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Abstract 27 

The landscape of drug discovery is undergoing a transformative phase with the influx of structural 28 

biology and omics data. Identifying optimal drug targets amid this data surge presents a 29 

multifaceted challenge. Covalent inhibitors, once undervalued, now hold substantial promise, 30 

especially targeted covalent inhibitors (TCIs), effectively engaging 'undruggable' proteins and 31 

overcoming resistance mechanisms. Existing ML software can proficiently model covalent ligands 32 

but lack comprehensive utility across large chemoproteomics sites. Challenges persist in 33 

predicting and assessing cryptic ligandable sites and sites beyond cysteine, demanding advanced 34 

computational tools. As cysteine-ligandable proteins represent only ~20% of the quantifiable 35 

proteome, there is a requirement for ligandability mapping of other nucleophilic amino acids. This 36 

study introduces a pioneering computational pipeline leveraging an AI-based ligandable predictor 37 

for meticulous evaluation of chemical proteomics-based reactive sites. The pipeline offers a 38 

scalable framework to assess covalent ligandability on a large scale, filter out improbable hits and 39 

systematically evaluate potential drug targets. Our work addresses covalent drug design 40 

challenges through a pipeline that fills crucial gaps in predicting cryptic ligandable and covalent 41 

sites in addition to cysteines to foster more efficient drug discovery methodologies. 42 
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Introduction  44 

The magnitude of structural biology and omics information arriving at the service of drug discovery 45 

and medicinal chemistry research is expediting the rate of hit-to-lead development1. However, 46 

harnessing this deluge of information to identify optimal drug targets poses a multifaceted 47 

challenge. The efficacy and success of drug development largely hinges upon precise target 48 

identification, necessitating innovative technologies to address these challenges. Covalent 49 

inhibitors, long overlooked due to concerns about reactivity and off-target effects2, are now gaining 50 

substantial attention and reverence in both academic and pharmaceutical drug design programs. 51 

Improved understanding of the factors influencing reactivity and emergence of new types of 52 

warheads in the form of targeted covalent inhibitors (TCIs), represent a promising avenue within 53 

drug discovery, particularly in targeting proteins previously deemed ‘undruggable’.3–8 Over 40 54 

covalent drugs are currently under clinical development2 and many previously so called 55 

“undruggable” targets and mechanisms of resistance have now been effectively tackled by 56 

covalent compounds.3,9,10 Recently developed and FDA approved TCIs, AMG-510 (sotorasib) and 57 

MRTX-849 (adagrasib), effectively engage Cys12 of KRasG12C, a famously difficult target 58 

implicated in 40% of lung cancers.6,7,11 Additionally, ibrutinib, a first-in-class inhibitor known to 59 

successfully bind to Cyst of Bruton's tyrosine kinase (BTK), which is linked to overexpression of 60 

B cells in B cell cancers, has FDA approval for lymphoma.12–14 Other FDA approved drugs such 61 

as Aspirin, Penicillin G, and Fosfomycin are all reported to engaged targets via covalent 62 

interaction15.  63 

TCIs enact specificity and irreversible binding through a combination of covalent and non-64 

covalent interactions at their protein’s target site. Although non-covalent interactions make up 65 

the majority of contacts between a TCI and the binding pocket residues of the protein, target 66 

engagement via covalent bond formation (kinact) increases drugging efficiency (KI) by 67 

prolonging duration of action and increasing the degree of protein-drug occupancy16 in some 68 

cases de-coupling PK-PD17, creating an opportunity to target shallow binding sites of 69 

challenging targets18 and improving selectivity19 towards target, target isoforms and disease-70 

linked mutants. Given these appealing features, development of new tools to support the 71 

rational design of TCIs has become an indispensable task.  72 

Moreover, drug discovery remains a prolonged and expensive process characterized by a 73 

notably low (13.8%) success rate20. The integration of machine learning (ML) technologies into 74 

drug discovery research emerges as a crucial avenue to address these challenges. Numerous 75 
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ML models focused on small-molecule design and quantitative structure-activity relationship 76 

(QSAR) have been specifically designed for virtual screening (VS) of drugs against targets. 77 

These innovations represent pioneering steps toward reducing overall costs and timelines in 78 

drug discovery research.21,22 Various available computer-aided drug design (CADD) and 79 

screening programs such as Schrödinger CovDock23, DUckCov24, Cov_DOX25, WIDOCK26, 80 

