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Abstract

Sampling high-coverage configurations and predicting adsorbate-adsorbate interac-

tions on surfaces are highly relevant to understand realistic interfaces in heterogeneous

catalysis. However, the combinatorial explosion in the number of adsorbate configura-

tions among diverse site environments presents a considerable challenge in accurately

estimating these interactions. Here, we propose a strategy combining high-throughput

simulation pipelines and a neural network-based model with the MACE architecture

to increase sampling e�ciency and speed. By training the models on unrelaxed struc-

tures and energies, which can be quickly obtained from single-point DFT calculations,

we achieve excellent performance for both in-domain and out-of-domain predictions,

including extrapolation to di↵erent facets, coverage regimes and low-energy configura-

tions. From this systematic understanding of model robustness, we exhaustively sam-

ple the configuration phase space of catalytic systems without false positives or active
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learning. In particular, by evaluating over 14 million structures within the simulated

annealing method, we predict coverage-dependent adsorption energies for CO adsorp-

tion on six Cu facets (111, 100, 211, 331, 410 and 711) and the co-adsorption of CO

and CHOH on Rh(111). When validated by targeted post-sampling relaxations, our

results for CO on Cu correctly reproduce experimental interaction energies reported

in the literature, and provide atomistic insights on the site occupancy of steps and

terraces for the six facets at all coverage regimes. Additionally, the arrangement of CO

on the Rh(111) surface is demonstrated to substantially impact the activation barriers

for the CHOH bond scission, illustrating the importance of comprehensive sampling on

reaction kinetics. Our findings demonstrate that simplified data generation routines

and controlled extrapolation of neural networks can be deployed at scale to under-

stand lateral interactions on surfaces, paving the way towards realistic modeling of

heterogeneous catalytic processes.

Introduction

Understanding the interaction between surfaces and adsorbates is crucial for several applica-

tions in surface science and heterogeneous catalysis. Advances in density functional theory

(DFT) and computational methods enabled accurately estimating adsorption energies of

several molecules and reaction intermediates on metal surfaces,1,2 resulting in the rational

design and discovery of (electro)catalysts for several technologically relevant applications.3–6

Although atomistic studies often focus on adsorbate-surface interactions, it is well known

that lateral interactions between adsorbates, often referred to as adsorbate-adsorbate in-

teractions, can strongly influence catalytic activity, selectivity and surface stability under

operating conditions.7–9 For example, changing adsorbate coverages can influence binding

site preferences and, in turn, strongly a↵ect the activity and selectivity of important reac-

tions such as the hydrogen evolution reaction (HER)10 and carbon dioxide reduction reaction

(CO2RR),11 among many others. Therefore, it is highly desirable to develop a comprehensive
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understanding of lateral interactions and in turn, coverage e↵ects, to study surface catalyzed

processes.

Given the multitude of site types and the combinatorial increase in the the number of

configurations with adsorbate coverage, exhaustive sampling and estimation of coverage-

dependent adsorption energies are intractable using DFT simulations. This is especially

true when larger supercell sizes are used to quantify coverage e↵ects at longer length scales.

As a result, surrogate models bootstrapped from DFT simulations have been used to explore

the large configurational space to estimate coverage-dependent adsorption energies.12 Exam-

ples of such surrogate models include: (1) analytical relationships based on first or higher

order lateral interaction models,13–15 (2) cluster expansion based approaches that include

a sum of on-site, two- and higher-body interactions,8,16–19 and (3) machine learning (ML)

based approaches, including neural networks (NNs), that predict total adsorption energies

from atom-centered descriptors.20–23 Each of these strategies has advantages and limitations.

