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ABSTRACT: The transition metal-catalyzed direct cou-
pling reactions involving electron-rich Fisher carbene 
species are largely underdeveloped and remain a big 
challenge. Here, we report a direct coupling reaction 
of azoles with Fisher copper carbene species bearing 
an α-siloxy group, which could be in-situ generated 
from acylsilanes catalytically under photoirradiation 
and redox-neutral conditions. This reaction features 
mild conditions and remarkable heterocycle compati-
bility. Notably, this protocol tolerates a series of azole 
derivatives, including benzoxazole, benzothiazole, 
benzoimidazole, benzoisoxazole, oxazole, oxadiazole, 
triazolo[4,3-a]pyridine, purine, caffeine etc., which is 
highly synthetic useful in organic synthesis and phar-
maceutical discovery. Preliminary mechanistic studies 
and kinetic analysis implied a bimetallic relay process.  

Metal carbenes have emerged as highly versatile intermedi-
ates, involving in many efficient reactions, such as cyclopro-
panation, C–H and C–X bonds insertion reactions, tandem 
cyclization etc.1-4 In view of the great success in this context, 
metal carbene species with an electron-deficient (carbonyl, 
nitro group etc.) and electron-neutral (aryl, alkenyl, alkynyl 
group etc.) substituents have been well established due to 
the readily accessibility of corresponding stable carbene 
precursors including diazo compounds and their analogs 
(N-tosylhydrazones).1-4 In sharp contrast, the investigations 
on catalytic reactions involving the metal carbene species 
bearing electron-rich heteroatom (O, N, S etc.) substituents 
are considerably limited, primarily due to the lack of readily 
available and stable metal carbene precursors. The corre-
sponding diazo compounds bearing electron-rich heteroa-
toms are highly unstable and explosive, and the use of stoi-
chiometric isolable Group VI metal (Cr, Mo, or W) carbene 
bearing methoxy group5, normally prepared by using 
strictly dry anaerobic operation technique, obeys the prin-
ciples of atom-economy and green chemistry. Only a few 

catalytic approaches for the access of electron-rich Fisher 
carbenes with heteroatom functionalities have been men-
tioned6, including the attack of heteroatomic nucleophiles 
to tungsten vinylidene intermediate7, metal-carbene bear-
ing a leaving group8, and in-situ trap of transient siloxycar-
benes with transition metal catalyst9,10. Undoubtedly, to fur-
ther develop novel strategies for the generation of electron-
rich heteroatom metal carbenes catalytically as well as their 
novel synthetic applications is still highly desired and re-
mains a big challenge. 

Transition metal-catalyzed cross-coupling reactions relied 
on metal carbene intermediates have attracted increasing 
attention for the efficient construction of carbon-carbon 
and carbon-heteroatom bonds (Scheme 1a).4 In this area, 
our group has proven that the electron-rich α-siloxy Fisher 
cupper carbenes, in-situ generated from readily accessible 
acylsilanes under photoirradiation in the presence of a suit-
able copper catalyst, could be employed in the coupling re-
action with the soft π-nucleophile (alkyne).10d In principle, 
this approach should be compatible with a series of nucleo-
philes, thus rendering this approach potentially broadly ap-
plicable. However, the transformation achieved currently 
with soft nucleophile raises a question if hard nucleophiles 
could be employed in the transition metal-catalyzed cou-
pling reaction with α-siloxy Fisher carbene species. In com-
parison to the well-studied metal carbene species contain-
ing electron-deficient or electron-neutral groups, the α-si-
loxy Fisher carbene species from acylsilane which contains 
the electronically donating α-siloxy group adjacent to elec-
tron-neutral group led to a more “softer” electrophile of the 
empty p-orbital (Scheme 1b). As a result, the coupling of α-
siloxy Fisher carbene with a hard nucleophile, such as a car-
banion, is more challenging due to the Hard-Soft acid-base 
(HSAB) principle. Here, we demonstrate the Cu-catalyzed 
coupling reaction of electron-rich siloxy carbene species 
with a hard carbon nucleophile generated from azoles in the 
presence of strong base (Scheme 1c). This method offers a 
general method for the preparation of various azole-con-
taining alcohols in high efficiency under mild conditions. 
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Scheme 1. Photoinduced Copper-Catalyzed Cross-Coupling of Acylsilanes with Azoles 

With the assistance of an electron-rich bipyridine ligand, 
this protocol could tolerate a wide range of azoles, including 
benzoxazole, benzothiazole, benzoimidazole, benzoisoxa-
zole, oxazole, oxadiazole, triazolo[4,3-a]pyridine, purine, 
caffeine etc., which is unusual in Cu-catalyzed carbene-in-
volved coupling reaction11. Given the azole-containing motif 
are privileged in a large number of pharmaceutically active 
molecules (Scheme 1d)12, this reaction might find wide ap-
plications in pharmaceutical industry and drug discovery. 
Preliminary mechanistic studies indicated this reaction 
might undergo a bimetallic relay process, thus opening a 
new avenue for the development of novel coupling reac-
tions of electron-rich heteroatom Fisher carbenes.  