Reactive Docking27, and BIreactive28, specialize in modeling close contacts and predicting the 81 

binding mode of covalent ligands or the reactivity of warheads against a model sidechain. 82 

However, these programs efficiently serve their purpose only with prior knowledge of the binding 83 

site. As a result, they often require independent and laborious use in combination with non-84 

/covalent binding site predictor programs such as P2Rank29, PocketFinder30, SiteMap10, and 85 

PocketMiner31, to initially identify non-covalent binding cavities, followed by calculations that 86 

suggest whether the binding pocket is amenable to covalent modification. Nevertheless, while 87 

some of these programs can be impractically coupled with nascent cysteine reactivity predictors 88 

such as DeepCoSi32, sbPCR33, and HyperCys34, many of these programs are intended for top-89 

down proteomics discovery or have limitations. None of these platforms are designed with a 90 

utility of assessing ligandabilities across large numbers of chemoproteomics sites or are tailored 91 

for exploring sites other than cysteines. Recently, an MS-based quantitative proteolysis method 92 

(LiP-Quant) lightly integrating ML was used to prioritize true drug targets in chemoproteomics 93 

output dataset35. Although an expensive method anticipating establishment of acceptable 94 

detection rates on genuine ligandable sites and false-positives, LiP-Quant method can be 95 

promising for future chemical proteomics-based drug discovery research. In this work, we 96 

sought to develop an inexpensive method capable of analyzing existing chemoproteomics target 97 

sites in public or private repositories for proximal binding cavities and prioritize them using a 98 

ligandability score. 99 

Covalent fragment-based drug discovery (FBDD) approaches using quantitative mass 100 

spectrometry (QMS) have conventionally been used to study inaccessible protein targets, reveal 101 

cryptic pockets and identify new potential targets in the proteome36–38. However, the success 102 

rate of chemical proteomics-based drug screening is comparable to crystallographic fragment-103 

screening (5-10%).39 Given the molecular dynamism of protein structures and the potential for 104 

occlusion of many transitory binding cavities, subpockets or PPI sites, an integrative in-silico 105 

pipeline that searches for potential druggable sites near nucleophilic residues specifically is a 106 

necessary part of the chemical proteomics-based covalent drug design pipeline.27,35,40,41 Typical 107 

cell-based shotgun/bottom-up proteomics experiments can suggest >10,000 implicit protein 108 
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targets42 however, visual inspection or in-vitro biophysical validation of each suggestive 109 

chemical proteomics-based hit is impractical and impossible. Given this challenge and in 110 

meeting the growing demand for TCI development5, we developed a computational pipeline that 111 

uses an AI-based ligandable predictor (DeepPocket43-developed) to scrupulously assess and 112 

mass-validate chemical proteomics-based reactive sites for apparent and cryptic ligandable 113 

cavities adjacent to each site. This comprehensive platform allows researchers to upload a 114 

proteomics-based covalent hits and perform a mass-scale ligandability evaluation of each 115 

suggestive target site for filtering out improbable hits. DeepPocket has emerged as a state-of-116 

the-art model which builds on an established computational method, namely FPocket44, to map 117 

out the precise boundaries of ligandable sites and detect subcavities on a protein structure. 118 

Although the protein data bank (PDB) provides one of the most detailed descriptors on protein 119 

structures, it is imperative to emphasize that such structures are only simplified snap-shot 120 

models of the target macromolecules. Regeneration of these structures into conformer 121 

archetypes that contain slight perturbations in residue side chain coordinates (using tools such 122 

as CONCOORD45) can reveal transitory structural patterns for opportunistic pocket detection 123 

while preserving macromolecule’s unique architectural style. CONCOORD produces protein 124 

conformers around an experimental structure using geometric restrictions. Studies of Molecular 125 

Dynamics (MD) simulations indicate that collective degrees of freedom are crucial to protein 126 

conformational changes, which are often vital to protein function. These internal constraints and 127 

configurational barriers can be used be used to simulate conformers without the need for more 128 

CPU intensive MD simulations45. Conformer generation using CONCOORD has been used in a 129 

similar fashion before46,47 however we report its first use in covalent site ligandability 130 

assessment. Molecular structure descriptors such as PDB files are not to be thought of as a set 131 

of fixed coordinates but rather a framework for generating hypotheses based on molecular 132 

patterns to be explored48. The recent decade witnessed development of powerful generative AI 133 

models trained on omics data leading to algorithm that can recognize molecular features when 134 

faced with new data bearing similar characteristics. Our choice of DeepPocket as the pocket-135 

predicting platform was inspired by a combination of its reliability on long-established methods, 136 

top-level performance and partitioned architecture which allowed us to further develop it towards 137 

detection of cryptic sites. 138 
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 139 

