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Abstract –  

The availability of affordable organic compounds with thermally activated delayed fluorescence 

(TADF) properties represents a unique class of materials for addressing key challenges in organic 

electronics. In this context, we have successfully designed and synthesised three novel hybrid 

molecules 2-(4-(3,6-di-tert-butyl-9H-carbazol-9-yl)phenyl)-3,7,8-triphenylpyrazino[2,3-

g]quinoxaline (tCz-PyrQx), 4-(tert-butyl)-N-(4-(tert-butyl)phenyl)-N-(4-(3,7,8-

triphenylpyrazino[2,3-g]quinoxalin-2-yl)phenyl)aniline (tDPA-PyrQx), and 2-(4-(9,9-

dimethylacridin-10(9H)-yl)phenyl)-3,7,8-triphenylpyrazino[2,3-g]quinoxaline (Ac-PyrQx) 

comprising electron-donating 3,6-di-tert-butyl-9H-carbazole, bis(4-(tert-butyl)phenyl)amine, and 

(9,9-dimethyl-9,10-dihydroacridine) with electron-accepting pyrazinoquinoxaline groups. The 

incorporation of highly planar and rigid pyrazinoquinoxaline electron-accepting moieties holds 

significant importance due to their unique properties like efficient charge transfer, and reduced 

steric hindrance. Their planar structure facilitates strong π-π stacking interactions and efficient 

charge transfer within the molecular framework, leading to improved exciton formation and 

enhanced reverse intersystem crossing (RISC) rates, which are critical for TADF processes. The 

three different electron-donating groups with pyrazinoquinoxaline were synthesised with the view 

of tuning the photophysical and electrochemical properties of the hybrids. 

 

Key Words – Pyrazinoquinoxaline, π-π stacking interactions, reverse intersystem crossing 

(RISC), red TADF, OLED. 
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In the past decade, a family of luminescent materials referred to as thermally activated 

delayed fluorescence (TADF) have attracted great attention as an alternative for noble metal-based 

phosphorescent materials in organic light-emitting diodes (OLEDs). Advancements in materials 

design, synthesis, and device engineering continue to push the boundaries of OLED technology, 

bringing us closer to achieving efficient red TADF for practical applications in displays and 

lighting.1–6 Due to their advantages of 100% internal quantum efficiency via the reverse 

intersystem crossing (RISC) process from the triplet (T1) state to the singlet (S1) state, pure organic 

thermally activated delayed fluorescence (TADF) emitters have attracted a lot of attention for 

applications in organic light-emitting diodes (OLEDs).7–9 Because TADF-based OLEDs have 

outstanding characteristics, including high external quantum efficiencies (EQEs)10–12, high light 

brightness and stability13, and high color purity14,15. The efficiency of TADF emitters is notably 

enhanced as approximately 75% of spin-forbidden triplet excitons can transition from the singlet 

state to the ground state through an up-conversion process. Some purely organic TADF material 

exhibit 100% internal quantum efficiencies (IQEs).16–19 The breakthroughs in molecular design 

and materials engineering within the TADF field not only expand the color possibilities of emitters 

but also significantly boost their efficiency. These advancements promise a future where TADF-

based OLEDs play a central role in shaping energy-efficient, visually stunning displays, and 

lighting systems controlled spatial overlap between Highest Occupied Molecular Orbital (HOMO) 

and Lowest Unoccupied Molecular Orbital (LUMO) is crucial for achieving a high 

photoluminescence quantum yield (PLQY). Additionally, introducing a twist between HOMO and 

LUMO reduces the singlet-triplet energy gap.20 These factors are pivotal in enhancing the (EQE) 

of OLEDs. Specifically, raising the optical outcoupling efficiency of OLEDs further augments the 