For instance, analytical expressions that are often used to account for lateral interactions in

mean-field microkinetic models are computationally e�cient, but rely on sampling of limited

configurations at discrete coverages and use interpolated functional forms (e.g., piecewise-

linear)13 to estimate coverage-dependent adsorption energies. As spatial correlations are

not accounted for in such models, they can lead to large errors in the prediction of surface

coverages and catalytic activity.24 Cluster expansion approaches explicitly account for spa-

tial correlations between adsorbates and have been extensively used in lattice based kinetic

Monte Carlo (kMC) simulations.25 However, cluster expansion requires selecting (small)

discrete clusters whose complexity increases exponentially with number of adsorbates and

active sites. This also hinders the transferability of these models beyond a single (low sym-

metry) facet type, particularly to higher index facets that have more complex active site

environments. Finally, ML-based approaches are data-intensive and require careful analysis

to avoid extrapolation failures when used beyond their training datasets. As such, these

methods rely on active learning to augment training sets whenever novel coverage config-
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urations are found,21 or on incremental model training by stepwise generation of coverage

configurations.22 When using relaxed configurations obtained from DFT-based geometry op-

timizations, ML approaches require larger computational resources to accurately sample the

entire configuration space of interest, including high adsorbate coverages, co-adsorption, and

low symmetry surfaces with diverse site environments.

In this work, we introduce a fast and scalable data pipeline for quantifying coverage

e↵ects on catalyst surfaces using high-throughput workflows and ML, with an emphasis on

extrapolation and transferability. In particular, we use the MACE architecture,26 based on

many-body message passing neural networks exhibiting good extrapolation behavior,26,27

to predict coverage dependent adsorption energies with high accuracy for both in-and out-

of-domain tasks. Using binding energies for unrelaxed structures as training data, MACE

models are shown to extrapolate to di↵erent facets, coverage regimes, and thoroughly sample

combinatorial spaces of coverage configurations without retraining the model. By combining

the NN model with workflow management implemented in mkite,28 we sampled over 14

million configurations of CO adsorbed on six Cu facets (111, 100, 211, 331, 410 and 711)

with varying coordination environments, which are systems of relevance for electrochemical

CO2 reduction.29 Binding energies of the most stable structures, as predicted with the NN

model, are computed with single-point DFT calculations and demonstrated to agree nearly

perfectly with the predictions. Our approach is further validated using over a thousand

structural relaxations, from which di↵erential binding curves and trends are obtained for

coverage-dependent *CO adsorption on the six Cu facets. Finally, we demonstrate that our

pipeline is also applicable to co-adsorption systems using the *CHOH intermediate on CO-

covered Rh(111), an active catalyst for thermal CO hydrogenation, as a case study.15 This

combination of simpler data generation and control of NN extrapolation demonstrates how

new ML pipelines can be developed and employed to model increasingly complex interfaces

in heterogeneous catalysis at scale.
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Results and Discussion

Designing a data-e�cient pipeline for coverage-dependent adsorp-

tion energies

The accuracy of ML predictions is often intrinsically connected to the training set used to

create the models. Especially within NN potentials, predicting coverage e↵ects in surface

catalysts often rely on active learning strategies21,22 or expert curation23 when generating

training data. This ensures that models continue to perform well as new regions of the con-

figuration space are sampled, thus avoiding the generation of “adversarial examples” in the

potential energy landscape30 or failures when extrapolating to unseen configurations.27,31

Furthermore, because the input data often comes from DFT relaxations, producing enough

data points to train the model imposes a large cost on the developer, especially as larger sur-

faces and adsorbates are investigated. To explore how improving extrapolation and avoiding

relaxations can be beneficial for modeling lateral interactions, we first explore coverage-

dependent binding energies of CO adsorbed on six di↵erent Cu facets (111, 100, 211, 331,

410, and 711). These facets span a wide range of adsorption site environments and accessible

*CO coverages, and correspond to the predominant facets in Cu at zero applied potential

according to Wul↵ constructions. Furthermore, surface coverage and adsorbate-adsorbate

interactions of *CO, a key intermediate during electrochemical CO2 and CO reduction,

have been shown to have a strong influence on kinetics and selectivity towards the di↵erent

multi-carbon products.32–35 Thus, it is important to obtain realistic models for these lateral

interactions and minimize artifacts from periodic boundary conditions observed in small su-

percell models. To do that, large orthogonal supercells containing at least 16 surface atoms

were used as initial slabs where adsorbates where distributed (see Table S1 and Fig. S1). As

these structures contain from 64 to 144 high-symmetric adsorption sites (Fig. S2), creating

unique adsorbate configurations using enumeration-based approaches36,37 is no longer feasi-

ble. If brute force enumerations were used to build configurations in mid- to high-coverage
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regimes, the number of adsorbate configurations could reach the order of hundreds of millions

to billions of configurations per facet per coverage (Table S2), forming complex interaction