Figure 1: Ligandability assessment pipeline architecture. Thousands of chemoproteomics-based covalent site information is 140 
simultaneously fed into the pipeline using the Uniprot ID and residue ID of the modified targets and their sites, respectively. Protein 141 
structures are subject to random perturbations according to a predefined set of rules and constraints to produce conformers. Each 142 
protein structure is passed through a geometry-based candidate pocket detection algorithm and re-ranked using an ML algorithm43,44. 143 
Surface voxels of the pockets are then used to compute distances from the respective target site to the pocket surfaces and analyzed 144 
by a ligandability assessment algorithm. The pipeline outputs ligandability score for each query originally input at an extraordinary 145 
rate.  146 

With diverse nucleophilic amino acids in ligandable proteins and the emerging need for 147 

comprehensive mapping of the human proteome, covalent drug design approaches are poised 148 

for significant advancements. The identification and targeting of cryptic ligandable sites within 149 

proteins present immense potential for novel therapeutic interventions. However, the challenges 150 

in predicting and assessing these sites, particularly beyond cysteine residues, underscore the 151 

critical need for advanced computational tools. The developed pipeline (Figure 1), leveraging 152 

AI-driven predictive models robustly assesses and validates chemical proteomics-based 153 

reactive sites with exceptional speed. These advancements not only enable the detection of 154 

cryptic pockets but also pave the way for a more efficient and systematic evaluation of potential 155 

drug targets. By offering a scalable platform for ligandability assessment and rational hit 156 

filtration, this work takes a significant step towards addressing the challenges in covalent drug 157 

discovery, ultimately aiding for more efficient, precise, and successful drug development 158 

strategies in the future. 159 

 160 

 161 
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Methods 164 

Data Curation and Preprocessing 165 

Unless otherwise mentioned, all data preparation and processing pipelines were built in-house 166 

using Python 3.10.0 and the Biopython49 library. Since most PDB files contain multiple chains of 167 

proteins or macromolecules, each PDB file assess in this study was dissected for chain specific 168 

assessment, cleaned off from all ligands and/or double checked for errors with the associated 169 

covalent residue in the PDB. Any PDB chain alone with a covalent ligand sitting on a non-cavity 170 

site (absence of non-covalent interaction), missing the covalent residue in questions, or 171 

imperceptibly cryptic was omitted from analysis. Where applicable and unless otherwise 172 

mentioned, the positive covalent residue for each PDB was extracted and its respective 173 

negative was assigned by taking the most distant matching residue (matching false positive) 174 

within the chain. 175 

Holo Sites. The initial list of  2,294 PDB coordinate files for high-resolution co-crystal structures 176 

of experimental covalent ligand-bound proteins (herein referred to as holo-protein) was scraped 177 

from the covPDB database50. A summary data file containing residue- and chain-specific 178 

annotation information was obtained directly from the covPDB website. Each annotated 179 

covalent site was subject to visual inspection (manual) for containment of the covalent ligand in 180 

a pocket-like cavity of the residue and saved as refined list (covPDBs, SupplementaryFile1).  181 

Apo sites. Using the list of Uniprot accession codes referenced to the covPDB proteins, a list 182 

3,527 apo counterparts of the covPDBs (apo-covPDBs) was initially scraped from the RCSB 183 

database51 while filtering out entities with non-polymer molecules (except waters, metal ions, 184 

and small-molecules typically used in buffers). The refined list of apo-CovPBDs used for 185 

analysis was arduously compiled by manual alignment to the covPDB counterparts and cross-186 

checking for presence of all pocket-forming residues (apo-covPDBs, SupplementaryFile1).  187 

Cryptic sites. The initial list of 124 apo-cryptic PDB files and their corresponding experimental 188 

holo-proteins was curated from Meller, et al31 and Cimermancic, et al52 and/or scraped from the 189 

RCSB repository53 and refined further to a finalized list (cryptic-PDBs, SupplementaryFile1). By 190 

aligning the holo-protein counterparts of cryptic PDBs to apo-cryptic structure coordinates, a 191 

mock-covalent residue closest in distance to the ligand in the cryptic pocket of the apo-cryptic 192 

PDB was assigned to each cryptic PDB.  193 

 194 
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Pipeline Architecture and Data Processing 195 

