitals
Qn Nuclear/MM charge of atom n
pi Induced dipole moment at polarizable atom i
f =

(
f1, . . . ,fNpol

)
Supervector of electric fields from free charges at polarizable atoms

fi Electric field from free charges at polarizable atom i
A Supermatrix of effective dipole polarizabilities of MM region

f̂ (e) Supervector of electric field from all electrons at polarizable atoms

f̂
(e)
i Electric field from all electrons at polarizable atom i

f̂
(e)
ia Electric field from electron a at polarizable atom i

f (n) Supervector of electric fields from all point charges at polarizable
atoms

f
(n)
i Electric field from all point charges at polarizable atom i

f
(n)
in Electric field from point charge n at polarizable atom i

F
(e)
µν Supervector of matrix elements of an electron’s damped electric field

at polarizable atoms in AO basis

F
(e)
i,µν Matrix element of an electron’s damped electric field at polarizable

atom i in AO basis
F (n) Supervector of point charges’ damped electric field at polarizable

atoms

F
(n)
i Point charges’ damped electric field at polarizable atom i

Iαβµν (Ri) αβ Cartesian component of core-polarization potential matrix ele-
ment for polarizable atom i
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is

fi[ρ] =

∫
d3r ρ(r)

Ri − r

|Ri − r|3

=

Nelec∑
a=1

(−1) Ri − r̂a
|Ri − r̂a|3︸ ︷︷ ︸

f̂
(e)
ia

+

pt.chrgs∑
n=1

Qn
Ri −Rn

|Ri −Rn|3︸ ︷︷ ︸
f
(n)
in

=
∑
a

(−1)f̂ (e)
ia +

∑
n

Qnf
(n)
in

= f̂
(e)
i + f

(n)
i .

(6)

In the last equation the contributions from the electrons and those from the points charges

have been separated. The field due to the electrons is an electronic operator (denoted by

the hat). Putting the field into Eqn. 4 gives the polarization Hamiltonian, which has to be

added to the Hamiltonian of the QM system:

Ĥpol = −
1

2
f̂ (e)TAf̂ (e) − f (n)TAf̂ (e) − 1

2
f (n)TAf (n) (7)

After grouping the terms into two-electron and one-electron operators and zero-electron

terms, the polarization Hamiltonian reads

Ĥpol =
1

2

∑
a,b
a̸=b

ĥ(2)(a, b) +
∑
a

ĥ(1)(a) + h(0). (8)

The two-electron operator accounts for the additional interaction between two different elec-

trons via the polarizable sites,

ĥ(2)(a, b) = −
∑
i,j

f̂
(e)T
ia Aijf̂

(e)
jb with a ̸= b. (9)

The one-electron operator contains the interaction between nuclei and electrons as well as
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the self-interaction of an electron, which are mediated by the polarizable sites,

ĥ(1)(a) =
∑
i,j

∑
n

Qnf
(n)T
in Aijf̂

(e)
ja −

1

2

∑
i,j

f̂
(e)T
ia Aijf̂

(e)
ja . (10)

The term involving only nuclei and point charges is a (geometry dependent) constant,

h(0) = −1

2

∑
m,n

QmQn

∑
i,j

f
(n)
im Aijf

(n)
jn , (11)

that includes both the polarization contribution from the QM nuclei as well as the polariza-

tion energy of the MM region.

Now we wish to know the representation of these operators in a basis of atom-centered

Gaussian type orbitals µ(r), ν(r), λ(r), σ(r). Strictly speaking, integrals of the type∫
d3r µ(r)|r − Ri|−kν(r) do not exist if k > 2 because of the singularity of the polar-

ization operator at r = Ri. The singularity is however not physical and arises from the

treatment of MM polarizable atoms as point induced dipoles, when in reality they should

have a finite charge distribution. The polarization operator should then be damped at short

range. To model this effect, a damping function,

C(r) = (1− exp
(
−ar2

)
)q, (12)

is included, which ensures the existence of all polarization integrals. With the damping

function, the matrix elements of an electron’s electric field at R is written as

F (e)
µν (R) =

∫
d3r µ(r)

r −R

|r −R|3
C(|r −R|) ν(r)

=(µ| r −R

|r −R|3
C(|r −R|)|ν). (13)

The individual components,

F
(e)
i,µν = F (e)

µν (Ri) (14)

14

https://doi.org/10.26434/chemrxiv-2022-j8rgj-v3 ORCID: https://orcid.org/0000-0002-2908-5680 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2022-j8rgj-v3
https://orcid.org/0000-0002-2908-5680
https://creativecommons.org/licenses/by-nc-nd/4.0/


with i = 1, . . . , Npol are combined into a supervector of dimension 3×Npol

F (e)
µν = (F

(e)
1,µν , . . . ,F

(e)
i,µν , . . . ,F

(e)
Npol,µν

)T , (15)

for each combination of atomic orbitals µ, ν. The electric fields generated by the nuclei and

MM point charges at the position of a polarizable atom Ri,

F
(n)
i = F (n)(Ri) =

∑
n

Qn
Ri −Rn

|Ri −Rn|3
C(|Ri −Rn|), (16)

are similarly combined into a supervector of size 3Npol,

F (n) = (F
(n)
1 , . . . ,F

(n)
i , . . . ,F

(n)
Npol

)T . (17)

It is important that the same damping function, C(r) (defined in Eqn. 12), is used for the

electronic and nuclear fields, so that for a neutral molecule, the fields cancel appropriately

at short and intermediate range.

Partial charges on MM atoms are usually optimized to reproduce the correct electrostatic

potential on the surface of the molecule, while the electric fields generated by them inside

the molecule are not physically meaningful. Therefore one has to be careful in excluding

monopole fields from point charges on MM atoms that are directly bonded to a polarizable

atom. MM force fields keep an exclusion list to remove non-bonded interactions between

certain atoms. The same list is used to exclude point charge n from the summation in

Eqn. 16 if it belongs to the exclusion list of the polarizable atom at Ri.

For a given geometry, the vectors F
(e)
µν and F (n) are calculated once and stored in memory.