networks between adsorbates and surface (Fig. 1a) and posing a challenge to data sampling

and evaluation.
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Figure 1: Approach used to estimate coverage-dependent adsorption energies,
data generation workflow, and extrapolation tests. a, An illustration of configurations
in the high-coverage regimes, where there is a combinatorial number of interaction networks
between adsorbates and binding sites. b, To bypass exhaustive sampling and structural
relaxations in this space, we propose a workflow that randomly samples configurations in
a per-facet, per-coverage basis, and starts with single-point DFT calculations to generate
training data. Only a few structures are relaxed afterwards for validation. c, Example
of unrelaxed *CO binding energy distributions on Cu(111) in the low and high coverage
regimes. Distributions are normalized separately to facilitate the visualization. d, Di↵erent
regimes (in-domain and extrapolation) under which the ML models are evaluated.

To e�ciently generate data for combinatorial adsorption spaces while also avoiding active

learning loops, we propose to: (1) train a model on unrelaxed energies (i.e., single-point

DFT calculations) from randomly sampled configurations, and (2) generalize beyond this

limited space by controlling the extrapolation behavior of the ML models. Because sampling

the space of relaxed structures with ML models is much more expensive and less reliable

than that of unrelaxed structures, step (1) reduces the computational cost associated with
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performing structural relaxations when creating training data. As a consequence, more data

can be generated to train the ML models at a reduced computational expense. A second

benefit of our approach is bypassing the need for active learning approaches, simplifying the

simulation workflows. Figure 1b summarizes the data generation strategy for this work, and

the complete relationship between workflow objects implemented in mkite is shown on Fig.

S3. Instead of enumerating configurations, we randomly sampled configurations on a per-

facet, per-coverage basis (see the Methods section for details). In particular, we generated

up to 100 unique configurations for each facet and coverage where nCO < 10 (low coverage

regime) and 50 unique configurations per facet and coverage where 10  nCO  18 (high

coverage regime). These configurations were generated by randomly sampling adsorption

sites that avoid distances smaller than 2.0 Å (1.7 Å) between adsorbates in the low (high)

coverage regime, then deduplicating symmetrically equivalent structures (see Methods). This

resulted in 6793 configurations for the di↵erent CO coverages and Cu facets considered in

this work (Table S3). Then, single-point DFT simulations are used to compute unrelaxed

binding energies of *CO adsorbed on the Cu facets of interest. These randomly sampled

distributions span a wide range of energies, as exemplified in Figure 1c for low and high

*CO coverages on Cu(111), and detailed in Figs. S4 and S5. Already from the randomly

generated data, known trends from the sampling outcomes can be observed. For example, at

higher coverages, average binding energies tend to shift towards higher energies in all facets

(Fig. S4), although with di↵erent magnitudes in each facet due to di↵erent binding sites.

Because randomly sampled datasets are often not representative of the lowest-energy

structures, quantitative analysis of the physical phenomena cannot be performed until the

configuration space is thoroughly sampled. To evaluate how models generalize beyond these

datasets, we proposed five experiments to assess the performance of NN models beyond

their training domain (Fig. 1d). In addition to in-domain train-test splits, additional errors

metrics can be obtained by: training the model on data from one facet and testing it on

data from another facet; training the model on lower coverages of a single facet and testing

7

https://doi.org/10.26434/chemrxiv-2023-f6l23 ORCID: https://orcid.org/0000-0001-9176-0854 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-f6l23
https://orcid.org/0000-0001-9176-0854
https://creativecommons.org/licenses/by-nc/4.0/


it on higher coverages of the same facet; or omitting certain coverages from the training

set. These tests can provide additional information to assess extrapolation behavior, thus

helping decide if a model can reliably obtain low-energy structures despite being trained on

a higher-energy dataset.

