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ABSTRACT: The first total synthesis of dragocins A–C, remarkable natural products containing an unusual C-4’oxidized ribose 
architecture bridged by a polyhydroxylated pyrrolidine, is presented through a route featuring a number of uncommon maneuvers. 
Several generations towards the target molecules are presented including the spectacular failure of a key C–H oxidation on a late-
stage intermediate. The final route features rapid, stereocontrolled access to a densely functionalized pyrrolidine and an unprecedented 
diastereoselective oxidative electrochemical cyclization to forge the hallmark 9-membered ring. Preliminary studies suggest this 
electrochemical oxidation protocol is generally useful.

Dragocins A–C (1A-1C, Figure 1) belong to a peculiar hybrid 
structural class of secondary metabolites.1 These intriguing 
molecules were isolated off the Caribbean coast near Boca del 
Drago from a marine cyanobacterium and were found to pos-
sess modest cytotoxic activity against human lung cancer cells 
(H-460). Thus far, the only related natural product to the 
dragocin family is AB-3217A2 (2) (previously synthesized in 
26 steps by Nakata3), an anti-mite substance which features a 
near identical framework, but lacks the unique C-4’ oxidation 
found on dragocins A–C. Notably, this C-4’ functionalization is 
unprecedented in the natural product space, with the exception 
of nucleocidin,4 a C-4’ fluorinated nucleoside. Aside from this 
unusual feature, the dragocins contain an alluring central 9-
membered ring system which consists of a highly oxidized pyr-
rolidine harboring four contiguous stereocenters and an elec-
tron-rich arene, all cemented upon a polar ribose moiety. In this 
Communication we disclose a 13-14 step route to dragocins A–
C enabled by an unprecedented electrochemical oxidative cy-
clization.  

Secondary metabolites containing more than eight atoms in a 
skeletal ring have captured the imagination of synthetic organic 
chemists for nearly a century. Among ring systems containing 
eight or more atoms, medium-sized (eight to eleven atoms) 
rings are regarded as the most difficult to access due to entropic 
and enthalpic barriers.5 Consequently, embarking on the syn-
theses of such complex structures requires careful consideration 
of route choreography, strategy, and tactics for success. Practi-
tioners engaging in such pursuits have few available general 
strategies for such ring formations: ring-expansion, ring-con-
traction, and direct cyclization of the acyclic precursors.6 How-
ever, reduction of these strategies to practice is often not 
straightforward.  

With this historical context in mind, multiple retrosynthetic 
plans hinging upon disparate cyclization strategies were pur-
sued as briefly illustrated in Figure 1 and more extensively 

described in the SI. For instance, direct construction of the 

 

Figure 1. The dragocin natural products (1A-1C) and related natu-
ral product AB-3217A (2). Failed cyclization strategies towards the 
hallmark skeleton of the dragocin family and the final successful 
approach. 
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hallmark 9-membered ring using a bold dipolar cycloaddition 
approach (Gen 1) failed due to instability of the acyclic precur-
sor. Next, intramolecular glycosylation (the successful strategy 
employed by Nakata) was explored, but unfortunately the com-
pletely functionalized precursor did not form the desired ring 
(Gen 2). Reasoning that an abundance of functional groups pre-
vented cyclization, an oxidative furan-based approach was eval-
uated which also failed due to the formation (in low yield) of 
the undesired endo-cyclization product (Gen 3). 

Ultimately, the final synthetic design was guided by plastic 
models of potential precursors suggesting that glycosylation 
prior to cyclization would render the system conformationally 
poised to furnish the desired skeletal ring. Further, the electron- 
rich arene opened the possibility of installing the requisite ben-
zylic ether at a late stage via stereoselective oxidative cycliza-
tion. The challenging C-4’ oxidation state was envisaged to 

arrive either through a late-stage C–H oxidation or through de-
carboxylative functionalization. As both strategies relied on 
similar intermediates they were pursued in parallel.  