The memory requirements for this are NAO
2 × 3 × Npol + 3 × Npol. All matrix elements of

the two- and zero-electron operators can be assembled from this information, as well as the

first term of the one-electron operator (Eqn. 10). However, the one-electron operator also

contains a new type of four-center integral. This integral arises from the second term of
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Eqn. 10 and has the form

(µ| (r −Ri)

|r −Ri|3
·Aij ·

(r −Rj)

|r −Rj|3
C(|r −Ri|)C(|r −Rj|)|ν). (18)

If i and j refer to the same polarizable site, the integral reduces to a sum of one-electron

integrals

Tr{AiiIµν(Ri)} =
3∑

α,β=1

Aαβ
ii I

αβ
µν (Ri) (19)

α, β = 1, 2, 3 enumerate the elements of the 3× 3 matrix Aii and the additional one-electron

integrals Iαβµν take the form of core polarization potentials (CPP).47 They are defined as

Iαβµν (Ri) = (µ| (xα −Xiα)(xβ −Xiβ)

|r −Ri|6
C(|r −Ri|)2|ν) (20)

with r = (x1, x2, x3)
T and Ri = (Xi1, Xi2, Xi3)

T . While the electric field integrals in Eqn. 13

do not necessarily require a damping function, the integrals of Eqn. 20 would not exist

without it. For consistency, the damping function has been included in both expressions.

If there is only a single polarizable site with polarizability αi then the effective polariz-

ability equals the atomic dipole polarizability, which is isotropic, A = α = diag(αi, αi, αi),

and expression 19 simplifies to

αiI
x2+y2+z2

µν (Ri) = αi(µ|
C(|r −Ri|)2

|r −Ri|4
|ν). (21)

For the integrals F
α (e)
i,µν and Iαβµν defined by Eqns. 14 and 20, respectively, analytical expres-

sions exist. Integrals of this type were solved for the first time by Schwerdtfeger48 and have

been implemented recently by us in an open-source library.42,43 However, we are not aware

of an analytical solution for the multi-site case in Eqn. 18 (when i ̸= j), and we therefore

approximate these integrals by a resolution-of-identity trick (note: the original DRF method

uses a similar trick, but in the molecular orbital basis).32 The scalar product in Eqn. 18 is
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split by inserting the identity

1 ≈
∑
γ,δ

|γ)
(
S−1

)
γδ
(δ| (22)

where Sγδ = (γ|δ) is the overlap matrix. In principle, a larger auxiliary basis could be used

in the resolution of identity; however, we found sufficient accuracy was obtained using the

primary basis set. If diffuse orbitals are present, the overlap matrix might be singular. In

this case the inverse has to be replaced with the pseudoinverse, where small singular values

below a certain threshold have been removed. Equation 18 becomes

(µ|(r −Ri)C(|r −Ri|)
|r −Ri|3

·Aij ·
(r −Rj)C(|r −Rj|)

|r −Rj|3
|ν)

=
∑
γ,δ

(
S−1

)
γδ
(µ|(r −Ri)C(|r −Ri|)

|r −Ri|3
|γ) ·Aij · (δ|

(r −Rj)C(|r −Rj|)
|r −Rj|3

|ν)

=
∑
γ,δ

(
S−1

)
γδ
F (e)

µγ (Ri) ·Aij · F (e)
δν (Rj).

(23)

With these definitions, the matrix elements of the polarization Hamiltonian in Eqn. 8

consists of the following parts:

• Two-electron part

(µν|ĥ(2)(1, 2)|λσ) = −F (e)
µν AF

(e)
λσ , (24)

The two-electron polarization integrals have the same symmetry under permutation of

orbital indices as the electron repulsion integrals:

(µν|ĥ(2)|λσ) = (νµ|ĥ(2)|λσ) = (λσ|ĥ(2)|µν) = . . . (25)

These will not be formed directly, but rather, we make use of their tensor factorizable

nature in terms of one-electron integrals, as discussed below. The effective polariz-

ability supermatrix, A, is constructed by inversion of Eqn. 5 using LU decomposition.

While this carries a computational cost that scales as Npol
3, the inversion need only

be carried out once for a given molecular geometry before the electronic structure cal-
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culation is started. As a result, it carries a low pre-factor and does not dominate the

observed scaling of our method, at least for the range of Npol we explored. For very

large numbers of polarizable sites, the inversion to form A could dominate the overall

computational scaling, and we will then explore iterative inversion approaches.

• One-electron part

(µ|ĥ(1)|ν) = −F (n)AF (e)
µν −

1

2

∑
γ,δ

(
S−1

)
γ,δ

F (e)
µγ AF

(e)
δν

+

1

2

∑
γ,δ

(
S−1

)
γδ
F (e)

µγ diag(A)3×3F
(e)
δν −

1

2

Npol∑
i=1

3∑
α,β=1

Aαβ
ii I

αβ
µν (Ri)

 .

(26)

These one-electron polarization contributions are simply added to the core Hamilto-

nian. In the second term of Eqn. 26, the same-site contributions (i = j) are treated

with the resolution-of-identity trick discussed above.49 The last term in brackets re-

moves these and replaces them by the exact integrals for i = j. diag(A)3×3 contains

only the diagonal 3 × 3 blocks of A. If one wishes to treat all integrals on the same

footing and with the resolution of identity, the term in brackets may be omitted.

Since the number of polarizable MM atoms, Npol, may be quite large, it is preferable

to evaluate the contractions in such a way that the exponent k of the scaling relation

O(Nk
pol) is as low as possible. First, the two tensors

(AF )i,µν =
∑
j

AijF
(e)
j,µν (27)

(S−1F )i,µν =
∑
γ

(S−1)µγF
(e)
i,γν (28)

are calculated. The first operation scales quadratically in Npol (two loops are needed,

one over i, the other over j), while the second one scales linearly. Then the resolution-
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of-identity part of the core Hamiltonian is constructed as

(µ|ĥ(1)|ν) = −
∑
i

F
(n)
i (AF )i,µν −

1

2

∑
i

∑
δ

(S−1F )i,δµ(AF )i,δν , (29)

which again scales linearly in Npol. The term in brackets in Eqn. 26 already has

the desired linear scaling. The only operation which does not scale linearly is the

construction of (AF )i,µν , which scales quadratically withNpol. Future work will explore

how to reduce this to linear scaling.