In-domain and extrapolation performance of binding energy pre-

dictions

Using the dataset of nearly 7000 unrelaxed *CO binding energies, we trained MACE models

on a per-facet basis and evaluated them according to the extrapolation protocols defined

above. The model and training parameters were chosen based on correlations between hy-

perparameters and extrapolation performance from previous work.26,27,38 However, because

the screening strategy proposed here avoids training a force field and rather focuses only

on binding energies, an invariant model (L = 0) was used (see Methods). Figure 2a shows

the performance of the models when trained on one facet (rows) and tested on all other

facets (columns). The test root mean square error (RMSE) of the *CO binding energies

for in-domain data is shown in the diagonal of the matrix, and corresponds to the lowest

error obtained for each training set. As expected, each model exhibits excellent performance

when tested against held-out data within the same distribution, with RMSEs lower than 15

meV/CO for all the six Cu facets and averaged across all coverage regimes. When predic-

tions are performed on facets di↵erent from the training set, on the other hand, errors are

strongly dependent on the facet identity of the training set. Although all training and test

sets have similar sizes (Table S3), models trained on low-symmetry facets such as Cu(331)

or Cu(711) exhibit much lower extrapolation errors, under 111 meV/CO for Cu(331) and

236 meV/CO for Cu(711). Although errors on the order of 100 meV/CO can be large in

many cases for catalytic applications, the models retain excellent correlation between pre-

dicted and true binding energies (Fig. S6). In contrast, MACE models trained on the low

index facets Cu(100) and Cu(111) fail to predict binding energies of the other facets within
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reasonable accuracy, with errors larger than 800 mV/CO in some cases. Not only do the

models trained on flat surfaces predict CO binding energies on stepped surfaces with smaller

accuracy, but they also fail to adequately extrapolate between Cu(100) and Cu(111). At

the same time, models trained on stepped facets often predict unrelaxed binding energies of

*CO on Cu(100) and Cu(111) with errors below 131 meV/CO.
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Figure 2: Performance of MACE models trained and evaluated on di↵erent facets.
a, In-domain and extrapolation RMSE of MACE models trained on all coverages of a single
facet, and tested on held-out data for all facets under consideration. b, Similarity between all
binding sites from the test set (columns) and the train set (rows). The values of the matrix
are expressed according to the percentile of all pairwise similarities between train and test
sites. c, Correlation between RMSE of MACE models trained on a single facet and tested
on all facets, and the similarity between the binding sites shown in b. A higher similarity
between training and testing binding sites leads to lower test errors (negative correlation
coe�cient).

To explain the facet dependence of the aforementioned errors, we first evaluated whether

models are indeed performing under extrapolation behavior. Given that binding sites in

higher-index facets can be represented using binding sites from low-index facets,39 it is

relevant to quantify the extent of their similarity from an ML standpoint, thus beyond the

microfacet notation. To perform this analysis independently of the learned features, we

represented the adsorption sites of all facets using a fixed descriptor, namely the Smooth

Overlap of Atomic Positions (SOAP)40 (see Methods). Then, by performing all pairwise

comparisons between adsorption sites across all facets, we obtained a measure of similarity
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between the sets of unique adsorption sites. Because the resulting similarity between two

facets corresponds to a matrix, we compute the Hausdor↵ distance between sites, which is a

measure of how far is the furthest point of the test set compared to all points in the train set.

Finally, the similarities are then compared based on their percentile within the distribution

of all similarities. These results are shown in Fig. 2b. Although a qualitative visualization

can help visualize the richness of the binding space (Fig. S7), the quantitative analysis in

Fig. 2b further confirms that adsorption sites from low-index facets are indeed contained

in all stepped surfaces from an ML perspective, as shown by the higher percentiles in the

columns of Cu(100) and Cu(111). Interestingly, however, adsorption sites from Cu(100) are

more similar to those in Cu(111) than the other way around, explaining the asymmetry of

extrapolation errors between Cu(100) and Cu(111). Similar patterns can be observed across

Cu(211), Cu(331), and Cu(711). In fact, when the RMSE in Fig. 2a is visualized against

the similarity in Fig. 2b, reasonable correlations are found between the results, as shown in

Fig. 2c. The Pearson correlation coe�cient between the two quantities ranges from �0.61

(for Cu(100) as the test set) to �0.95 (for Cu(331) as the test set). Errors scale similarly

across facets, with the exception of Cu(410). Its RMSE values remain consistently lower

than its counterparts when used as a test set, which could be an artifact of lower coverages

when the number of *CO adsorbates is normalized by the number of surface sites. Indeed,

the distribution of binding energies for Cu(410) is closer to those from the (100, 111, 211)

facets than to those observed in the lower-symmetry counterparts (331, 711) (Fig. S5). This

suggests that, in addition to similarity in binding sites, the performance of the models is also

connected to the coverage and density of adsorbates.

