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ABSTRACT: Herein, we report that readily accessible azoxy-triazenes can serve as nitrogen atom sources under visible-light excitation for the 
efficient aziridination of alkenes. This approach eliminates the need for external oxidants, precious transition metals, and photocatalysts, 
marking a departure from conventional methods. The versatility of this transformation extends to the selective aziridination of both activated 
and unactivated multi-substituted alkenes of varying electronic profiles. Notably, this process avoids the formation of competing C–H insertion 
products. The described protocol is operationally simple, scalable, and adaptable to photoflow conditions. Mechanistic studies support that the 
photofragmentation of azoxy-triazenes results in the generation of a free singlet nitrene that governs the observed chemoselectivity and 
stereospecificity of the reaction. Our findings contribute to the advancement of sustainable and practical methodologies for the synthesis of 
nitrogen-containing compounds, showcasing the potential for broader applications in synthetic chemistry.

 Aziridines are among the simplest nitrogen-containing 
heterocycles in organic chemistry. 1,2,3 Their inherent ring strain of  
27 kcal mol−1 allows them to be potent synthetic handles to access 
valuable 1,2-aminofunctionalization products, which are featured 
in natural products and pharmaceutically relevant 
compounds.4,5,6,7,8 In some cases, the aziridine core itself plays a 
significant role in the anti-tumor activity of certain small 
therapeutics and natural products, like mitomycin.9 Therefore, 
innovative strategies to access aziridine motifs continue to be of 
active interest among the synthetic community. Common 
strategies include the [2+1] cycloaddition of reactive nitrene 
intermediates with olefins.10,11 However, many of these 
methodologies necessitate the use of transition metal catalysts 
with activated nitrene precursors such as haloamines, 
iminoiodinanes, and organic azides, or under oxidative conditions 
with amines (Scheme 1A, Left).12,13,14,15,16,17 While each approach 
offers unique advantages, these methods are conducted under 
harsh conditions and can suffer from low substrate scope.  

Throughout the years, approaches for the 
photogeneration of nitrenes have evolved, presenting 
complementary advantages over conventional thermal methods. 

18,19 Previously constricted to ultraviolet light and transition metals 
for intermolecular nitrene transfer (Scheme 1A, Right), recent 
progress encompasses direct photolysis or the utilization of 
photocatalysts under mild visible-light conditions for the 
liberation of free nitrenes.20 In 2018, the Takemoto group 
demonstrated that photoexcitation of specialized ortho-
substituted iminoiodinanes can effectively produce a free singlet 
nitrene (Scheme 1B, Left),21 however, this method was restricted 
to silyl enol ethers and styrenes. In 2022, Koenigs reported that 
blue light excitation of iminoiodinanes can engender triplet 
nitrene formation, leading to allylic C–H insertion products. With 
the addition of a Ru-based photoredox catalyst, the reaction 
mechanism can be redirected to generate a nitrogen radical anion 

intermediate that can react with alkenes to produce aziridines, 
albeit with low stereospecificity (Scheme 1B).22 Unfortunately, the 
reliance on precious metals like Ru23 for chemoselectivity can be 
seen as a limitation from a cost perspective. Thus, the development 
of a metal- and oxidant-free aziridination method is highly 
warranted. Herein, we report that readily synthesized azoxy-
triazenes can lead to the formation of free nitrenes under direct 
visible-light irradiation to enable the stereospecific and 
chemoselective aziridination of alkenes (Scheme 1C). 

Scheme 1. Aziridination of Alkenes.   