• And finally the zero-electron part

h(0) = −1

2
F (n)AF (n), (30)

which is added to the (classical) nuclear-nuclear repulsion and any of the non-polarizable

MM forcefield terms. Note: this term includes the MM polarization energy, which

therefore should not be evaluated separately outside IERDRF, to avoid double count-

ing.

The construction of the Coulomb and exchange parts of the Fock operator requires effi-

cient algorithms to evaluate contractions of electron repulsion integrals (µν|γδ) with molec-

ular orbital coefficients Cγk (k is the index of an occupied molecular orbital). The analogous

sums for the two-electron part of the polarization Hamiltonian factorize and can thus be

efficiently calculated, provided the number of polarizable sites is not too large.

For Hartree-Fock theory, the IEDRF correction terms for Coulomb and exchange opera-

tors are

∆Jµν =
∑
γδ

(µν|ĥ(2)|γδ)
∑
k∈occ

CγkCδk

= −F (e)
µν A

(∑
γδ

F
(e)
γδ

[∑
k∈occ

CγkCδk

]) (31)
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and

∆Kµν =
∑
γδ

(µγ|ĥ(2)|νδ)
∑
k∈occ

CγkCδk

= −
∑
k∈occ

(∑
γ

F (e)
µγ Cγk

)
A

(∑
δ

F
(e)
νδ Cδk

)
,

(32)

respectively.

Efficient implementations of TD-DFT, CIS or CASSCF theories are formulated in terms

of generalized Coulomb- and exchange-like matrices constructed from different one-particle

density matrices, D,50 which do not have the simple form Dµν =
∑

k∈occCµkCνk of a closed

shell Slater determinant. Eqns. 31 and 32 then have to be modified as

∆Jµν(D) =
∑
γδ

(µν|ĥ(2)|γδ) Dγδ

= −
∑
i

Fi,µν


∑
γδ

[∑
j

AijFj,γδ

]
︸ ︷︷ ︸

(AF )i,γδ

Dγδ


︸ ︷︷ ︸

(AFD)i

(33)

and

∆Kµν(D) =
∑
γδ

(µγ|ĥ(2)|νδ) Dγδ

= −
∑
i

∑
δ

[∑
γ

Fi,µγDγδ

]
︸ ︷︷ ︸

(FD)i,µδ

[∑
j

AijFj,νδ

]
︸ ︷︷ ︸

(AF )i,νδ

.
(34)

The sums over j, γδ in the construction of J and γ and j in the construction of K have

the form of matrix-matrix multiplications, which can make use of the parallelism of graphical

processing units (GPUs). In the next step, each matrix element (µ, ν) of the Coulomb and

exchange matrices is computed by one thread on the GPU.
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As noted earlier, the construction of (AF )i,γδ carries a computational cost that scales as

Npol
2, and this term appears in both the J and K builds. We avoid the construction of this

term dominating the scaling of the method by noting that it does not depend on any density

matrix, therefore we pre-calculate it with a storage cost that matches the field integrals. In

the current implementation, we do not take advantage of sparsity in the AO representation

of the density matrix, Dγδ, or the field integrals, Fi,µγ. As a result, for small to moderate

numbers of polarizable sites, the scaling of the method is dominated by the contraction

of the two inner terms in the exchange matrix of Eqn. 34: (FD)i,µδ with (AF )i,νδ. This

contraction has a scaling of Npol×NAO
3, and while linear scaling in the number of polarizable

sites (confirmed below), comes with a relatively high prefactor due to the cubic scaling with

QM size. One also expects that Npol itself will scale with the solvent accessible surface area

of the solute, which for linear molecules scales as NQM and for globular molecules scales as

N
2/3
QM. This will further increase the scaling of the method by up to an additional power of

NAO. Future work will address this bottleneck by taking better advantage of sparsity of the

matrices in the AO representation.

Polarization is treated on the same footing for all electronic states. Nevertheless, the

induced polarization and the polarization energies are state-dependent quantities. Given the

density matrix Dµν for an electronic state with the total charge density ρ, we can compute

the mean-field (expectation) electric field generated at the polarizable sites as

f [ρ] =
∑
µν

DµνF
(e)
µν + F (n). (35)

The induced dipoles are related to the fields by the effective polarizability,

p[ρ] = Af [ρ], (36)
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and the mean-field polarization energy for the particular state is then

U [ρ] = −1

2
fTp. (37)

2.3 Analytical Gradients

Since the DRF approach directly modifies the one- and two-electron integrals of the QM

Hamiltonian, analytical gradients are relatively straightforward to derive, adding modified

integral derivative terms to the gradient expressions of the underlying electronic structure

theory. For example, QM/MM-IEDRF embedding modifies the gradients of RHF51 to:

∂ERHF-DRF

∂x
=

NAO∑
µ,ν

Dµν

[
∂Hcore

µν

∂x
+

∂(µ|ĥ(1)|ν)
∂x

]
−

NAO∑
µν

Wµν
∂Sµν

∂x
(38)

+
1

4

∑
µ,ν,λ,σ

{2DµνDλσ −DµλDνσ}

[
∂(µν|λσ)

∂x
+

∂(µν|ĥ(2)|λσ)
∂x

]
+

∂Vnuc

∂x
+

∂h(0)

∂x
,

where x represents any external parameter, which in our case could be the coordinates of

the nuclei, the point charges or the polarizable sites. The gradient depends on the following

quantities:

Dµν =
∑
k∈occ

2C∗
µkCνk (39)

is the RHF density matrix and

Wµν =
∑
k∈occ

2C∗
µkCνkεk (40)

is the “energy-weighted” density matrix, both in the atomic orbitals basis. Here Cµk are

the coefficients of occupied molecular orbital k with orbital energy εk. (µν|λσ) are the two-

electron repulsion integrals, Hcore
µν and Sµν are the core Hamiltonian and the overlap matrix,

respectively, and Vnuc is the nuclear-nuclear repulsion energy. All the integral derivatives

arising from DRF have analytical expressions, although they are rather lengthy and therefore
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discussed in the supporting information.