To test whether extrapolation across number of adsorbates plays a substantial role in

the models, we compared models trained with di↵erent coverage regimes (Fig. 1d). The

results of the comparison are shown in Fig. 3a. Errors of models trained and tested on

all coverages (dark blue in 3a) are equivalent to those in Fig. 2a, and serve as a baseline

for this test. First, we trained per-facet models on subsets of the data by adding all even
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Figure 3: Influence of lateral interactions in model performance. a, Models trained
on a single facet are evaluated under three di↵erent regimes: trained and tested on all
coverages (in-domain); trained on even nCO and tested on odd nCO (di↵erent covs.); and
trained on nCO < 10 and tested on nCO � 10 (higher covs.). b, Test errors of a model
trained on all facets and coverages at once. A breakdown analysis shows that the RMSE
remains low for all facets and coverages and does not substantially bias the predictions. c,
Learning curve of a MACE model trained on the 711 facet as a function of the dataset size
and body-order correlation ⌫. d, Performance of other models compared to MACE (L = 0,
⌫ = 3) in both in-domain and extrapolation regimes. All models are trained only on the 711
dataset.

coverages to the training set and all odd coverages in the test set. The results, depicted

in Fig. 3a as “di↵erent covs.” (cyan), show that slightly worse performances are found

despite half of the coverages being discarded. Figure S8 further shows that, beyond the

error values, correlation coe�cients also remain nearly perfect for the test set predictions.

This observation implies not only that the model can properly interpolate within the space

of coverages, but also that future dataset construction can be optimized by removing some

intermediate coverages. This approach could drastically reduce the total number of single-

point DFT calculations to be performed when generating the initial training set. Secondly,

we verified whether models trained on low-coverage structures (nCO < 10) could accurately

predict binding energies from high-coverage structures (nCO � 10). In a previous work,22 this

approach was performed in a step-wise manner to ensure the reliability of predictions, but
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coupling step-by-step exploration and model retraining can be time-consuming. Ideally, a

model with high extrapolation capacity could bypass the need for sequential data generation

and predict directly the binding energies for higher coverage regimes. Figure 3a shows that,

although the RMSE degrades when models are tested on substantially higher coverages,

errors remain small compared to the baseline (red bars). Even in the worst case in Fig. 3a,

obtained with models trained on low-coverage structures for Cu(711), correlation coe�cients

for the predictions remain nearly perfect (Fig. S9). This remarkable performance suggests

that accurate models of lateral interactions are being learned within the MACE models,

and o↵er reliable predictions outside of their training domain. Moreover, the lower error

of Cu(410) compared to other stepped facets further confirms the previous hypothesis that

lateral interaction models between *CO adsorbates are either easier to fit within Cu(410)

compared to Cu(211), Cu(331), and Cu(711), or more limited in scope given the larger lateral

sizes of the Cu(410) supercells under study (Table S1).

Given the success of the MACE models in predicting binding energies beyond their train-

ing domain, we evaluated whether a single model could be created for all facets and all cov-

erages at once without loss of accuracy. This would suggest that the MACE models are able

to capture all binding energies in a single model, facilitating and increasing the convenience

of sampling new structures with a single model. Figure 3c shows a breakdown of the test

RMSE values for the MACE model trained on the entire dataset (all facets and coverages)

at once. Errors for individual facets are equivalent to the in-domain RMSE values shown

in Fig. 2a, with deviations on the order of 1 meV/CO. Across all facets and coverages, the

RMSE is found to be uniform and generally smaller than 20 meV/CO. This further confirms

the ability of the models to represent the entire configuration space of *CO adsorbates on

Cu within di↵erent facets and coverages.