Based on our experiences on the Cu-catalyzed coupling re-
action of acylsilanes with alkynes, we commenced our stud-
ies by choosing 1,3-benzoylsilane 1 and benzoxazole 2a as 
the model substrates in the presence of a catalytic amount 
of Cu(OTf)2 and a strong base tBuOLi under the irradiation 
of blue light. To our delight, the desired coupling product 3a 
was observed in 35% yield with the assistance of a bisoxa-
zoline (Box) ligand L1. The optimization of bases indicates 
this novel coupling reaction could only happened in the 
presence of strong bases, such as tBuOLi, tBuONa, and tBuOK 
(See supporting information for more information), which 
could deliver the azole anion or azole cupper species via 
deprotonation. Next, systematically ligand effects on this re-
action have been evaluated using CuCl2 as the catalyst pre-
cursor (Scheme 2), as CuCl2 gave a slight better yield than 

Scheme 2. Ligand Evaluation for Copper-Catalyzed Cou-
pling of Acylsilanes with Azolesa,b 

 
aReaction conditions: 1 (0.1 mmol, 1.0 equiv.), 2a (0.1 
mmol, 1.0 equiv.), CuCl2 (10 mol %), Ligand (12 
mol %), tBuOLi (0.1 mmol, 1.0 equiv.), THF (1.0 mL), 
Blue LEDs (450-470 nm, 24 W), 12 hours. bYield was 
determined by 1H NMR using CH2Br2 as the internal 
standard. c2a (0.2 mmol, 2.0 equiv.) was used. 
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Cu(OTf)2. Unlike our previous reaction with soft nucleophile, 
the side-arm modified mono-benzyl iPr-Box L2 could not 
enhance the efficiency of this coupling reaction, giving the 
coupling product 3a in 33% NMR yield. Despite the use of 
bis-benzothiazole ligand (L3), bioxazoline ligand (L4), and 
diimine ligand (L5) cannot further increase the reactivity of 
this reaction, bipyridine L8 accelerated this reaction in 
some extent (46% NMR yield). On this basis, a series of 

modified bipyridines (L8-L15) and phenanthroline (L16) 
ligands were investigated. We found that the electron-rich 
bipyridine ligand (L14) bearing a para-methoxy group gave 
the best outcome (50% NMR yield). The yield of 3a could be 
further optimized to 85% NMR yield, when the loading of 
2a increased to 2.0 equivalent. Control experiments un-
veiled that the use of electron-rich bipyridine ligand is cru-
cial, and inferior result was obtained in the absence of L14.  

Scheme 3. Scope of Azolesa,b 

 
aReaction conditions: 1 (0.1 mmol, 1.0 equiv.), 2 (0.2 mmol, 2.0 equiv.), CuCl2 (10 mol %), L14 (12 mol %), LiOtBu 
(0.1 mmol, 1.0 equiv.), THF (1.0 mL), Blue LEDs (24 W), 12 hours. bIsolated yield. c1 (0.12 mmol, 1.2 equiv.), 2 (0.1 
mmol, 1.0 equiv.), LiOtBu (0.2 mmol, 2.0 equiv.). dLiOtBu (0.08 mmol, 0.8 equiv.) was used. e1 (0.12 mmol, 1.2 
equiv.), 2 (0.1 mmol, 1.0 equiv.), CuBr (10 mol %), L14 (12 mol %), LiOtBu (0.08 mmol, 0.8 equiv.). fNaOtBu (0.1 
mmol, 1.0 equiv.) was used. gLiOtBu (0.2 mmol, 2.0 equiv.), THF (0.5 mL). hNaOtBu (0.2 mmol, 2.0 equiv.) was used. 
iLiOtBu (0.2 mmol, 2.0 equiv.) was used. jCuCl2 (20 mol %), L14 (24 mol %), NaOtBu (0.2 mmol, 2.0 equiv.). 