In order to limit the memory footprint of the algorithm, it is convenient to avoid storing

large arrays with integral derivatives. Instead, gradients of matrix elements are immediately

contracted with a density matrix. These contracted gradients are thus functions of up to

two density matrices, labelled D(1) and D(2). Although the expressions for RHF gradients

involve the same density matrix, D(1) = D(2), keeping separate labels in the equations below

allows for immediate generality to contractions that arise in the analytical gradients of other

electronic structures, including CIS, TD-DFT, and CASSCF,44 where the density matrices

can be different and are not necessarily symmetric.

In the same way that IEDRF introduces corrections to Coulomb and exchange operators

(Eqns. 31 and 32), corrections to gradients of Coulomb and exchange operators can be

formed:

∂(∆J)

∂x
(D(1),D(2)) =− ∂F

∂x

(
(AFD(2))⊗D(1) + (AFD(1))⊗D(2)

)
− ∂A

∂x

(
(FD(1))⊗ (FD(2))

)
,

(41)

where the argument of the function ∂F
/
∂x contains Kronecker products between a vector

of size Npol and a density matrix of dimensions NAO ×NAO, e.g.

[
(AFD(2) ⊗D(1)

]
i,µν

=
(
AFD(2)

)
i
D(1)

µν , (42)

and the function ∂F
/
∂x contains contractions of the derivative polarization integrals, ∂F (e)

/
∂x,

with a supertensor E of dimensions 3×Npol ×NAO ×NAO, computed in an integral-direct

fashion:

∂F

∂x
(E) =

∑
i

∑
µ,ν

∂F
(e)
i,µν

∂x
Ei,µν . (43)

The polarization integral derivatives are evaluated inside the loop over i, µ and ν. They

are directly multiplied with the corresponding matrix element of the density matrix and are
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added to the gradient ∂F
/
∂x. Similarly, we define the contraction of a 3× 3×Npol ×Npol

supermatrix U with the gradient of the effective polarizability,

∂A

∂x
(U) =

∑
i,j

∂Aij

∂x
Uij. (44)

The corrections to gradients of the exchange operator follow in a similar fashion:

∂(∆K)

∂x
(D(1),D(2)) = −∂F

∂x

(
AFD(2)D(1) +AFD(2)TD(1)T

)
− ∂A

∂x

(
FFD(2)TD(1)T

)
,

(45)

where the superscript T indicates a matrix transpose. A full derivation of these expressions

is provided in the supporting information.

3 Results

3.1 Solvatochromism of Intramolecular Charge-Transfer States

Pasman et al. synthesized a series of bichromophoric dyes to study intramolecular charge

transfer.52 The charge-transfer states are visible in the absorption spectra and thus provide

experimental reference energies against which our calculations can be benchmarked. The

dyes consist of an acceptor and donor region separated by several σ bonds. Chemical struc-

tures of the dyes are shown in Fig. 1. An electron is donated by the lone electron pair of a

tertiary amine (systems 1,2,3) or a sulfur atom (systems 5,6,7,8,9) or an electron-rich double

bond (system 4) on one end of the molecule. The acceptor is the π∗ orbital of a double bond

substituted with electron-withdrawing groups such as cyano or ester groups on the other end.

Electron donor and acceptor moieties are separated by one or two cyclohexane rings. The

frontier orbitals of one of the dyes are shown in Fig. 2. The orbitals are localized on the donor

and acceptor fragments and give rise to a local excitation (LE) of the C=C double bond on

the acceptor and a lower-lying charge transfer (CT) state, where an electron is transferred
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from the lone pair to the π∗ orbital of the C=C bond. In this idealized picture, the long-range

CT state would be dark; however, in reality there is significant mixing between the LE and

CT states due to through-bond coupling, so that the CT transition borrows intensity from

the LE transition and both states have large permanent dipole moments. This allows both

the LE and CT states to be identified in a UV/Vis absorption spectrum.

Figure 1: Chemical structures of the selected bichromophoric dyes from Pasman et al.52
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Figure 2: Frontier orbitals of the dye 1c.

3.1.1 Optimal Tuning in the Gas Phase and in Solution

Since charge-transfer states are notoriously difficult to model with local and hybrid density

functionals, an optimally-tuned range-separated hybrid is employed, which has been shown

to give excellent fundamental gaps of atoms and molecules in the gas phase.53 We determine

the optimal range-separation parameter separately for each dye in vacuum and in solution.

The geometries of all dyes were optimized in the gas phase at the ωPBEh54/def2-SVP

level of theory using the default range-separation parameter ω = 0.2 Bohr−1 and the default

value of CHF = 0.2 for the portion of exact Hartree-Fock exchange at full range. For dyes

with cyclohexane rings, the most stable chair conformation was chosen. At the double bond

of the acceptor, we selected the cis/trans isomer which afforded the least steric hinderance.

The range-separation parameter was tuned54,55 separately for each dye in the gas phase and

in solution (see SI section 3). For tuning the functional in solution with the direct reaction

field, snapshots of dyes embedded in n-hexane were generated as described later.
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Depending on the dye, the optimal vacuum range-separation parameter varies from

ωvacuum
opt = 0.17 Bohr−1 (for 1b) to 0.22 Bohr−1 (for 6a). The values obtained from tun-

ing in n-hexane with the QM/MM embedding scheme are approximately 5% larger than in

the gas phase, and with QM/MM-IEDRF they are approximately 10% larger ranging from

ω
QM/MM-IEDRF
opt = 0.20 Bohr−1 (for 1b) to 0.24 Bohr−1 (for 6c). This finding is in contrast to

state-specific polarization, in which the optimal value of omega is found to approach 0 as the

dielectric constant of the environment increases.56 A similar issue was noted when apply-

ing optimal tuning to condensed-phase systems and motivated the development of screened

range-separated hybrid functionals that incorporate a fraction of long-range exact exchange

equal to 1/ϵ.57–59 Since IEDRF already includes the effects of screening at the Hamiltonian

level on both one-particle and many-body state energies, the fraction of exact exchange at

long range can be set equal to 1.0, while still yielding reasonable optimal omega values.