 
Previously, our group and others have reported the use 

of photoexcited nitroarenes as oxygen-atom-transfer agents to 
access alcohols from hydrocarbons,24 and carbonyl derivatives 
from alkenes, aldehydes, and imines.25,26,27 Hence, we hypothesized 
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Table 1: Scope of the Photoinduced Azoxy-Triazene Promoted Aziridination Reactions.a,b 

  
Table 1. a Isolated Yields. b Conditions: 1-phenyl-2-phthalimidodiazene-1-oxide (1 equiv.), 1.2 equivalents of alkene, 390 nm, 1,4-Dioxane 

(0.05M), 23 o C, 24h, rt.  c Denotes 1H NMR yield using CH2Br2 as an external standard. d No Reaction.  e Using 2.0 equiv. of alkene; 0.025M. f As the 
major product (d.r. 50:50); 4% 1H NMR yield of minor product (2au1, see SI) was detected. g As the major product; 14% 1H NMR yield of minor 
product (2av1, see SI) was detected.  

the use of isoelectronic azoxyarenes may trigger a nitrogen-atom-
transfer event under visible-light irradiation with alkenes to give to 
aziridines. In 1981, Hoesch and Köppel reported a single example 
of using azoxyarenes as nitrene precursors under harsh UV-light.28  
In the preparation of this manuscript, the Koenigs group illustrated 
that tosyl-protected azoxyarenes are capable of undergoing direct 
visible-light excitation leading to N–S bond homolysis to achieve 

group transfer of the azoxy to alkenes.29 Conversely, we postulated 
that the use of a phthalimide-protected azoxy-triazene, featuring a 
stronger N–N over an N–S bond, may lead to a nitrogen-atom-
transfer of a phthalimide-protected amine under visible-light 
irradiation for the functionalization of alkenes. 
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To test our hypothesis, we subjected 4-fluorostyrene 
(1a) and readily synthesized 1-phenyl-2-phthalimidodiazene-1-
oxide (AT1)28,30,31 in dichloromethane to 390 nm light irradiation, 
which resulted in the desired nitrogen-atom-transfer event leading 
to the aziridine product (2a) in 70% 1H NMR yield. Once the 
optimized reaction conditions were obtained (see SI for details), 
the electronic effect of the aziridination reaction was investigated 
with 4-substituted-styrene derivatives (Table 1, 1a−k). It was 
found that the transformation was not impacted by the electronic 
pattern, as substrates possessing both electron-rich and deficient 
groups resulted in good to high yields (2a−k, 2o, 60-95%). 
Furthermore, substituents such as –Me (1c), –tBu (1d), and –OH 
(1i), which are prone to C–H nitrene insertion or hydrogen atom 
transfer were tolerated in high yields. Next, we investigated 
disubstituted alkenes under the reaction conditions, which gave 
moderate to excellent yields (2p-2x; 2ad, 34-90%) of the desired 
aziridination products. Notably, aziridination of electron-deficient 
styrene 1r is challenging under TM-free conditions,32 however, 
aziridine 2r was obtained in 53% 1H NMR yield under our 
conditions. Among the β-substituted styrenes, cinnamaldehyde 
(1y) gave 2y in low yield (18%) and cis-stilbene (1z) yielded no 
reaction. The latter outcome is likely due to strong fluorescence 
quenching of the starting material. Challenging trisubstituted 
(1aa) and tetrasubstituted (1ab) styrenes yielded 2aa-ab in 
moderate to good yields under the reaction conditions.  

Bicyclic-substituted styrene 1ac generated 2ac in good 
yield. Other styrenes like p-biphenyl (1ae) and sterically 
encumbered styrene (1ad), resulted in 84% of 2ae and 46% of 2ad, 
respectively. Substrate 1af, possessing a BMIDA functional 
handle, was tolerated under the reaction conditions (2af, 42%).33 
Highly electron-deficient styrenes, such as 1ag, resulted in a 
moderate yield of the aziridination product. The highly sensitive 
acetal group of 1ah, with a weak C–H bond that is prone to nitrene 
insertion, led to the aziridination product 2ah selectively in a good 
1H NMR yield (64%). Other substrates prone to fluorescence 
quenching of AT1 such as heterocyclic amines (1ai-l), yielded 
aziridine products 2ai-2aj in moderate to good yields (43-82%). 
However, imidazole (1ak) produced a low yield (2ak, 36%). 