Except for Alphafold PDB coordinate files, each PDB chain primed for processing in this work is 196 

initially examined for potential conformational states that may reveal transitory or occluded 197 

binding pockets on protein structure. These conformational states alongside the experimental 198 

state and Alphafold predicted structures are scanned for identification of druggable binding 199 

sites. Methodologies describing protein conformer generation and pocket prediction are detailed 200 

in CONCOORD45 and DeepPocket43, respectively. Briefly, each PDB chain and/or conformer 201 

structure was initially run on Fpocket44 to calculate the barycenter of candidate pockets. Fpocket 202 

is a protein pocket (cavity) detection algorithm based on Voronoi tessellation and detects pocket 203 

curvatures in most protein structures with high accuracy. Subsequently, constant-sized grids are 204 

then placed at the barycenter of each candidate pocket and are scored using convolutional 205 

neural networks (CNN). A final 3D-shaped pocket structure of the top-ranked centers are then 206 

generated using a CNN segmentation model. The 3D-structure of pockets is constructed via 207 

voxelization, and the indices of the constructing voxel indices are converted to cartesian 208 

coordinates. Distance calculations are then taken between the surface of the binding pockets 209 

and the centers of the atoms of covalent residue(s) (Cys, Lys, Ser, Tyr, Thr, His, Asp or Glu). 210 

this study.  211 

Ligandability assessment. Ligandability assessment is done to gauge the likelihood of 212 

ligandable cavity presence within rational distance of the residue within limits of standard small 213 

molecule dimensions. Whereas for the simplistic ligandability assessment, a distance threshold 214 

of 10Å was set for determining ligandability of a covalent site, to minimize false-positive rates, 215 

this threshold was set to 9Å for the advanced ligandability platform. The distance threshold is 216 

set based on the maximum of the shortest distance computed from pocket surface to covalent 217 

residue across three datasets; covalent sites of 1,647 covPDBs, 230 apo-covPDBs and mock 218 

sites of 90 cryptic-PDBs(Figure 2). 219 

 220 

 221 

 222 
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Results 225 

Simplistic Ligandability Assessment  226 

 Using a list of empirically validated ligand binding sites, covalent site ligandability 227 

assessment platform was initially subject to performance validation using a simplistic design 228 

method of taking distance computations from a query residue to the nearby predicted pockets. 229 

Initially, four pools of PDB datasets were prepared; i) a list of empirically determined holo protein 230 

co-crystal structures with a covalent ligand bound at a ligandable sites ( “Holo sites”), ii) a list of 231 

experimentally solved apo counterpart structures of the holo protein list (“Apo sites”), iii) a list of 232 

cryptic proteins with a mock covalent site designated in their respective occluded binding cavity 233 

(“Cryptic sites”) and, iv) a list of the most extreme surface residues lacking cavities or visible 234 

ligandable sites in their vicinities designates as “False-positive sites”. The dataset used in 235 

ligandability detection power against holo sites comprised of 2,251 holo-protein structures from 236 

the covPDB database50, apo sites comprising of 248 apo protein structures, cryptic sites 237 

comprising of 118 cryptic protein structures from the from RCSB database51, and false-positive 238 

sites comprising of 112 false positive sites in the Cryptic-PDBs list (SupplementaryFile1).  239 

Overall, covalent site ligandability assessment using a simple distance (10Å) threshold approach 240 

on rigid protein structural models demonstrated a competent detection performance of 85% when 241 

tested on holo site and satisfactorily (72%) when tested on apo site data (Figure 2). These scores 242 

correlate with formerly reported F-pocket and DeepPocket binding site predictions on holo and 243 

apo protein structures, respectively43,44. Generally, detection performance of many algorithms 244 

including F-pocket, Kalasanty, DeeplyTough, DeepSite, and DeepCoSI albeit considerate of 245 

signature structural features representing dynamic protein regions, exhibit suboptimal detection 246 

performance on holo sites43 as demonstrated in this study. The inability of the simplistic approach 247 

to capture ligandability of apo sites could associated with multiple factors including mitigation of 248 

high false positive rates and inability to recognize unstructured features used in training the pocket 249 

detection algorithms. Apo sites are expected to possess lower solvent accessible surface area 250 

(SASA), unstructured architecture of the ligand cavity and imprecise positions of pocket-forming 251 

atoms from the ideal expected coordinates of the ligandable site. Despite their consideration of 252 

protein dynamics, these distinct features could pose challenges for algorithms trained on holo 253 

pockets, especially when identifying valid sites within apo structures. 254 
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 255 