This is very promising for a quantitative prediction of both LE and CT states, which we

demonstrate below. The optimal values for all dyes are listed in the SI.

3.1.2 Solution Phase Absorption Spectra: n-hexane

We now describe the procedure for solvating the chromophores and sampling snapshots

of nuclear geometries along a classical molecular dynamics trajectory. The influence of

electronic polarization on the absorption spectra is then estimated by calculating vertical

excitation energies on those snapshots with and without the direct reaction field.

System Setup. GAFF parameters60 were assigned for both the chromophores and the n-

hexane solvent molecules using antechamber 61 and leap from the AMBER 2018 package.62

The chromophore was packed into a ball of 5000 solvent molecules with the help of the

packmol program.63 The radius of the sphere was determined from the experimental density

at room temperature. An octahedral unit cell was carved out of the solvent ball to allow for

simulations with periodic boundary conditions.

All MM optimizations and molecular dynamics simulations were performed with pmemd.cuda
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or sander from the AMBER 2018 package.62 A non-bonded cutoff of 8 Å was used in all sim-

ulations, with the particle-mesh Ewald summation64 used to handle long-range electrostatic

interactions. Bonds to hydrogen atoms were constrained using the SHAKE algorithm.65

Heating and Equilibration. The system was relaxed in two steps, first by optimizing

only the solvent molecules while restraining the solute atoms with a harmonic force constant

of 100 kcal/mol, followed by relaxing the whole system for 10000 optimization steps. The

system was heated up in 10 steps from 0 K to 325 K while applying a weak restraint of 10

kcal/mol on the chromophore to keep it at its central position. The system was equilibrated

for 1 ns with a time step 1 fs in the NVT ensemble at T=300 K with a Langevin thermostat

and a collision frequency of 1.0 ps−1. This was followed by a second equilibration lasting

also 1 ns in the NPT ensemble at a temperature of T=300 K and a pressure of P=1 bar

using the Berendsen barostat66 with a pressure relaxation time of 1.0 ps.

Production. Starting with the equilibrated coordinates and velocities, a single tra-

jectory was run for 10 ns in the NPT ensemble. Snapshots were taken every nanosecond,

yielding 10 uncorrelated configurations.

Validation. At the end of the production run some basic consistency checks were per-

formed: (a) The total energy and temperature were observed to be stable. (b) The average

density was computed. This is a sensitive test for the non-bonded interactions between the

solvent molecules. In all cases the density was within 5% of the experimental value of 0.6606

kg/m3.67

Postprocessing of Snapshots. For the QM/MM-IEDRF calculations, atomic dipole

polarizabilities from Applequist’s model29 were assigned to the MM atoms. For solvent

molecules further than 5 Å away from the QM region the polarizabilities were coarse grained

as explained below in Section 3.4 to save some computational effort. MM atoms were also

equipped with effective core potentials (MM-ECPs68) to avoid the electron spill-out problem.

In the QM/MM-IEDRF calculation the small MM point charges on the n-hexane molecules

were also included in the electrostatic potential. It should be noted that the partial charges
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on n-hexane’s atoms are very small (the terminal hydrogen charges are 0.0327 e), consistent

with the apolar nature of this solvent. As a result, electrostatic interactions are negligible

and the solvatochromism is dominated by the polarization Hamiltonian.

Excitation energies are very sensitive to small changes in the bond lengths. Since the

GAFF force field was not sufficiently reliable at maintaining the equilibrium structures of

the dye molecules, the snapshots extracted from the MM trajectory contained chromophores

with slightly wrong bond lengths. In order to fix this, the solvated systems were optimized

for 100 steps at the QM/MM level of theory (and separately at the QM/MM-IEDRF level)

using the ωPBEh functional (with default parameters) and the def2-SVP basis set. Outer

solvent molecules with coarse-grained polarizabilities were frozen during the optimization.

Since TeraChem does not yet support periodic boundary conditions, the octahedral unit cell

was used as a solvent “droplet”. For the gas-phase reference calculations, the chromophores

were taken out of the solvent and optimized locally with the same functional and basis set.

Vertical Absorption Spectra with TD-DFT. For each of the locally optimized snap-

shots, the lowest few excited states were obtained with linear-response TD-ωoptPBEh/aug-cc-

pVDZ using the different embedding schemes. For consistency, the same embedding scheme

was chosen as for the geometry optimization. That is to say the absorption spectrum with

electrostatic embedding (QM/MM) was calculated at the QM/MM optimized geometry and

the spectrum with electrostatic and polarizable embedding (QM/MM-IEDRF) at the cor-

responding QM/MM-IEDRF optimized one. Figure 3 shows a correlation plot between

the experimental CT energies and the TD-DFT predictions with the different embedding

schemes.

Overall, the trends across most of the molecular structures are already reasonably well

captured by the gas-phase TD-DFT calculations (red circles), taking into account that we

are neglecting the vibronic structure and are comparing vertical excitation energies with

absorption band maxima. However, some important differences between the theoretical gas-

phase and solution-phase experimental results are noted. Firstly, the dyes 3b and 8c show
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Figure 3: Correlation between experimental absorption band maxima (experiment) of the
charge transfer state and the lowest vertical TD-ωoptPBEh/aug-cc-pVDZ (theory) excitation
energy with different embedding schemes: isolated chromophore in gas phase (vacuum, red
circles), electrostatic (QM/MM, blue violin plots) and electrostatic+polarizable embedding
(QM/MM-IEDRF, green violin plots). Violin plots indicate the distribution of energies
among the 10 snapshots. The diagonal dashed line indicates a perfect correlation.

a low-lying CT state in our calculations not seen in experiment; however, their oscillator

strengths are ≤ 0.01, which is much smaller than the oscillator strengths of the LE states

(≥ 0.4). Therefore these states are likely not identifiable in experimental UV/Vis spectra.