EQE, contributing to the overall improvement of OLED performance.21–25  

To attain emission in red region, TADF molecules requires a substantial conjugated system, 

effectively reducing the energy gap between the lowest singlet excited state and lowest triplet 

excited state. To achieve this, electron-accepting moieties with potential electron-withdrawing 

effects and fused ring structure are favored. Commonly used acceptors for red emission includes 

pyrazino-2,3-dicabonitrile26, 2,3-dicyanopyrazino phenanthroline27, phenazine28–31, 

quinaxolines32–34, acenaphtho-pyrazine35,36 and acenaphtho[1,2-b]quinoxaline37 and electron 

donors as aromatic amines like carbazole, diphenylamine, phenoxazine, phenothiazine, dimethyl 

acridine are used in TADF molecules. These donors possess strong electron-donating capabilities 
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and stable, high-energy triplet states. Recently, pyrazinoquinoxaline is used as new acceptor unit 

because of its highly extended π-conjugation and the presence of structural elements that enhance 

its rigidity. Jain Pei and co-workers developed tetra substituted pyrazino[2,3-g]quinoxaline 

derivatives with thiophen and phenyl rings, which leads to changing extent of conjugation to 

achieve high efficiency active wavelength fibers.38 Habin Su and co-workers developed 

pyrazino[2,3-g]quinoxaline derivatives with effect of substitution on different position and it was 

shown that combination of conjugation and cross conjugation effects is responsible for electronic 

properties.39,40 Levent Toppare and co-workers have synthesized molecule having pyrazino[2,3-

g]quinoxaline moiety demonstrate 84% optical contract in NIR with higher stability.41 Yuxia Zhao 

and co-workers synthesized a water soluble pyrazino[2,3-g]quinoxaline based photosensitizer 

which exhibit both high fluorescence quantum yield and singlet oxygen quantum yield.42 

Achalkumar Sudhakar and coworkers developed  material for bright green organic light emitting 

diodes that displaces an EQE 5% and they also developed solution processable pyrazino[2,3-

g]quinoxaline Carbazole derivative to achieve 15.3% EQE  for yellowish-green OLED and 12% 

EQE for white OLED.43,44 

Herein, for the further π-extended and more rigidified acceptor units for TADF emitters, we have 

introduced 2,3,7,8-tetraphenylpyrazino[2,3-g]quinoxaline (pyrazinoquinoxaline) as an acceptor 

unit where the acceptor strength of the quinoxaline unit was further increased by fusing one extra 

pyrazino unit. This rigid pyrazinoquinoxaline acceptor unit was attached to the 9,9-dimethyl-9,10-

dihydroacridine (Ac), bis(4-(tert-butyl)phenyl)amine (tDPA) and 3,6-di-tert-butyl-9H-carbazole 

(tCz) donor units through phenyl ring spacer to enable sufficient twist between the donor and 

acceptor unit. Photophysical study of the three emitters, 2-(4-(3,6-di-tert-butyl-9H-carbazol-9-

yl)phenyl)-3,7,8-triphenylpyrazino[2,3-g]quinoxaline  (tCz-PyrQx), 4-(tert-butyl)-N-(4-(tert-

butyl)phenyl)-N-(4-(3,7,8-triphenylpyrazino[2,3-g]quinoxalin-2-yl)phenyl)aniline (tDPA-

PyrQx), and 2-(4-(9,9-dimethylacridin-10(9H)-yl)phenyl)-3,7,8-triphenylpyrazino[2,3-

g]quinoxaline  (Ac-PyrQx) was performed in different organic solvent.  

 

Results and Discussion –  

Molecular Design Strategy  

The design and synthesis of TADF materials have been modified recently, with a focus on 

enhancing their performance properties across various spectral ranges. This involves manipulating 
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the molecular structure by introducing specific acceptor and donor units, spacers, and linkers to 

optimize the electronic properties, energy levels, and exciton dynamics for improved OLED device 

performance. 

Recently, it was shown that extending the conjugation length and optimizing the electron-

accepting potential of acceptor moieties enhance the device  performance of orange-red to deep-

red TADF materials.45–51  

In this work, we introduced pyrazinoquinoxaline as a acceptor unit because of its highly extended 