Next, unactivated olefins were studied under the 
conditions, (see SI for optimization). Subjecting cycloalkenes to 
the reaction conditions resulted in good yields of the aziridination 
products (2al-am, 71-85%), whereas bicyclic norbornene gave 
2an in 33% yield. Cyclic trisubstituted olefins possessing a methyl 
(1ao) substituent generated the corresponding aziridine 2ao in 
moderate yield (61%). For non-cyclic substrates, terminal and 
internal alkenes led to moderate to excellent yields of the aziridine 
products (2ap-2as, 35-98%). 

The regioselectivity of the transformation was examined 
on unactivated alkenes. 1,4-Cyclohexadiene (1at) yielded only 2at 
(50% yield) with no diaziridination detected. Limonene (1au), a 
common terpene with both terminal and internal alkenes, 
produced aziridination product 2au with a 15:1 ratio of internal 
(d.r. 50:50) to terminal alkene. Testing the impact of sterics on the 
reactivity toward alkenes, essential oil Crithmene (1aw)34 was 
examined.  It was found that aziridination (2aw) occurred at the 
less hindered alkene in a 4.7:1 regioisomeric ratio. Next, odorant 
α-ionone (1av),35 possessing a trisubstituted cyclic and 
disubstituted linear alkene, was investigated. Aziridination of the 

disubstituted linear alkene was the sole product detected (2av) in 
good yield. When linalyl acetate (1ax) was tested, boasting both 
non-cyclic internal and terminal alkenes, regioselective 
aziridination of the internal alkene was obtained in 67% yield 
(2ax). These regioselectivity studies indicate that the aziridination 
event is sensitive to the steric profile of alkenes. The cis-fatty acid, 
methyl oleate (1ay), was also tested and gave 74% of 2ay. 
Antibiotic cores, 2ba and 2bb, were synthesized in good to 
excellent yields. Finally, complex steroid, such as cholesterol36 
(1bc) was subjected to the conditions and gave a moderate yield 
of 2bc. Notably, in all cases, allylic C–H amination products were 
not detected, illustrating that this aziridination approach is highly 
chemoselective. 

To assess the scalability of the method, activated (~1 g 
of AT1 with 1j) and unactivated alkenes (~0.5 g of AT1 with 1ar) 
were used in a batch setup, resulting in comparable yields to our 
isolation scale in 60% and 34% yields of 2j and 2ar, respectively. 
(Scheme 1B). Employing a photoflow reactor37,38 (see SI) for 
substrates with lower yields (1l, 1ai, 1ak, 1ap) led to a 3-to-5-fold 
increase in productivity. Furthermore, derivations of these 
substrates, such as nucleophilic ring opening of 2m followed by 
nickel/hydrazine-promoted N–N cleavage, are possible.39,40,41,42  

The mechanism of the transformation was then 
interrogated. UV-Vis indicated that the azoxy-triazene was the sole 
absorbing species under reaction conditions (Figure S3). Control 
experiments (Table S4 and Figure S4) established that sustained 
light exposure was crucial for both the aziridine formation and the 
fragmentation of the azoxy-triazene. Moreover, experiments 
involving various triplet-state and singlet-state quenchers 
indicated that the azoxy-triazene predominantly enters the singlet 
state upon excitation (Table S6), similar to other azoxyarenes 
systems.43,44,45 Since our method results in chemoselective 
aziridination, singlet nitrene intermediates are likely formed 
during the reaction progress. To support this, singlet nitrene 
traps46,47 such as dimethyl sulfide (DMS, 3a) and dimethyl 
sulfoxide (DMSO, 3b) were used and resulted in trapped products 
4a and 4b in 20% and >99% 1H NMR yield, respectively (Table 
2A), strongly supporting the formation of a singlet nitrene species.  

Further support for the formation of the singlet nitrene 
intermediate can be ascertained by the employment of 
stereochemical probes,48,49 where retention of the initial geometry 
indicates a concerted mechanism via a singlet nitrene, and ablation 
supports a stepwise mechanism via a triplet nitrene. Geometrically 
defined unactivated alkenes, (Z)-1,4-dichlorobut-2-ene (5a) and 
(E)-1,4-dichlorobut-2-ene (5b) were subjected to the reaction 
conditions and resulted in stereospecific aziridination; thus, 
supporting singlet nitrene formation (Table 2C, Pathway A). 
However, when activated (Z)-β-methylstyrene (5c) and (E)-α-
methylstyrene (5d) were investigated, the former resulted in 
stereoablation of the alkene geometry (2:1, cis to trans), while the 
latter was stereospecific (1:9, cis to trans) under the reaction 
conditions (Table 2B). This phenomenon has been reported to 
occur for β-methylstyrenes with singlet nitrenes.47,50,51,52 However, 
this observation could also indicate the possibility of a non-
concerted reaction via radical addition of the photoexcited  
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Table 2. Mechanistic Studies and Proposed Mechanisms. 