As for the dye 5b, we suspect there to be a typo in table I of Ref. 52, since 5b and 6c

are listed with exactly the same CT energies, although their different structures and our

TD-DFT calculations suggest them to be different. We therefore leave 3b, 5b and 8c out

of our analysis. Secondly, with the exception of the dyes 1a, 1b, 2a and 6a, the gas-phase

calculations overestimate the CT energies by 0.2 eV or more. In particular, the chromophores

7c and 9c stick out with differences between the theoretical gas-phase and experimental CT

energies of 0.7 eV and 0.5 eV, respectively. This makes perfect sense, if one looks at their

molecular structures in Fig. 1: In both 7c and 9c the donor and acceptor moieties are

separated by two cyclohexane rings, so that the electron and hole are kept far apart. Such

long-range CT states are very sensitive to the dielectric environment. This motivates an
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atomistic representation of the liquid environment, which we turn to next.

In the QM/MM calculations (blue violin plots), the electrostatic interaction with the

(fixed) point charges and the Pauli repulsion is added. Since n-hexane is apolar, the MM

charges are small so that no large effect is expected. Since the range-separation parameters

ω
QM/MM
opt are approximately 5% higher than in the gas phase, presumably due to the QM-MM

Pauli repulsion, the increased exact exchange at medium range slightly shifts the excitation

energies up. Indeed, for all chromophores, the means of the QM/MM excitation energies

are higher than their respective gas phase values, worsening the agreement with experi-

ment, which we attribute to the missing polarization interactions in electrostatic-embedded

QM/MM, which especially should lower the energies of the CT states from the gas-phase to

solution. In addition, dispersion interactions with the apolar n-hexane molecules, missing

in the gas phase, should lower the energies of all excited states, since excited states usually

are more diffuse and polarizable than the ground state. On the other hand, the Pauli re-

pulsion tends to compress the wavefunctions of diffuse states in the solvent cage and can

raise the excitation energy again. The different configurations in each snapshot lead to an

inhomogeneous broadening of >0.1 eV . This broadening is largely due to the conformational

flexibility of the dyes and does not depend much on the embedding scheme. 6d, which has

the largest spread of almost 0.5 eV, occurs in two stable conformations which differ in the

orientation of the isopropyl group on the acceptor moiety.

Now turning on polarization interactions in the QM/MM-IEDRF calculations (green vi-

olin plots), the presence of the solvent enters in the form of the DRF Hamiltonian, which

modifies both the one- and two-electron integrals and effectively screens (or “renormalizes”)

the Coulomb interaction. The CT energies are lowered, bringing them into closer agreement

with experiment. Furthermore, the magnitude of the solvatochromic shifts are consistent

with the range of the charge transfer: The long-range CT states in the dyes 7c and 9c

are lowered most, as expected. This supports a view that solvatochromism of these dyes is

dominated by differential induced polarization of the solvent between the ground and excited
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states. For the dyes 1a and 4c, the CT energies are slightly underestimated by approximately

0.1 eV, which is anyway within the expected accuracy of TD-DFT. Nevertheless, the sig-

nificant improvement in CT excitation energies observed going from electrostatic-embedded

QM/MM to QM/MM-IEDRF is highly encouraging.

3.2 QM/MM-IEDRF Optimization of Conical Intersections

At the Franck-Condon point, the CT and LE state are mixed, so that both the S1 and

S2 states acquire some oscillator strength. Emission happens from the lowest excited state,

which is strongly affected by the polarity of the solvent. The transition between the absorbing

and the emitting states is mediated by a conical intersection. The mixing coefficients between

the CT and LE states can change on the path to the conical intersection, so that its position,

topology and energetic location could be sensitive to solvent polarization.

With IEDRF it is possible to locate conical intersections reliably between states of differ-

ent polarity in solution, since the polarization Hamiltonian does not depend on a particular

state of interest. To demonstrate this, we take the dye with the largest solvatochromic shift,

7c, and search for the minimal energy conical intersection (MECI) between the S2 and S1

states in n-hexane with the SA-3-CASSCF(4e,3o)/def2-SVP method: The minimal complete

active space contains 4 electrons in 3 orbitals, comprising the highest occupied orbital of the

donor and the π and π∗ orbitals of the double bond in the acceptor. The lowest 3 singlet

states (ground, CT and LE) are included in the state averaging. The coordinates of the

solvent molecules with coarse-grained polarizabilities are frozen during the optimization, so

that only the chromophore and the inner solvent shell is allowed to move.

Starting from the Franck-Condon point of a representative snapshot, the S2/S1 MECI

was optimized at the QM/MM level with the gradient projection method using DL-FIND.69

Then, the minimal distance conical intersection (MDCI) to the MECI was re-optimized at

the QM/MM-IEDRF level. Figures 4(c,d) show the optimized MECI/MDCI geometries

together with the vectors that lift the degeneracy of the branching space for a representative
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Figure 4: S2/S1 MECI. Energies of S1 and S2 in the branching space and S2/S1 MECI/MDCI
geometries for 7c in n-hexane (see main text for details). Dashed lines: electrostatic and
Pauli embedding (QM/MM). Solid lines: electrostatic, Pauli and polarizable embedding
(QM/MM-IEDRF). ∆X and ∆Y are the displacements along the orange and red arrows
(non-adiabatic coupling vector and gradient difference vector respectively), which span the
2-dimensional subspace lifting the degeneracy.

snapshot. For both embedding schemes, the non-adiabatic coupling vector and the gradient

difference vector are fully localized on the chromophore: the components of the vectors on

the solvent atoms are too small be visualized. The MECI is characterized by an elongation

of the double bond, a pyramidalization of the dicyanovinyl group and an increased puckering

of the cyclohexane ring at the sulfur atom, much like in the gas phase.