π-conjugation and the presence of structural elements that enhance its rigidity. Further, to enable 

proper twists between the donor and acceptor units, we added a phenyl ring spacer in between 

them. The introduction of the strong acceptor pyrazinoquinoxaline as a new acceptor unit was 

further increased by attaching the peripheral phenyl ring decorated extra pyrazino unit character 

of the pyrazinoquinoxaline unit, which control the electron-accepting characters and molecular 

orbitals of the acceptor moieties. The D-π-A primary skeleton was selected for its strong oscillator 

strength. The choice of donor can significantly influence the molecule's electronic properties and 

energy levels. To change the emission wavelength, the donors 9,9-dimethyl-9,10-dihydroacridine, 

bis(4-(tert-butyl)phenyl)amine, and 3,6-di-tert-butyl-9H-carbazole were used. The 9,9-

dimethylacridine donor was the strong donor for orange emission, whereas bis(4-(tert-

butyl)phenyl)amine and t-butyl carbazole donor was the weak donor for yellow emission. The 

combination of three donors with one acceptor produces three TADF emitters, namely tCz-PyrQx, 

tDPA-PyrQx and Ac-PyrQx. Scheme 1 shows the chemical structures of the TADF emitters. 

 

Synthesis - 

Scheme 1 represents the synthetic pathway that we followed to prepare tCzPyrQx, tDPA-PyrQx, 

and Ac-PyrQx along with intermediate. Crucial intermediate 2, 3-diphenylquinoxaline-6,7-

diamine (I) obtained by condensation of 1,2,4,5-benzene tetramine tetrahydrochloride and benzyl 

which was further condensed with 1-(4-(3,6-di-tert-butyl-9H-carbazol-9-yl)phenyl)-2-

phenylethane-1,2-dione, 1-(4-(bis(4-(tert-butyl)phenyl)amino)phenyl)-2-phenylethane-1,2-dione, 

and 1-(4-(9,9-dimethylacridin-10(9H)-yl)phenyl)-2-phenylethane-1,2-dione to get the 

compounds.  

All the products were purified by column chromatography. The chemical structures of all these 

synthesized molecules are confirmed by 1H NMR, 13C NMR, and mass analysis. 
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Scheme 1 Synthetic route of three TADF emitters, tCz-PyrQx, tDPA-PyrQx, and Ac-PyrQx, 

and their chemical structures. 
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Photophysical Properties –  
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Fig. 1 Photophysical properties of TADF emitter’s tCz-PyrQx, tDPA-PyrQx and Ac-PyrQx

To evaluate the donor effect on PyrQx acceptor, the photophysical properties of the three 

compounds were studied using ultraviolet-visible (UV-Vis) and a fluorescence spectrometer in 

toluene (10-5 M) (Fig. 1) The strong absorption band observed at 316, 306, and 315 nm in toluene 

respectively, which are attributed to 𝜋-𝜋* transitions. In addition, there are low-energy broad weak 

absorption peaks (400-500 nm) which are associated with the intramolecular charge transfer (ICT) 

states between Pyrazinophenazine acceptor and different donors used. It can be observed that the 

ICT-based absorption peak wavelengths of all three TADF-emitters are broadly varied from 400 

nm to 520 nm depending on the strength of the differently substituted donor units. Interestingly, 

the ICT absorption bands gradually red-shifted from 422 nm (tCz-PyrQx) to 496 nm (tDPA-

PyrQx) with the increase of the electron-donating ability from tCz to tDPA and the same trend is 

reflected in their respective PL spectra. The fluorescence emission peaks of tCz-PyrQx, tDPA-

PyrQx, and Ac-PyrQx are 552, 625 and 626 nm in toluene respectively. Broad and red-shifted 

emission spectrum of Carbazole substituted tCz-PyrQx show slightly red-shifted emission and 
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diphenyl amine substituted tDPA-PyrQx and acridine substituted Ac-PyrQx suggests a very 

strong ICT characteristic of this compound. The emission spectrum all emitters (Fig. 2) exhibited 

very strong solvatochromism (180 nm) from non-polar cyclohexane to polar chloroform solvent 

indicating the presence of strong CT characteristics.  
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Fig. 2 PL spectra of tCz-PyrQx, tDPA-PyrQx and Ac-PyrQx in different organic solvents at 

room temperature. 

 

Thermal Properties –  
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Fig. 3 Thermal gravimetric analysis (TGA) curves of tCz-PyrQx, tDPA-PyrQx, and Ac-PyrQx 

emitters. 