Scheme 1 presents the realization of these plans resulting in 
the first total synthesis of dragocins A–C (1A–1C). A scalable 
and enantiocontrolled route to the linchpin pyrrolidine 8 was 
required to evaluate both approaches. Historically, the routes to 
similar structures are either over 10 steps or are plagued with 
exhaustive functional group interconversions.7 As such, distinct 
strategies were evaluated (see SI for details), all of which failed 
due to stereochemical challenges, protecting group complica-
tions, or time-consuming sequences. A simple and direct stere-
oselective five-step route to 8 was devised starting from D-ty-
rosine-derived alcohol 3 (two steps from commercial). Thus, 
annulation of the corresponding aldehyde (TEMPO, NaOCl, 
used crude) with triphenylvinylphosphonium bromide8 deliv-
ered dihydropyrrole 4 in 68% yield (94% ee). Subsequent Ts-

Scheme 1. Total synthesis of dragocins A–C (1A-1C) and the failed late-stage C–H oxidation strategya 

aFor detailed reagents and conditions, see the Supporting Information. b18 equivalents of LAH. c50 equivalents of LAH. 
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removal was accomplished using metal-free electrochemical 
Birch conditions enabled by rapid alternating polarity9 (rAP, 
50% yield). These rAP-based conditions for Ts-amide depro-
tection are without precedent and represent a safer alternative 
to conventional Li-naphthalide (which was employed for scale-
up before rAP conditions were developed, see SI). This also 
constitutes the first use of the rAP waveform in total synthesis. 
Subsequent Brønsted acid-assisted diastereoselective epoxida-
tion of 5 (62% 6, 4.5:1 crude dr) proved superior to epoxidation 
of 4 which led to a ca. 1:1 inseparable mixture of epoxide dia-
stereomers in low conversion. Undesired diastereomer 7 was 
separable at this point, which set the stage for a free amine-as-
sisted Lewis-acid mediated epoxide opening of 6 to furnish the 
key pyrrolidine 8 after in situ Moc protection (78% yield, 4.5:1 
rr, gram-scale). 

With key pyrrolidine 8 in hand, two distinct approaches to the 
natural product were explored, differentiated by the means with 
which the C-4’oxidation would be installed: (1) C–H oxidation 
and (2) decarboxylative chlorination. To set the stage for the C–
H oxidation, glycosylation with donor 9 (AgOTf, NIS, 79% 
yield) followed by desilylation (TBAF/AcOH, 83%) delivered 
cyclization precursor 10. The electron-rich benzylic system pre-
sent in 10 is innately primed to achieve a benzylic C–H func-
tionalization to provide the 9-membered ring through either di-
rect or indirect means. For instance, the use of DDQ (DCE, 100 
°C, µW) led to 3-10% yield of the desired product 11 but unfor-
tunately was not reproducible or scalable despite extensive ef-
forts. Switching to an I(III)-based oxidant (PIFA, benzene, hn)10 
delivered a mixture of diastereomeric benzylic trifluoroacetates 
that were purified before exposure to (+)-CSA (1.0 equiv, ACN, 
60 °C) to afford 11 in 45% yield (over two steps) as a 5:1 mix-
ture of diastereomers. This two-step process was serviceable for 
exploring the downstream C-4’ oxidation chemistry. The struc-
ture of 11 was confirmed by X-ray crystallographic analysis af-
ter debenzoylation (12). 

 At this juncture the pivotal C–H oxidation of the tertiary C–
H bond at C-4’ was explored using nearly every set of condi-
tions that could conceivably function in such a chemoselec-
tively demanding setting. Thus, radical, dioxirane, halogena-
tive, directing group-based, and others were evaluated to no 
avail (across a range of differentially protected analogs, see SI). 
Even enzymatic systems were studied which so far have proven 
fruitless.11 With this spectacular failure in hand, attention thus 
turned to the decarboxylative chlorination approach. 

Returning to intermediate 8, glycosylation with donor 13 
(AgOTf, NIS, 81% yield, single diastereomer) and debenzyla-
tion (H2, Pd(OH)2, 82% yield) afforded cyclization precursor 
14. In this instance, the PIFA-based conditions that allowed for 
a two-step cyclization for substrate 9, functioned poorly on 14 
delivering 15 in 32% yield (1.5:1 crude dr, diastereomers sepa-
rable). As this two-step sequence was inconvenient for material 
throughput and exploration of the downstream steps, an alter-
native tactic was pursued. Specifically, a chemoselective elec-
trochemical 9-membered etherification-cyclization was ex-
plored. Remarkably, anodic oxidation of key acyclic precursor 
14 proceeded smoothly in the presence of multiple electron-rich 
C–H bonds and a pyrrolidine moiety (Shono products12 not ob-
served) to deliver the 9-membered skeleton in 52% yield with a 
5.5:1 dr at the benzylic position (44% isolated 15) after two cy-
cles. 