While the MECI geometry and the branching space vectors are very similar for QM/MM

and QM/MM-IEDRF, panels (a) and (b) of figure 4 show noticeable differences in the poten-

tial energies in the two-dimensional branching space where the degeneracy between the two

states is lifted. Firstly, when the induced polarization is taken into account with IEDRF,

the conical intersection is lowered by ∼0.5 eV. This can be understood by the mixed LE/CT

character in both S1 and S2 at the intersection, such that they are both stabilized by solvent

polarization. In addition to this overall stabilization, the topography of the intersection

is affected by polarization: at the QM/MM level, the intersection is peaked in the non-
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adiabatic coupling vector direction, but becomes somewhat sloped at the QM/MM-IEDRF

level. This can be understood by S1 having CT character for geometries displaced in the

negative ∆X direction, leading to it being more stabilized by solvent polarization than S2.

On the other hand, both states retain mixed LE/CT character for displacements along the

gradient difference vector, and therefore the shape of the potential energy surfaces in this

direction is not significantly changed by the addition of polarizable embedding. Overall,

these findings highlight the importance of including a description of induced polarization in

the environment when exploring conical intersections in the condensed phase.

3.3 Comparison with Full-System Calculations.

To verify that our QM/MM-IEDRF method faithfully captures solvent-solute interactions,

we compared its predictions with full-system DFT calculations, where a large number of

solvent molecules are included in the QM region. Since TD-DFT becomes rather expensive

for large systems, the energy of the lowest triplet excitation is instead targeted, which can

be obtained as the difference of two self-consistent field calculations.

The lowest singlet state S0 and triplet state T1 are calculated using the (unrestricted)

ωPBEh/def2-SVP method with the default range separation parameter of ω = 0.2 Bohr−1.

The QM/MM calculations are performed with electrostatic embedding + Pauli repulsion,

which yield values close to gas-phase results since n-hexane has very small partial charges.

The QM/MM-IEDRF calculations include these same interactions in addition to the polariz-

able embedding. In the full-system calculations, any solvent molecule that intersects a shell

of 5 Å around the chromophore is included in the QM region. The chromophore and solvent

geometries are exactly the same in the embedding schemes and the full-system calculations.

Figure 5 shows that QM/MM-IEDRF (circles) agrees essentially quantitatively with the

full-system calculations, while neglecting the electronic polarization in the solvent (QM/MM,

x marks) leads to an underestimation of the lowest triplet excitation by up to almost 1

eV. The root mean square deviation from the full system reference energies is 0.03 eV for
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QM/MM-IEDRF and 0.6 eV for QM/MM. The lowest triplet T1 is predominantly a local

excitation on the C=C acceptor group. Since the singlet ground state has a slightly larger

dipole moment than T1, a polarizable environment actually increases the gap between S0 and

T1. There is also a higher excited triplet state with a long-range charge-transfer from the

donor to the acceptor. For instance, for one snapshot of 7c, the SCF accidentally converged

to the triplet with CT from the sulfur lone pair to the C=C acceptor, which is much higher

in energy than the triplet ground state. However, it proved difficult to converge to this state

with the ∆-SCF approach. The QM/MM outliers above the diagonal in Fig. 5 are due to

convergence problems.

Figure 5: Correlations between embedding- and full-system calculations of the ∆-SCF energy
of the lowest triplet state, scatter plot for all snapshots and dyes. For some snapshots the
SCF cycle for the triplet state did not converge, those snapshots are not shown.
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3.4 Convergence and Computational Cost

We now focus on the convergence and scaling of the computational cost with system size.

The convergence of vertical excitation energies of a solute (treated at the time-dependent

density functional theory level) with number of solvent molecules (treated at the IEDRF

level) is explored in Fig. 6 for dye 7c in n-hexane. As expected, the LE state converges

rapidly with the size of the MM region, reaching its plateau value at a radius of ∼ 8 Å, while

the CT state requires a rather larger radius of ∼ 14 Å to reach convergence. Polarization is

an inherently long-range phenomenon, so these findings are not surprising.

As discussed in Section 2, the current formulation of QM/MM-IEDRF has a compu-

tational bottleneck in the exchange operator that is linear scaling with the size of the QM

system, albeit with a rather large prefactor. This is demonstrated in Fig. 6(b) which confirms

linear scaling: The size of the solvent shell is measured by Npol, the number of polarizable

MM atoms. The timings for preparing integrals (ints.), construction of core Hamiltonian

(H0) and J- and K-builds on 2 × NVIDIA GeForce GTX 1080 Ti GPUs are shown on a

log-log scale. For large solvent shells, most of the time is spent on IEDRF corrections to

the Hamiltonian, in particular the K-build. Scaling exponents were determined from fits

to CNm
pol (shown as dashed lines): core Hamiltonian H0 ∝ N0.98

pol ; J-build ∝ N0.93
pol ; K-build

∝ N1.05
pol ; total ∝ N0.83

pol . For Npol < 1500 the preparation of constant intermediates is dom-

inated by the evaluation of the polarization integrals, which scales linearly (∝ N0.92
pol ), but

for Npol > 1500 constructing AF (Eqn. 27) becomes the bottleneck with approximately

quadratic scaling (∝ N1.74
pol ).

The wall times of the current implementation are rather high (albeit much lower than a

full-system TD-DFT calculation of the same system size), and preclude ab initio dynamics at

present. Possible remedies have already been explored in the original formulation of DRF:

At large distances the atomistic nature and orientation of the solvent molecules does not

matter, so that distant parts of the solvent can be replaced by a continuum. This suggests

a multi-layered partitioning of the system: An inner QM region is surrounded by a thin
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Figure 6: TD-ωPBEh/6-31g* calculation for the lowest 8 excited singlet states of the dye 7c
(QM) in n-hexane (MM): a) Convergence of excitation energies with the size of the solvent
shell. b) Timings for preparing integrals (ints.), core Hamiltonian (H0) and J- and K-builds
on 2 × NVIDIA GeForce GTX 1080 Ti GPUs.

shell of explicit polarizable MM atoms, which in turn is enclosed by a polarizable continuum

(see Fig. 1 in Ref. 70). Another simpler solution is to combine the atomic dipoles on a

distant solvent molecule into a single polarizable site (with a possibly anisotropic molecular
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polarizability) placed at the molecular center. This does not change the scaling but reduces

the number of polarizable sites by coarse graining the reaction field far from the QM region.