The thermal properties of these three TADF molecules is studied by Thermogravimetric analysis 

under nitrogen atmosphere. These molecules shows high thermal decomposition temperature at 

2360C, 3370C and 3500C respectively shown in (Fig. 3). The high glass transition and 

decomposition temperatures implies higher thermal stability due to the high molecular weight and 

presence of strong pyrazinoquinoxaline acceptor with four nitrogen atoms in their moieties. Albeit, 

the extended conjugation leads to high morphological stability in the film. 

 

Electrochemical Properties –  
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Fig. 4 Cyclic voltammogram of tCz-PyrQx, tDPA-PyrQx, and Ac-PyrQx 0.1 M TBAP 

(reduction) in DMF and 0.1 M TBAPF6 (oxidation) in CH2Cl2 were used as supporting 

electrolytes. A glassy carbon electrode was used as the working electrode; scan rate: 100 mV s-1.  

We used cyclic voltammetry (CV) to probe the electrochemical properties of the three 

emitter’s tCz-PyrQx, tDPA-PyrQx, and Ac-PyrQx (Fig. 4). A standard 3-electrode cell 

comprising silver/silver chloride (Ag/AgCl), a platinum wire, and a glassy carbon electrode as the 

reference, counter, and working electrodes, respectively were used. Tetrabutylammonium 

hexafluorophosphate (TBAPF6 0.1M) in DCM and tetrabutylammonium perchlorate (TBAP, 

0.1M) in DMF were used as the supporting electrolyte for oxidation and reduction scan, 
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respectively. The energies of the HOMO levels were determined from the first oxidation potentials 

by taking the known EHOMO of ferrocene (Fc) (−4.80 eV) as the reference value. The Eox of Fc/ 

ferrocenium (Fc+ ) versus Ag/Ag+ as internal standard was measured to be −0.44 V and EHOMO 

values of all measured compounds were calculated according to the equation: EHOMO [eV] = −[Eox 

− 0.44] − 4.80 and ELUMO = EHOMO + Eg. tCz-PyrQx, tDPA-PyrQx, and Ac-PyrQx exhibit 

reversible redox processes with initial oxidation potentials of 1.68, 1.70 and 1.78 eV, 

corresponding to HOMO levels of –6.04, -6.06 and –6.14 eV. Similarly, the initial reduction 

potentials are -0.77, -0.80, and - 0.81 eV, and the LUMO levels of these emitters are -3.77, -3.98, 

and -3.50 eV. 

 

Conclusion –  

In summary, three novel TADF materials (tCz-DibzPyrQx, tDPA-PyrQx, and Ac-DibzPyrQx) 

were designed and synthesized using pyrazinoquinoxaline as a newly developed electron-

accepting unit. These molecules possess color-tuning ability due to different donors, and 

pyrazinoquinoxaline as a robust acceptor region while allowing flexibility in the donor segment 

leading to twisted geometry necessary for small singlet-triplet energy gap (∆EST). These emitter’s 

shows broad absorption and emission spectra, also exhibit good thermal and electrochemical 

properties. So we stropngly believe that this work demonstrate great potential of the 

pyrazinoquinoxaline acceptor in developing highly efficient orange-red TADF emitters. 
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Supporting Information 

 

Materials and Methods  

All reagents for the synthesis of Ac-DibzPyrQx and tCz-DibzPyrQx were purchased from Sigma 

Aldrich, BLD pharma. 1H NMR and 13NMR measured on an Agilent 500MHz spectrometer. UV-

visible and Photoluminescence are recorded with the Shimadzu UV 1800 spectrophotometer from 

200 to 600 nm and Shimadzu RF 6000 spetrofluorophotometer in the range of 450 to 800 

respectively having 10-5 mol/L concentration. Thermogravimetric analysis was undertaken with 

HITACHI STA7300 under a nitrogen atmosphere and heating at a rate of 100C/min from up to 

6000C. Electrochemical analysis was performed on a Metrohm Autolab PGSTAT204 

Potentiostat/Galvanostat operating in cyclic voltammetry mode. Glassy carbon, Pt wire, and 

Ag/AgCl were employed as working, counter, and reference electrodes respectively. Tetrabutyl 

ammonium perchlorate (0.1 mol/L) was dissolved in DMF and Tetrabutylammonium 

hexafluorophosphate was dissolved in DCM (0.1 mol/L) used as an electrolytes and the scan rate 

was 100mV/sec.  