To better understand whether this extrapolation performance could have been achieved

without the MACE models, we systematically decreased the complexity of the architectures

and models themselves. Because of the diversity in adsorption sites for Cu(711) (see Fig.
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2b), we selected this facet as the training set for this study. First, we reduced the number

of body-order correlations (⌫) in MACE to understand whether complex many-body inter-

actions can substantially a↵ect the errors. Figure 3c shows that small test error di↵erences

are found for in-domain data when 3-body (⌫ = 2) and 4-body messages (⌫ = 3) are used,

but the performance degrades more substantially when the model is restricted to use 2-body

(⌫ = 1) messages. These observations are similar to those in Ref 26. The trends in Figure

3c also remain constant across smaller dataset sizes, and illustrate that the representation

capacity of the models are likely limited by the interaction order. To further test this result,

we verified whether simpler models can obtain comparable performance to MACE (Fig. 3d).

For instance, we trained a NN on the SOAP fingerprint centered on the adsorbates, as well

as a plain SchNet model,41 which is similar to the recently proposed ACE-GCN,22 to predict

binding energies of all Cu facets after being trained on Cu(711) configurations. Although

the in-domain performance of both models were reasonable, with 41 and 29 meV/CO RMSE

when the models were tested on held-out Cu(711) data, the average RMSE for extrapolation

in both systems was much higher, at 201 and 174 meV/CO, compared to an average RMSE

of 112 for the MACE model (see also Fig. S11). Following the clue from Fig. 3c on the role

of many-body interactions, we tested a simple model that explicitly accounts for lateral in-

teractions when computing the binding energy. The simplified model, which decomposes the

binding energy into site-centered contributions and lateral interactions (see Supplementary

Text and Fig. S10), exhibits a substantial improvement over SchNet in terms of extrapola-

tion behavior (Figs. 3d and S11) despite using a fixed descriptor. Remarkably, the simplified

NN model shows a smaller error when extrapolating from Cu(711) to Cu(211) or Cu(331)

than MACE (Fig. S11), but a larger error for the other facets. We hypothesize this e↵ect

reflects the larger similarity between the SOAP vectors of adsorption sites from Cu(711) in

the training set and the ones from Cu(211) and Cu(331) in the test set, as shown in Fig. 2b.

On the other hand, this observation also indicates that while learnable representations in

MACE e↵ectively capture environments beyond those in the Cu(711) training set, it slightly
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compromises the ability to understand other specific facets despite their similarity (Fig. 2b).

Nevertheless, this example further demonstrates that improved extrapolation behavior in

coverage-dependent interactions can be improved by the priors in the NN architecture, and

thus are not entirely explained by correlations in the dataset of *CO on Cu facets.

Sampling low-energy, high-coverage configurations of *CO on Cu

The reliability of the models under extrapolative regimes is essential to support their use in

the final proposed “extrapolation test” of interest, where low-energy structures are sampled

despite being outside of the training distribution (Fig. 1d). When ML models cannot

extrapolate well, sampling low-energy structures often fails because adversarial examples

— i.e., points outside of the training set predicted to be much lower in energy because of

failures in extrapolation — are typically sampled along with the true ground states. As

previously mentioned, these problems can be mitigated by retraining the model within an

active learning loop, at the expense of higher costs and a human-in-the-loop evaluating the

model performance. The excellent precision and accuracy of the MACE model in predicting

coverage-dependent binding energies across di↵erent experiments, however, supports their

deployment for sampling new configurations of *CO on Cu facets without further retraining.

Then, after sampling, the results can be easily validated by comparing targeted single-point

DFT calculations and the evaluations from the model.

To extensively sample the configuration space of nCO on the six Cu facets, we used a

Markov chain Monte Carlo (MCMC) sampling strategy within the Metropolis-Hastings42,43

and simulated annealing44 algorithms (see Methods). An example of the temperature and

energy profiles from the MCMC sampling for Cu(410) with nCO=10 is shown in Figure 4a.

By taking advantage of batched evaluation of the NN model, we sampled 1000 replicas in

parallel for each nCO and facet, resulting in over 14.5 million energy evaluations to sample

the lowest energy configurations (see Figs. S12 and S13). The sampling method system-

atically sampled low energy configurations despite starting from random structures (Fig.
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Figure 4: Sampling low-energy configurations and obtaining coverage-dependent
binding energies of *CO on Cu facets. a, Example of temperature profile (top) and
sampled energy curves (bottom) for the Cu(410) facet with 10 COs. The MCMC method
using the simulated annealing strategy was used for sampling. The energies are estimated
using the MACE model. Although 1000 replicas are sampled per facet and per coverage, only
one every 15 sampling trajectories are shown for clarity. b, Binding energies of unrelaxed
configurations of CO on Cu facets computed with DFT. Dark blue points are randomly sam-
pled configurations from the initial dataset, and red points are lowest-energy configurations
sampled using the ML-accelerated MCMC. c, Normalized distributions of DFT energies from
the original dataset (blue) and MCMC-sampled structures (red). The sampled structures
are lower in their unrelaxed binding energies. d, Despite being trained on randomly sampled
configurations, the MACE model exhibits excellent performance in predicting the energies
of sampled structures.