The time savings of such a coarse-graining approach are illustrated in Fig. 7. The coarse

graining is applied to solvent molecules if all of their constituent atoms are further away than

5 Å from any QM atom. Atom-centered dipoles are replaced by a single dipole, which is

placed on the atom closest to the center of mass. The polarizability of the molecule-centered

dipole is estimated according to Applequist’s and Thole’s dipole interaction model.29,45 To

avoid dependence on the orientation and internal coordinates, the molecular polarizability

tensor αmol is diagonalized and the average of the eigenvalues is taken as the isotropic, scalar

polarizability: αiso = 1
3
(αxx + αyy + αzz). Figure 7 shows that grouping atomic dipoles on

distant solvent molecules together does not change the energies but reduces the computation

time significantly.
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Figure 7: Same calculation as in Fig. 6 with coarse graining. a) Solid lines are the energies
for a coarse grained reaction field, dots mark energies for fully atomistic reaction field; b)
timings; c,d) induced dipole moments in the S1 (CT) state: c) atom centered dipoles, d)
dipoles outside a sphere of radius 5Å are combined into molecule-centered dipoles.

4 Justification for combining DRF and DFT

Before concluding, we point out a fundamental open question on how to combine DRF with

density functional theory. For large QM regions, time-dependent density functional theory

is currently the most practical ab initio electronic structure method. From a technical per-
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spective, there is no obstacle to combining DFT (and TD-DFT) with QM/MM-IEDRF, by

applying the DRF operators to density matrix elements of the non-interacting Kohn-Sham

(KS) reference state. However, the theoretical justification for using the same exchange-

correlation functionals as in vacuum requires some further considerations. In particular, the

first Hohenberg-Kohn Theorem (HK1) holds for external potentials that are one-electron

operators.71 The DRF polarization Hamiltonian therefore does not qualify as an external

potential. On the other hand, the DRF Hamiltonian modifies the electron-electron Coulomb

interaction due to screening by the environment and since HK1 is not limited to any particu-

lar form of the electron-electron interaction, it guarantees that there is an appropriate density

functional. However, the exact functional would be different for each solvent configuration

and polarizable environment. To some extent, our use of optimally tuned range-separated

hybrids in the IEDRF environment captures a difference in the exchange-correlation po-

tential between the vacuum and condensed phase, and ensures that the functional satisfies

Janak’s theorem.72 The resulting tuned range-separation parameters are slightly higher than

in vacuum. This procedure is seen to improve overall agreement with experiment: using the

smaller vacuum values for ωopt instead directly with DRF leads to an overestimation of the

solvatochromic shifts.

From a pragmatic perspective, the observation that triplet excitation energies for a series

of dye molecules computed with IEDRF embedding agree essentially quantitatively with full-

system DFT calculations (Fig. 5) gives us confidence that DRF can be reliably combined with

DFT by using the KS non-interacting reference density matrix. This can be understood by

noting that the solvent polarization, and therefore solvatochromic shift, should be dominated

by the total electrostatic field arising from the real-system QM charge distribution, which is

by construction reproduced by the KS reference state.
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5 Conclusions

A polarizable embedding scheme for QM/MM simulations involving excited states has been

presented, which is based on the direct reaction field method. In addition to having point

charges, the MM atoms are equipped with point dipoles, which interact with each other

and react to the motion of the electrons in the QM region. The orientation of the solvent

molecules is responsible for the static polarization of the solvent, which varies widely between

polar and non-polar solvents, while the induced dipoles capture the (infinite frequency)

electronic polarization, which is rather similar for most solvents.

Different excited states of the QM part induce state-dependent polarization responses

in the MM region. Nevertheless, the interaction between QM and MM regions is described

by a single Hamiltonian that is the same for all electronic states. We improve upon the

original method by evaluating the polarization integrals exactly, lending to the name IEDRF.

Induction and dispersion are accounted for by the polarization Hamiltonian while Pauli

repulsion is mimicked by effective core potentials placed on the MM atoms. The fact that all

excited states are eigenfunctions of the same Hamiltonian allows electronic state crossings

of solvated molecules to be defined in a consistent manner. This point has been illustrated

by optimizing the minimal energy crossing point of a solute dye for two excited states with

different polarities in a solvent shell.

Our implementation of the direct reaction field exploits TeraChem’s formulation of quantum-

chemistry methods in terms of a minimal set of basic kernel operations (Coulomb and ex-

change builds). The polarization Hamiltonian can be absorbed into the one- and two-electron

integrals. After modifying the core Hamiltonian and the Coulomb and exchange operators,

many quantum-chemistry methods work straight out of the box in combination with IEDRF

embedding. Expressions were given for the additional core Hamiltonian, J- and K-parts as

well as all necessary derivatives needed for analytic gradients and couplings.

We illustrated the method for a series of bichromophoric dyes for which the absorption

maxima of the lowest charge-transfer states in n-hexane were estimated from QM/MM-
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IEDRF calculations in combination with TD-DFT. Since n-hexane is a non-polar solvent, the

solvatochromic shifts relative to gas-phase TD-DFT values are mostly due to the electronic

polarizability of the environment. QM/MM-IEDRF yields vertical S0-T1 excitation energies

in essentially quantitative agreement (0.03 eV) with full-system QM calculations across the

series of dyes. Optimization of a conical intersection in n-hexane reveals that inclusion

of solvent polarization has an appreciable influence on the crossing, both stabilizing it by

∼0.5 eV relative to a QM/MM treatment and affecting its topography. These findings

showcase the potential for QM/MM-IEDRF to be a highly accurate embedding method for

photochemical and photobiological studies.

Although the computational cost of the current implementation precludes excited-state

dynamics simulations with a large solvation shell, the method has a computational scaling

and wall time much below full-system QM calculations of the same size. QM/MM-IEDRF

is thus already practical for single-point vertical excitation energy calculations, geometry

optimizations, and conical intersection searches, as demonstrated in this work. Future work

will seek to lower the computational scaling with respect to QM system size to enable excited-

state dynamics simulations.
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