 

Experimental  

Synthesis of 1-(4-(3,6-di-tert-butyl-9H-carbazol-9-yl)phenyl)-2-phenylethane-1,2-dione 

 

A mixture of 1-(4-bromophenyl)-2-phenylethane-1,2-dione (5.0 g, 1.73mmol) and 3,6-di-tert-butyl-9H-

carbazole (0.47 g, 1.73 mmol) and K2CO3 (0.7 g, 3.00 mmol) were added into three neck flask in 50 ml 

toluene in N2 atmosphere. After degassing for 15 min, Pd(OAc)2 (10 mol%) and tri-tert-

butylphosphine (0.146 ml, 0.62 mmol) were added. Subsequently, the mixture was stirred and 

refluxed overnight. After removing the solvent in vacuum, the mixture was partitioned between 
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DCM and water. The combined organic layers were washed with brine, dried over Mg2SO4 and 

concentrated in vacuum. Column chromatography of the residue solid. (0.71g, 84%) 

 

Synthesis of 1-(4-(bis(4-(tert-butyl)phenyl)amino)phenyl)-2-phenylethane-1,2-dione 

 

A mixture of 1-(4-bromophenyl)-2-phenylethane-1,2-dione (5.0 g, 1.73mmol) and bis(4-(tert-

butyl)phenyl)amine (0.46 g, 1.73 mmol) and K2CO3 (0.7 g, 3 mmol) were added into three neck flask in 50 

ml toluene in N2 atmosphere. After degassing for 15 min, Pd(OAc)2 (10 mmol%) and tri-tert-

butylphosphine (0.146 ml, 0.62 mmol) were added. Subsequently, the mixture was stirred and 

refluxed overnight. After removing the solvent in vacuum, the mixture was partitioned between 

DCM and water. The combined organic layers were washed with brine, dried over Mg2SO4 and 

concentrated in vacuum. Column chromatography of the residue solid. (0.72 g, 85%). 

 

Synthesis of 1-(4-(9,9-dimethylacridin-10(9H)-yl)phenyl)-2-phenylethane-1,2-dione 

 

A mixture of 1-(4-bromophenyl)-2-phenylethane-1,2-dione (5.0 g, 1.73 mmol) and 9,9-dimethyl-9,10-

dihydroacridine, (0.36g, 1.73mmol) and K2CO3 (0.7 g, 3 mmol) were added into three neck flask in 50 ml 

toluene in N2 atmosphere. After degassing for 15min, Pd(OAc)2 (10 mol%) and tri-tert-

butylphosphine (0.146 ml, 0.62 mmol) were added. Subsequently, the mixture was stirred and 

refluxed overnight. After removing the solvent in vacuum, the mixture was partitioned between 

DCM and water. The combined organic layers were washed with brine, dried over Mg2SO4 and 

concentrated in vacuum. Column chromatography of the residue solid. (0.63 g, 87%) 
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Synthesis of 2,3-diphenyl quinoxaline-6,7-diamine (I)  

 

1,2,4,5-Benzenetetramine tetrahydrochloride (0.5 g, 3.62mmol) is dissolved in ethanol then K2CO3 

(1.0 g, 7.24 mmol) is added to the reaction mixture then Benzil (0.76g, 3.62mmol) is added slowly 

then the reaction was refluxed 8 hr. After cooling to room temperature water was added and 

extracted with ethyl acetate. Then it is purified by using column chromatography. (0.42 g, 

37.16%). 

 

Synthesis of 2-(4-(3,6-di-tert-butyl-9H-carbazol-9-yl)phenyl)-3,7,8-triphenylpyrazino[2,3-

g]quinoxaline (tCz-PyrQx) 

  

Intermediate I (0.8 g, 2.56 mmol) and 1-(4-(3,6-di-tert-butyl-9H-carbazol-9-yl)phenyl)-2-

phenylethane-1,2-dione (1.25 g, 2.56 mmol) were dissolved in acetic acid and the mixture was 

heated to reflux for 12 hrs. The reaction mixture was cooled to room temperature and water was 

added. The yellow solid precipitated out was filtered and purified by column chromatography. 