With the optimal reaction conditions in hand, the generality 
of this coupling reaction with various azole derivatives 
were evaluated first by employing benzoylsilane (1) as the 
model substrate. A wide range of 1,3-benzoxazoles (2a-j) 
bearing various functionalities are well tolerated, delivering 
the corresponding products in moderate to excellent yields. 
In general, the substituents with both electron-rich and 
electron-deficient functional groups at various positions (4-, 
5-, 6-, 7-position) on the aromatic rings are all suitable for 
this reaction, and the electron-rich benzoxazole normally 

provided higher yield than the electron-deficient ones. A se-
ries of oxazoles were also evaluated (2k-y). Electron-donat-
ing and electron-withdrawing substituents on the aryl 
group of oxazole coupling partners, including methyl (2w), 
methoxy (2m, 2q), fluoro (2n), chloro (2o, 2x), bromo (2p, 
2r, 2t) and trifluoromethyl (2s), are tolerated, furnishing 
coupled products in 36-72% yields. We also found that the 
diphenyl (2y), naphthyl (2u) and thienyl (2v) substituted 
oxazoles are suitable substrates. Notably, the reaction 
showed high level of compatibilities with other heterocyclic 
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substrates, such as benzothiazole (2b), benzimidazole (2z), 
1,2-benzoxazole (2aa), oxadiazole (2ab), triazolo[4,3-

a]pyridine (2ac), purine (2ad) and caffeine (2ae), which 
further demonstrates the broad scope of this reaction. 

Scheme 4. Scope of Acylsilanesa,b 

 
aReaction Conditions: 4 (0.1 mmol, 1.0 equiv), 2a (0.2 mmol, 2.0 equiv), CuCl2 (10 mol %), L14 (12 mol %), LiOtBu 
(0.1 mmol, 1.0 equiv), THF (1.0 mL), Blue LEDs (24 W), 12 hours. bIsolated yield. cCuCl2 (20 mol %), L14 (24 
mol %), NaOtBu (0.1 mmol, 1.0 equiv), 24 hours. dCuCl2 (20 mol %), L14 (24 mol %), 24 hours. eLiOtBu (0.06 mmol, 
0.6 equiv). fCuCl2 (20 mol %), L14 (24 mol %). gLiOtBu (0.08 mmol, 0.8 equiv). 

Next, we turned to investigate the substrate scope of 
acylsilanes (Scheme 4). Employing 1,3-benzoxazole (2a) as 
the model substrate, a wide range of acylsilanes were well 
tolerated, providing the corresponding products in moder-
ate to excellent yields. This protocol is compatible with a va-
riety of aryl acylsilanes bearing both electron-rich and elec-
tron-deficient functional groups. As listed in Scheme 4, func-
tional groups such as methoxy (4a, 4i), methyl (4b, 4h), 
tert-butyl (4c), phenyl (4d), chloro (4e, 4j), bromo (4f) and 
iodo (4g) etc., are all tolerated, providing corresponding 
coupling products in 46-80% yields. In addition, polycyclic 
aromatic substituted acylsilanes including 1-naphthyl (4l) 
and 2-naphthyl (4m) are also suitable substrates, delivering 
the corresponding products in moderate yields. Notably, 
this coupling reaction underwent with high chemoselectiv-
ity when acylsilane substrate 4k containing a terminal al-
kene was employed. The cyclopropanation of terminal al-
kene was not observed with electron-rich siloxy cupper car-
bene species under our conditions. The piperonyl substi-
tuted acylsilane 4n couple with benzoxazole in 53% yield. 
The acylsilane bearing thienyl group (4o) is also reactive 
under our conditions. It is noteworthy that our protocol 

could be used in the late-stage installation of azoles in bio-
active molecules. Substrates derived from citronellol (4p), 
pitavastatin int P1 (4q) and D-ribofuranoside derivative (4r) 
are all reactive, providing corresponding products in 53-61% 
yields.  

The azole-containing products are synthetically useful, 
which could be further derivatized for the preparation of 
valuable compounds (Scheme 5a). Using our Cu-catalyzed 
coupling product 3a as substrate, the benzo[d]oxazol-2-
yl(phenyl)methanol (6) was obtained in 97% yield with 
TBAF as the desilylative reagent, which could be further ox-
idized to corresponding ketone 7 in 83% yield by employing 
PCC as the oxidant. Treatment of 6 with isoprene using 
Ru3(CO)12 as catalyst under redox neutral conditions, the 1-
(benzo[d]oxazol-2-yl)-4-methyl-1-phenylpent-3-en-1-ol (8) 
could be obtained in 51% yield. The corresponding benzyl 
chloride 9 could be also readily accessed in 88% yield by the 
reaction of 6 with SOCl2. In addition, the condensation reac-
tion of benzo[d]oxazol-2-yl(phenyl)methanone (7) with 
(S)-tert-butanesulfinamide gave (S, E)-N-(benzo[d]oxazol-
2-yl(phenyl)methylene)-2-methylpropane-2-sulfinamide 
(10) in 69% yield in the presence of Ti(OEt)4. This chiral 

https://doi.org/10.26434/chemrxiv-2024-6x3q7 ORCID: https://orcid.org/0000-0002-6442-3008 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-6x3q7
https://orcid.org/0000-0002-6442-3008
https://creativecommons.org/licenses/by-nc/4.0/


 

 