S14), demonstrating the success of the sampling approach. To validate whether the model

predictions were accurate and the low energy structures are not extrapolation failures, we

ranked the structures by energy and selected the top-3 unique configurations per facet and

per coverage for DFT evaluation. After performing 312 single-point calculations for these

systems, we compared their unrelaxed binding energies against the original dataset. Figure

4b shows that the DFT-calculated binding energies of MCMC-sampled structures (red) are

substantially lower in energy than the original dataset (dark blue), as expected. This shift

towards lower DFT energies is also visualized on the total, per-facet distributions of energies
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(Fig. 4c). Therefore, the MACE model trained on all facets was e↵ective in sampling low-

energy configurations without active learning loops and despite being trained on a dataset of

randomly sampled structures. When the performance of the model is assessed by comparing

the predicted binding energies for the top sampled structures and the resulting DFT values, a

near-perfect correlation is found (Fig 4d). Although the RMSE of predictions (91 meV/CO)

is slightly higher than the baseline test errors (< 15 meV/CO), the Spearman’s correlation

coe�cient is equal to 0.999. This indicates that the model predicts shifted energies with

respect to the ground truth due to a skewed training set, but reproduces all correlations

in the underlying data. The strategy also enabled sampling higher coverage configurations

(nCO > 18) for the Cu(410) case which were initially absent from the training set (see Fig.

4b), further supporting the model’s ability to extrapolate towards higher coverages in a

production analysis.

Validating the strategy with structural relaxations and binding en-

ergy curves

So far, the results for the di↵erent coverages and Cu facets are based on unrelaxed config-

urations and binding energies. Because the sampling strategy creates unrelaxed structures

and the model performs well in predicting their unrelaxed energies, the data is e�ciently

generated and later validated with single-point DFT calculations. Ultimately, however, we

are interested in obtaining the lowest-energy configurations according to relaxed structures

from geometry optimizations, as the corresponding *CO adsorbates can move substantially

from their initial positions, especially in high coverage regimes. For example, surface recon-

structions can further lower the energy of the system, or adsorbate-adsorbate interactions

may displace the *CO molecules from their high-symmetry adsorption sites while lowering

the overall energy of the system. Previous work has shown that correlations between relaxed

energies and model predictions can be less than ideal, especially if systems with significant

reconstruction are taken into consideration.22 Therefore, it is important to evaluate whether
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sampling unrelaxed configurations also reasonably samples the trends in relaxed ones.

To evaluate correlations between relaxed and unrelaxed energies, we performed DFT

relaxations for 675 configurations from the original dataset across all facets and coverage

regimes. These data points were obtained by attempting to relax a subset of nearly 2000

configurations whose unrelaxed energies were lower than its counterparts on a per-facet, per-

coverage basis. However, not all structural relaxations led to systems where all *CO remained

adsorbed on the Cu facet. Most of the relaxation calculations for the original dataset had

to be stopped due to desorption of *CO from the facet, or large wall times expected for

job completion on the high-performance computing cluster. Therefore, the final 675 relaxed

structures and energies only represent the subset of successful relaxations. Although this

is an inherent bias in the data, it still represents the subspace of interest, which is that of

structures with faster DFT relaxations and closer to the local optima. Aiming to sample

this space allows us to focus on the e↵ect of low-energy configurations of *CO on Cu facets

in their bound states.

First, we verified if relaxed binding energies correlate with their unrelaxed counterparts.

If the energies are completely uncorrelated, this would suggest that sampling unrelaxed

structures is not a good strategy for exploring the space of relaxed configurations. Figure

5a illustrates this correlation for Cu(410) (see Fig. S15 for all facets). The Spearman’s cor-

relation coe�cient (⇢s) between relaxed and unrelaxed binding energies of *CO on Cu(410)

is 0.58, suggesting that lower unrelaxed energies usually lead to systems with lower relaxed

energies. Similar trends are found among other facets, with most values of ⇢s higher than 0.5.