(1.48g, 76.28%). 1H NMR (500 MHz, CDCl3) δ 9.08 (s, 1H), 9.07 (s, 1H), 8.14 (d, J = 1.7 Hz, 

2H), 7.85 (d, J = 1.7 Hz, 1H), 7.83 (d, J = 1.7 Hz, 1H), 7.72 (dd, J = 7.8, 1.5 Hz, 2H), 7.64 (d, J = 

1.1 Hz, 2H), 7.63 – 7.59 (m, 5H), 7.51 – 7.46 (m, 5H), 7.45-7.42 (m, 5H), 7.41 (d, J = 2.8 Hz, 2H), 

1.48 (s, , 18H). 

 

Synthesis of 4-(tert-butyl)-N-(4-(tert-butyl)phenyl)-N-(4-(3,7,8-triphenylpyrazino[2,3-

g]quinoxalin-2-yl)phenyl)aniline (tDPA-PyrQx) 
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Intermediate I (0.8 g, 2.56mmol) and 1-(4-(bis(4-(tert-butyl)phenyl)amino)phenyl)-2-

phenylethane-1,2-dione (1.25 g, 2.56 mmol) were dissolved in acetic acid and the mixture was 

heated to reflux for 12 hrs. The reaction mixture was cooled to room temperature and water was 

added. The red solid precipitated out was filtered and purified by column chromatography. (1.5 g, 

76.53%). 1H NMR (500 MHz, CDCl3) δ 8.97 (s, 1H), 8.96 (s, 1H), 7.70 (d, J = 7.2 Hz, 2H), 7.61 

(d, J = 7.2 Hz, 5H), 7.44 (d, J = 6.8 Hz, 4H), 7.39 (dt, J = 14.0, 7.0 Hz, 5H), 7.29 (d, J = 8.4 Hz, 

4H), 7.07 (d, J = 8.4 Hz, 5H), 6.97 (d, J = 8.5 Hz, 2H), 1.32 (s, 18H). 

 

Synthesis of 2-(4-(9,9-dimethylacridin-10(9H)-yl)phenyl)-3,7,8-triphenylpyrazino[2,3-

g]quinoxaline. (Ac-PyrQx)  

 

Intermediate I (0.8 g, 2.56 mmol) and 1-(4-(9,9-dimethylacridin-10(9H)-yl)phenyl)-2-

phenylethane-1,2-dione (1.0 g, 2.56 mmol) were dissolved in acetic acid and the mixture was 

heated to reflux for 12 hrs. The reaction mixture was cooled to room temperature and water was 

added. The yellow solid precipitated out was filtered and purified by column chromatography. 

(1.32 g, 74.57%) 1H NMR (500 MHz, CDCl3) δ 9.09 (s, 1H), 9.08 (s, 1H), 7.85 (d, J = 8.4 Hz, 

2H), 7.69 (dd, J = 7.8, 1.7 Hz, 2H), 7.65 (t, J = 1.1 Hz, 2H), 7.64 – 7.63 (m, 2H), 7.47 (dd, J = 7.7, 

1.5 Hz, 2H), 7.45 (t, J = 2.0 Hz, 2H), 7.44 – 7.42 (m, 2H), 7.41 (d, J = 1.3 Hz, 1H), 7.40 (d, J = 

1.7 Hz, 2H), 7.38 (t, J = 2.0 Hz, 2H), 7.37 (d, J = 1.9 Hz, 1H), 6.99 (dtd, J = 30.3, 7.3, 1.4 Hz, 

5H), 6.35 (dd, J = 8.1, 1.2 Hz, 2H), 1.69 (d, J = 5.7 Hz, 6H). 

 

 

 

https://doi.org/10.26434/chemrxiv-2023-5mqmp Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-5mqmp
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Fig. S1 1H spectra of tCz-PyrQx 
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Fig. S2 13C spectra of tCz-PyrQx 
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Fig. S3 1H spectra of tDPA-PyrQx 
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Fig. S4 13C spectra of tDPA-PyrQx 
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Fig. S5 1H spectra of Ac-PyrQx 
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Fig. S6 13C spectra of Ac-PyrQx 
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