5 

sulfinamide is a potential ligand in transition metal-cata-
lyzed asymmetric reactions. The 2-(1-phenylvi-
nyl)benzo[d]oxazole (11) could be synthesized through 
Wittig reaction in 48% yield. To further demonstrate the 
synthetic utility of this newly developed methodology, the 
efficient synthesis of histamine h4 receptor, an inflamma-
tory mediator,13 was synthesized using current method as 

the key step (Scheme 5b). The coupling of m-tolyl acylsilane 
4l with benzothiazole gave the 2-(((tert-butyldimethylsi-
lyl)oxy)(m-tolyl)methyl)benzo[d] thiazole (12) in 51% 
yield. The corresponding alcohol 13 could be readily pre-
pared in 92% yield after removal of the silyl protecting 
group. The histamine h4 receptor was then obtained in 51% 
yield via etherification mediated by stoichiometric p-TSA.  

Scheme 5. Synthetic Applications 

 

Preliminary mechanistic studies were conducted to shed 
light on the mechanism of this novel Cu-catalyzed photoin-
duced coupling reaction with azoles. Control experiments 
indicated the reaction could not happen without photoirra-
diation, thus ruled out the nucleophilic addition pathway to 
acylsilanes by azole anion or azole-copper nucleophiles 
generated in the presence of strong bases and copper cata-
lyst (Scheme 6a). The UV/VIS analysis of the individual re-
action components and the reaction mixture revealed that 
the acylsilane was the only absorbing species in the visible 
range, therefore excluded the role of other species as pho-
tocatalyst (Scheme 6b). Moreover, the light on-off experi-
ment was conducted and the desired product 3a formed 
only under continuous irradiation, which ruled out the pos-
sibility of a radical chain propagation pathway (Scheme 6c). 
The photochemical quantum yield (Φ = 0.019) for current 
reaction is less than 1.0, which is consistent with α-siloxy 
copper carbene-involved coupling mechanism10d (For more 
details, see Supporting Information).  

To confirm the hydrogen sources in the products, the exper-
iment using deuterium-labelled benzoxazole (D-2a) was 
performed. Although only 43% deuteration rate was ob-
served in the target product, it still revealed that the acidic 

proton in the benzoxazole could serve as one of the hydro-
gen sources for this reaction. The low deuteration might 
originate from the trace amount of water in the solvent or 
alcohol in the presence of lithium tert-butoxide, as the deu-
teration rate was reduced to 19% by the addition of a small 
amount of tert-butanol (Scheme 6d). The KIE experiments 
with deuterium-labelled benzoxazole (D-2a) unveiled that 
the C(sp2)–H cleavage of benzoxazole might not be involved 
in the rate-determining step (kH/kD = 1.21) (Scheme 6e).  

To further understand the reaction mechanism, the reaction 
progress kinetic analysis (RPKA) was preformed (For de-
tails, see Supporting Information). The kinetic data indi-
cated the reaction rate is second order to Cu/L14 catalyst, 
first order to benzoxazole and acylsilane, which indicated 
the acylsilane, benzoxazole and copper catalyst are all in-
volved in rate determining step (Scheme 6f). The second or-
der to Cu/L14 catalyst disclosed a bimetallic relay process 
in the catalytic cycle. On the basis of our experimental ob-
servations and previous studies, a possible mechanism was 
proposed as depicted in Scheme 6g. As Cu(I) catalysts are 
also reactive under our standard conditions, we believe that 
our reaction underwent a Cu(I)-catalyzed coupling process, 
which could be in-situ generated via the reduction of 
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Scheme 6. Preliminarily Mechanistic Studies 
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Cu(II) by carbene species14. The ligand attached Cu(I)-OtBu 
species could be generated in the presence of LiOtBu and si-
loxyl carbene species. α-siloxy Fisher Cu-carbene species 
Int 1 was then formed by trapping the in situ generated α-
siloxy carbene from acylsilane under photoirradiation. 
Meanwhile, Cu(I)-OtBu species was reacted with benzoxa-
zole to reach a copper-azole intermediate Int 2 which was 
via the bimetallic relay process, transmetalation process be-
tween two organocopper species (Int 2 and Int 1), 

delivering a key intermediate Int 3. Sequentially migratory 
insertion and protonation were followed to give the desired 
product. Notably, this bimetallic relay process is the rate-
determining step according to the reaction progress kinetic 
analysis.  

In summary, we have demonstrated a photoinduced cop-
per-catalyzed coupling reaction of acylsilanes with azoles, 
delivering a series of azole-containing secondary alcohols 
with broad substrate scopes and remarkable heterocycle 
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and functional group compatibility under redox-neutral 
conditions. This reaction represents the first example of Cu-
catalyzed coupling reaction of electron-rich Fisher carbene 
species with hard nucleophiles. The development of novel 
coupling reactions with the in-situ generated electron-rich 
Fisher carbenes are ongoing in our laboratory. 
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