Figure 2: Performance metrics of the covalent ligandability assessment platforms. Panels (A) and (B) depict the various types 256 
of binding sites tested for correct prediction (filtering out false-positives or detecting experimental covalent binding sites) and incorrect 257 
prediction (predicting false-positives as covalent binding sites or failing to detect experimental covalent binding sites. Predictions made 258 
by (A) the simplistic platform designed on utilizing rigid protein structural models are compared to (B) predictions made by the 259 
advanced platform. Panels (C-F) depict the distribution scatter of distances from the covalent residue centers to nearest pocket 260 
surfaces in the various categories of dataset analyzed by the advanced platform. The bars in the distribution plots depict the relative 261 
number (frequency) of sites that fall in residue-pocket distance interval bins of 1Å (i.e. 1 for 0-1Å bin, 2 for 1-2Å bin, 3 for 2-3Å bin, 262 
etc.) in each of the dataset types. For simplicity, any distance higher than the set threshold of 9Å in the various datasets was placed 263 
in the 9-10Å bin. 264 

 265 
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Advanced Approach: Chemoproteomics Site Ligandability Assessment using an 267 

Amalgamated Platform 268 

The vital role of protein conformational sampling in detecting hidden or unformed covalent 269 

ligandable sites was assessed using an advanced platform designed to consider protein 270 

conformational fluctuations (Figure 2). When tested on the same data set of holo sites, the 271 

advanced covalent ligandability assessment platform performed remarkably by correctly detecting 272 

>99% of these sites. This distinct performance is similarly reflected on apo sites data where the 273 

advanced ligandability assessment platform was able to capture 94% of the covalent ligandable 274 

sites on apo protein structures. The binding sites on apo proteins correspond to the liganded site 275 

on their holo structure counterparts. Since applications of conformational sampling of proteins is 276 

expected to widen of existing pockets or reveal subpockets thereby decreasing average distance 277 

between pocket surface and covalently modified residue in the PDB structure (Suppl. Figure 2), 278 

a distance threshold of 9Å was used by the advanced ligandability assessment platform. Overall, 279 

in going from the simplistic distance computation approach (Suppl. Figure 3) to the advanced 280 

platform (Figure 2), a distance shift (0.5Å to 2.0Å) in the average distribution of residue-to-pocket 281 

distances and a shift in the relative number of sites towards the lower distance interval bins occur 282 

across the datasets. Decrease in the average residue-to-pocket distance incurred by opening or 283 

widening of pockets is more obvious when comparing apo and cryptic dataset across the two 284 

platforms. 285 

The proportion of empirical holo and apo sites missed by the advanced platform was respectively 286 

0.1% and 6.5% compared to 11.2% and 28.4% using the simplistic ligandability assessment 287 

approach. Each “incorrectly predicted” holo site missed by either of the simplistic and advanced 288 

approaches was subject to visual inspection for presence of a ligandable cavity occupied by a 289 

ligand in the holo protein. For the incorrectly predicted apo sites; using the 3D atomic coordinate 290 

file of the subjective apo protein structure, the apo site in apo-covPDBs was aligned to its holo 291 

site counterpart from the covPDB pool and was visually inspected for experimental truncations 292 

and presence of residues fully forming the cavity in the ligand-complexed covPDB counterpart. 293 

Details on these corresponding covPDB IDs and their alignment analysis at the global scale as 294 

well as covalent ligand binding region can be found in SupplementaryFile1. 295 

 296 
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Platform Validation on Ligandable Cryptic Sites 298 

In high probabilistic cases of ligandable covalent sites, binding of a covalent small molecule on a 299 

protein site is expected to induce structural change and potential opening or enlargement of a 300 

ligandable pocket or ostensibly a surface site. These structural transformations can give rise to 301 

discovery of hidden ligandable sites on proteins. Certainty around whether a previously 302 

unreported cavity detected in a conformational state as a false positive or, yet an undiscovered 303 

cryptic site is questionable. However, it is often possible to distinguish between superficial PPI-304 

like sites and a buried cryptic binding site. In the past decade, many PPIs which once considered 305 