The development of optimized conditions for this unique 
electrochemical oxidative cyclization warrants further 

comment. Initial electrolysis of 14 to electrolysis in methanol 
or HFIP resulted in benzylic solvent trapping, alongside trace 
15 in the latter case. Nevertheless, the clean benzylic oxidation 
was encouraging, and after screening a series of solvent mix-
tures, it was discovered that ACN:HFIP (1:1) afforded a 1:1.4 
ratio of diastereomers (undesired favored, 26% total NMR 
yield). At this point, nearly 100 additional conditions were ex-
plored including waveform, temperature, electrolytes, solvents, 
electrodes, current density, and additives (see SI for details). 
These studies revealed that the desired product yield was dimin-
ished at higher conversions due to overoxidation. Therefore, all 
further efforts were focused on the suppression of overoxida-
tion, reasoning that a solvent with a suitable oxidation window13 
might prevent undesired over-reactivity. This hypothesis 
proved fruitful, with substantial suppression of the overoxidized 
byproducts when enlisting an HFIP:DMSO mixture. Careful ti-
tration of the DMSO quantity proved essential to maintain oxi-
dative efficiency whilst suppressing the formation of undesired 
products. More facile over-oxidation of the desired diastere-
omer was observed as evidenced by an apparent drop in dr at 
higher conversions, so reactions were run to partial conversion 
(ca. 50%) followed by recycling. Finally, the reaction was fur-
ther enhanced using an uncommon ammonium fluorosulfate 
electrolyte. 

With the complete skeleton of the dragocin natural product 
family in hand, bearing a synthetic handle at C-4’, a classic Bar-
ton decarboxylative chlorination14 was pursued. Oxidation of 
the free primary alcohol in 15 to the carboxylic acid was 
achieved using TPAP•NMO (69% yield). Conveniently, simple 
exposure of this acid to HOTT15 in CCl4 at 80 °C led smoothly 
to the elusive tertiary chloride 16 (48% isolated yield). In gen-
eral, Barton decarboxylative chlorinations involve the use of 
acid chlorides or coupling reagents such as DCC,16 all of which 
were unsuccessful in our hands, likely due to the sterically en-
cumbered environment. The use of HOTT in CCl4 followed by 
simple heating, although a seemingly incremental modification, 
proved essential in this case. To complete the synthesis of 
dragocin B (1B) and C (1C), global reduction using LAH was 
successful in delivering the natural products (1B: observed 
[𝑎]!"#–16.7°; lit. [𝑎]!"#–22.7° 1C: observed [𝑎]!"#–12.0°; lit. 
[𝑎]!"#–26.7°). As the related natural product dragocin A bears a 
methoxy group at the C-4’ position, the exchange of the C-4’-
Cl to -OMe was explored. To this end, preparing methanolic 
solutions of 1C led to only traces of 1A after several hours, even 
at elevated temperatures. Thus, the addition of halophilic acti-
vators was explored, and it was found that simple exposure of 
1C to AgOTf in refluxing methanol furnished 1A in 51% yield 
([𝑎]!"#–22.2°; lit. [𝑎]!"#–28.3°) 

Returning to the pivotal electrochemical cyclization reaction, 
the premise that these conditions may be amenable towards the 
preparation of benzylic b-hydroxy amino acids was explored 
(Figure 2). Typical conditions employed for such a transfor-
mation often suffer from poor reactivity17 or require a stepwise 
protocol.18 Slight modification of the conditions presented 
above proved successful in generating a small series of oxazol-
idinones which may prove useful in the synthesis of functional-
ized b-hydroxy amino acid building blocks (17-20). A more in-
depth study of this method is therefore warranted to fully tease 
out its generality. 
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Figure 2. Application of the benzylic electrochemical oxidative C–
H functionalization reaction towards b-hydroxy amino acid build-
ing blocks. 

A simple solution to the challenge posed by the dragocin nat-
ural product family has been presented. The successful route 
features a number of interesting transformations that may find 
application in other settings, such as: (1) rapid, stereocontrolled 
entry to polyhydroxylated pyrrolidines through diastereoselec-
tive and regioselective reactions, (2) rAP-mediated electro-
chemical metal-free tosylamide removal, (3) one-pot decarbox-
ylative Barton chlorination, and, most remarkably, (4) oxida-
tive, diastereoselective C–H functionalizing electrochemical 
cyclization to form a 9-membered ring. 
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