 

Table 2.  A) Nitrene trapping studies. B) Stereochemical probes to determine nitrene identity. C) Possible mechanisms. D) Rates of azoxy-triazene 
photofragmentation. E) Control study for the photodecomposition of azoxy-triazene.

diradical intermediate 7 to the olefin in a stepwise fashion (12) 
leading to either intermediate 13, followed by radical 
fragmentation (Table 2C, Pathway B), or oxadiazolidine 
intermediate 14 followed by intramolecular fragmentation 
(12®14®15; Pathway C) to generate the aziridine product. 

To determine if aziridination occurs via Pathway A or 
Pathways B and C, kinetic studies monitoring the growth of the 
reaction products via 19F-photoNMR were conducted (Table 2D). 
It was rationalized that the rapid decay of the photoexcited azoxy-
triazene (AT4) leading to a free nitrene may lead to a higher initial 
rate of nitroso formation (N4) compared to aziridination (2a), 
contrary to a stepwise radical addition which would have 
proportional growth of nitrosoarene and aziridine.  The observed 
rate slightly favored nitrosobenzene formation over aziridine 
(kN4/2a = 1.75), indicating the probable generation of a free singlet 
nitrene via Pathway A. Further evidence for Pathway A was 
provided by the photoirradiation of the starting azoxy-triazene 
material without the presence of alkene, which resulted in 
significant detection of phthalimide (62% isolated yield), 
presumably via photofragmentation of nitrene dimer 1,4-bis-
phthaloyltetrazene53 (Table 2E, Left). This was verified by 
subjecting synthesized 1,4-bis-phthaloyltetrazene (16) to the 
reaction conditions, resulting in the formation of the 
corresponding phthalimide product in 90% yield (Table 2E, 
Right). 

To rule out the possibility of carbon-centered radical 
intermediates (13 or 14), radical quenchers such as TTBP and 
TEMPO were added to the reaction conditions and exhibited 

negligible quenching and no trapped products were observed, 
suggesting radical intermediates did not predominately govern the 
reaction. Hammett studies employing para-substituted styrenes 
(Figure S6) illustrated a linear dependence with conventional 
Hammett parameters (concerted, ρ = -0.54) and a non-linear 
dependence with radical parameters, supporting a concerted 
aziridination event with the build-up of a partial positive in the 
transition state.54  

Based on the results of our mechanistic studies, the 
following mechanism is proposed (Table 2C, Pathway A). Azoxy-
triazene undergoes direct excitation to the singlet state (7), which 
undergoes photodecomposition to release a free singlet nitrene 
(9) and the nitrosoarene byproduct. The singlet nitrene 
undergoes a concerted [2+1] cycloaddition (10) event with 
olefins to generate aziridines (11) with high degrees of 
stereospecificity and chemoselectivity. 

 In conclusion, we have illustrated that photoinduced 
azoxy-triazenes can promote a nitrogen atom transfer event for the 
chemoselective aziridination of activated and unactivated alkenes. 
Our method leverages the singlet-excited state of the azoxy-system 
that is accessed upon visible-light excitation, which subsequently 
fragments to generate free singlet nitrenes. A wide range of 
functional groups were tolerated that can be difficult via traditional 
methods owing to the mild conditions of the transformation. The 
relatively benign, metal-free method to attain reactive nitrene 
intermediates at the expense of readily accessible azoxy-triazenes 
is a distinct feature of this methodology that opens avenues for 
sustainable aziridination events and related nitrogen atom transfer 
reactions.   
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