“undruggable” have now been successfully targeted by drug-like molecules54,55. Protein surface 306 

cavities and novel ligandable pockets are revealed from loop motions, secondary structure 307 

element motions and changes, and interdomain motions that increase SASA on the target. It is 308 

imaginable that such perturbations cause exposure of covalently reactive residues that may 309 

otherwise be buried as reported for most covalent cysteine sites.56–58 This may give rise to 310 

indefinite estimates for setting a proximity distance threshold between covalent residue and 311 

pocket (Figure 2, Suppl. Figure 1). Notably, the power of the advanced covalent ligandability 312 

assessment platform is well demonstrated by its high detection scores on covalent sites in the 313 

apo-covPDB dataset including those which are buried (Suppl. Table 1) as well as in the cryptic-314 

PDB dataset. Compared with a simplistic distance-based simplistic approach, the advanced 315 

ligandability assessment platform showcased an improved detection rate on missed cryptic-PDBs 316 

by 8-fold (33.6% vs 4.1%, Figure 2). This indicates that the advanced platform is able to capture 317 

a diversity of conformational changes that lead to formation of cryptic pockets while maintaining 318 

a comparable detection rate of false-positives sites with the simplistic ligandability assessment 319 

platform (Suppl. Figure 3).  320 

Eliminating Non-Ligandable Sites 321 

To assess the capacity of the advanced platform to successfully disqualify false-positive covalent 322 

sites and minimize the chance of a false-negatives in spite of increased positive detection rates, 323 

we selected a new mock list of false-positive sites using the apo-covPDB dataset. This list 324 

comprises of the most the superficial (solvent accessible) residue on the apo-covPDB structure 325 

whose identity matches the covalent ligand-bound residue in the CovPDB counterpart (Matching-326 

Negative Residue column in the SupplementaryFile1). For instance, the covPDB structure 6CGE 327 

is covalent ligand-bound at HIS221 and the apo-covPDB counterpart of this protein is 1BHS. With 328 

reference to HIS221, HIS179 represents the most distant matching residue ID in 1BHS. Since 329 
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HIS179 remained unliganded in the experimental structure of the covalent ligand-bound structure 330 

of the protein, it represents the most reliable matching false-positive site. Although a similar list of 331 

matching false positives was created for the covPDBs and made available in SupplementaryFile 332 

1, due to the large number of covPDB matching false positive sites and unfeasibility for visual 333 

inspection to confirm correct/incorrect prediction for each site, we sufficed our discussion with 334 

apo-covPDB matching false-positives (and Cryptic-PDB false-positives, Figure 2) evaluation 335 

trials of the two platforms. Any matching false positive not found in the apo-covPDB structure or 336 

not be superficially exposed although being most distant from the covalently modified residue was 337 

omitted from analysis. The cryptic-PDB false positives list comprises residue sites on the most 338 

extreme or superficial areas of the protein structure tested to ensure that false-positive detection 339 

rates remain loyal when assessing non-ligandable surface residues (SupplementaryFile1). 340 

Overall, although the simplistic platform demonstrates a false positive detection rate (11.2%, 341 

Suppl. Figure 3) comparative to the advanced approach (11.6%), it does so at the expense of 342 

missing real ligandable sites. 343 

 344 

Figure 3: Cysteine ligandability detection. Covalent ligandability assessment against a list of buried cysteine residues from the 345 
apo-covPDB dataset which are empirically confirmed to be ligandable was compared across two different methods. The first approach 346 
(A) entirely dependent on predictions made by an ML algorithm32 was able to rank 28% of the buried cysteines as first or second most 347 
ligandable in the queried targets. The success rate of cysteine ligandability detection of the algorithm on the queried dataset is slightly 348 
higher when taking the probability score it assigns to each cysteine (by setting 3 bins for clarity: high for probability score 1.0-1.2, 349 
Medium for probability score of 0.8-1.0 and Low for less than 0.8). Details and exact score can be found in the SupplementaryFile1 350 
(B) The second approach uses a combination of chemoproteomics-based (empirical) covalent sites and in-silico ligandability 351 
assessment techniques presented in this work. In the combined approach, the simplistic ligandability approach was able to capture 352 
78% of the ligandable cysteines compared to the advanced method which correctly judged 92% of the empirical sites. 353 

 354 

 355 

 356 
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Cysteine Ligandability Detection: Computational versus Combined Methodologies 357 

Although various standalone residue reactivity prediction algorithms32,59 take key ligandability 358 

features such as SASA and flexibility into account in detecting reactive residues, our experience 359 

suggests that protein conformation sampling and/or separate assessment for the presence a 360 

binding pocket in the vicinity of the predicted reactive residue site may be necessary for accurate 361 

results. Although the differentiating advantage of such an approach can be sensed from the data 362 

presented above, we further pursued a case in which we compared prediction performance of a 363 

purely computational method on a list of cysteine sites buried in an occluded binding pockets. A 364 

list of 47 apo-covPDB structures empirically confirmed to contain a buried ligandable cysteine 365 

covalent site were selected and tested for ligandability prediction by DeepCoSI32 (apo-366 

covPDBs_buriedCys, SupplementaryFile1). DeepCoSI performs global analysis of all cysteine 367 

residues on each query PDB file and ranks the cysteines according to their “ligandability” score. 368 

Albeit considerate of SASA around the target residue, the DeepCoSI platform was able to capture 369 

at least 28% (high accuracy ranked) and at most 76% of the ligandable cysteines (the total of high 370 

and medium accuracy predictions using ranking-based scores). In contrast to ranking-based 371 

score, the proportion of top predicted ligandable cystines based on probability score of the 372 

algorithm matched that of the empirical data at least 19% and at most 40% of the time. (Figure 373 

3).  Treating the same apo-covPDB samples as empirical cysteine chemoproteomics data points 374 

and assessing them for ligandability using the simplistic and advanced approaches correctly 375 

assessed 78% and 92% of the ligandable cysteines, respectively. As exemplified, covalent 376 

ligandability evaluation techniques purely dependent on computational methods may 377 

misrepresent a real ligandable site whereas that which uses the simplistic rigid protein models for 378 

site ligandability evaluation may fail to detect hidden or novel sites. By maximizing the number of 379 

correct predictions, the advanced ligandability approach which considers protein conformational 380 

fluctuations in assessing ligandable cavities around experimental sites is an ideal method to be 381 

adopted in site-directed and covalent drug discovery pipelines.  382 

 383 

 384 

 385 

 386 
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Discussion 387 

The identification of covalent site ligandability through machine learning presents a tremendous 388 

opportunity to expand the druggable protein space, especially those lacking well-defined binding 389 

sites. Our study aimed to introduce and validate an advanced computational platform, leveraging 390 

chemoproteomics studies, to accelerate covalent-based drug discovery processes. This platform 391 

integrates protein conformational fluctuations and structural dynamics, providing a robust scaffold 392 

for assessing and validating experimental chemoproteomics sites and identifying potential ligands 393 

for drug development. 394 

In the evaluation of ligandability using a simplistic approach based on a distance threshold from 395 

pocket surfaces, our initial findings revealed a competent detection performance, particularly in 396 

detecting empirical holo sites. However, the simplistic approach exhibited limitations in identifying 397 

ligandable sites within apo structures, where structural irregularities and lower solvent accessible 398 

surface areas challenged the detection algorithm's efficacy. These results highlight the inherent 399 

challenges faced by algorithms trained on holo pockets when applied to detect valid sites within 400 

apo structures, emphasizing the need for methodologies that account for protein dynamics and 401 

conformational changes. 402 

The majority of the human genome remains undrugged encoding thousands of proteins that 403 

have experimental evidence linking them to human disease. With only about 5% of the human 404 

proteome drugged and multiple targeted drugs available for a small number of driver gene 405 

targets, the vast majority of driver gene targets (>3500 for cancer driver) remain untargeted 406 

and/or inaccessible.60,61 These proteins which need to be immediately explored for de novo drug 407 

discovery, represent a potential of multi-fold increase beyond the total number of available FDA-408 

approved drugs existing today. Whereas membrane proteins make-up about 30% of all known 409 

proteins, over 60% of the current drug targets are membrane proteins.39 The difficulty 410 

associated with targeting many of these proteins is the absence of well defined binding sites or 411 

lack of target structural information, albeit the latter is rapidly changing with recent advancement 412 

in cryo-EM techniques. The advanced covalent ligandability assessment platform, designed to 413 

consider protein conformational fluctuations, exhibited remarkable performance gains in the 414 

detection of covalent ligandable sites, surpassing the simplistic approach both in detecting holo 415 

sites and significantly outperforming in identifying apo sites. Notably, the advanced platform 416 

showcased a reduced rate of missed sites for both holo and apo structures compared to the 417 

simplistic approach, underscoring the pivotal role of considering protein structural fluctuations in 418 

https://doi.org/10.26434/chemrxiv-2023-hfntq ORCID: https://orcid.org/0000-0002-6968-4821 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-hfntq
https://orcid.org/0000-0002-6968-4821
https://creativecommons.org/licenses/by/4.0/


16 
 

enhancing the accuracy of ligandability predictions. The platform also enables mass-scale and 419 

holistic analysis of proteomics data with unprecedented speed (<1 second/site) using a 420 

multidisciplinary approached aimed at expediting drug discovery research and development. 421 

Furthermore, the computational platform designed in this study can be tailored for detection of 422 

non-covalent sites by providing platform with mock chemoproteomics sites proximal to expected 423 

non-covalent binding sites. 424 

Chemical proteomics-based drug discovery research typically suggests a large number (1000s) 425 

of targets of which 1 to 5 potential targets are selected based on target quality for tractability 426 

analysis using wet-lab biochemical and biophysical validation assays. Target selection and 427 

prioritization is typically done using computational biology approaches that qualify targets using 428 

curated omics data available to us. Target prioritization is a long-standing issue in drug discovery 429 

research especially due to lack of techniques that assess binding site quality and downstream 430 

functional impact of targeting each site62. Target validation is highly time consuming (est. 431 

>1year/target) and is a monetary sink (est. >$1M/target validation) in the covalent drug discovery 432 

pipelines. Quite often, such tests eventually indicate that one or none of the elected targets are 433 

true therapeutic targets and are indeed identified as off-targets and/or false positives. Aside from 434 

being highly time and resource wasteful, this traditional approach of target validation misses on a 435 

vast opportunity that the remaining unvalidated targets pose. Ligandability evaluation techniques 436 

showcased in this work provide an opportunity to explore more than 75% of known proteome 437 

(767,580 protein structures)63,64 using chemoproteomics-enabled covalent drug discovery 438 

experiments on a time and financial scale that is at least 100-fold less than the traditional 439 

approaches (Figure 4). To ensure the platform's efficacy in eliminating false-positive covalent 440 

sites, computational tools were employed to identify and disqualify superficial matching-negative 441 

residues in apo-covPDB structures. The comprehensive assessment revealed the platform's 442 

robustness in minimizing false-positive rates, crucial for ensuring the accuracy of ligandability 443 

predictions. 444 
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 445 

Figure 4: The traditional approach of target prioritization involves an exhaustive feedback loop of target selection and in-vitro 446 
validation, quite often leading to pursuance of many false-positive hits. In the advanced approach powered by AI-based computational 447 
platforms, target sites are assessed for ligandability and downstream functionality in-silico before attempting any in-vitro validation. 448 
Although targets picked by an algorithm are still bound for in-vitro validation, the number of necessary validation and their success 449 
rate is highly improved.  450 

Application of such ligandability assessment platforms can be very broad, ranging from 451 

development of novel QMS-based techniques and site-directed fragment-based screening to 452 

identifying variants adjacent to novel ligandable pockets for allele-specific drug binding65.  Our 453 

results indicated that as of today, a conglomeration of empirical and computational methods 454 

may provide the highest research throughput. We report for the first time a list of apo 455 

counterparts of covalent-ligand bound PDB structures, which are of highly value for further 456 

development of platforms that can accurately recognize both apo and holo covalent sites. 457 

Although the work here is focused on a platform more suitable for a bottom-up drug discovery 458 

approach, the data reported in this paper can be utilized in training and developing singly-459 

sufficient computational platforms that, through a top-down approach, accurately predict valid 460 

covalent ligandable sites on target proteins (Suppl. Figures 3 and 4). 461 

Moreover, the platform demonstrated its proficiency in identifying cryptic binding sites, which 462 

typically remain hidden due to structural transformations induced by ligand binding. The 463 

advanced platform's ability to detect a diverse range of conformational changes leading to the 464 

formation of cryptic pockets was significantly higher compared to the simplistic approach, 465 

highlighting its capability to unveil hidden ligandable sites while maintaining a low false-positive 466 

rate. 467 

https://doi.org/10.26434/chemrxiv-2023-hfntq ORCID: https://orcid.org/0000-0002-6968-4821 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-hfntq
https://orcid.org/0000-0002-6968-4821
https://creativecommons.org/licenses/by/4.0/


18 
 

In conclusion, the developed computational platform, by harnessing protein conformational 468 

sampling, represents a paradigm shift in covalent site ligandability evaluation. Its ability to 469 

consider dynamic structural changes, detect cryptic pockets, minimize false-positive rates, and 470 

enhance the accuracy of ligandability predictions stands as a significant advancement in 471 

computational biology. This platform holds immense promise in expediting drug discovery 472 

research and development by providing a holistic and multidisciplinary approach for identifying 473 

potential therapeutic targets and facilitating the design of novel covalent drugs. 474 

 475 
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