The only exception is Cu(711), for which fewer data points are available, with a correlation

coe�cient of 0.350. On the other hand, the best correlation coe�cient found for Cu(211)

(⇢s = 0.739). To quantify whether relaxing the lowest unrelaxed energies often leads to the

lowest relaxed binding energies, we computed the recall of the top-N relaxed energies given

the top-N unrelaxed ones. Figure 5b exemplifies this recall for Cu(410) for three di↵erent

cases and compares it to the expected recall for a baseline, random sampling method. The
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Figure 5: Structure and energy trends from relaxed surface data for Cu(410)
configurations. a, correlation between relaxed and unrelaxed binding energies. ⇢s is the
Spearman’s correlation coe�cient. b, recall of the top-N relaxed configurations given the
top-N unrelaxed configurations. A higher area under the curve indicates better recall. c,
Correlation between binding energy changes upon relaxation (�Eb) and structural changes
upon relaxation, as measured by distances between their Pointwise Distance Distribution
(PDD) invariants. d, Occupancy of CO adsorbates on copper sites for the lowest energy
structures. The average coordination number (aCN) refers to the coordination number of
neighboring copper atoms seen by each adsorbate. e, Visualization of the lowest-energy
Cu(410) structures for three coverages of *CO (0.167, 0.333 and 0.5 monolayer). Copper,
oxygen, and carbon atoms are depicted with orange, blue, and black circles. Color fading in
copper atoms depict distance, with more opaque atoms closer to the surface.

recall is always better than the baseline when the top-5, top-10, and top-15 (un)relaxed

structures are considered, exhibiting a higher area under the recall curve and quick rise with

low percentiles of unrelaxed energies. Similar trends are observed for other facets (Fig. S16),

with particularly successful results for Cu(100), Cu(211), Cu(331), and Cu(711). The case

of Cu(111) shows a mismatch between the structures with lowest unrelaxed energies and
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relaxed ones, as also seen in Fig. S15. For some coverages, the best configurations of *CO

on Cu do not have the top unrelaxed energies, but intermediate values that require further

sampling of the unrelaxed configurations to obtain the lowest energy configurations of the

original dataset.

Given the reasonable agreement between unrelaxed and relaxed energies from the recall

curves, we verified whether relaxed energies could be inferred directly from unrelaxed ones

on a per-facet, per-coverage basis. To do so, we analyzed the distribution of relaxed binding

energies across all systems under study. Figures S17 and S18 show that the range of relaxed

binding energies is much smaller than the range of unrelaxed binding energies in the original

dataset (compare with Fig. S4). In fact, even when systems with di↵erent unrelaxed energies

are selected, they often collapse to very similar relaxed energies, as shown by the small

standard deviation from Fig. S4. Because structural relaxations may substantially rearrange

the position of the adsorbates on the surface, structures with di↵erent unrelaxed energies may

relax towards similar structures, with the di↵erence between unrelaxed energies compensated

by su�cient structural reconstruction. To verify this hypothesis, we compared the relaxation

energy di↵erence (�Eb = E(relax)

b � E(unrelax)

b ) with the unrelaxed binding energies on a per-

facet manner. Figure S19 shows a nearly-linear relationship between �Eb and the unrelaxed

binding energies, suggesting that even across di↵erent coverages and facets, improvements

in energy due to relaxation are related to the initial unrelaxed binding a�nities. This

suggests that systems with higher unrelaxed energies may still undergo relaxation to lower

energies given enough reconstruction and provided that structural rearrangement is achieved

within DFT relaxation trajectories. To further verify this claim, we quantified the structural

reconstruction of each trajectory by comparing the initial and final configuration using the

Pointwise Distance Distribution (PDD).45 This structural invariant is continuous, guaranteed

to recover identical structures without false positives, and has been proven useful to compare

a range of materials.45,46 Furthermore, it bypasses the need for root mean square deviations

(RMSD) along the relaxation trajectory, which can be deceptive depending on the atom
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assignment, the periodic boundary conditions, and the number of atoms over which the

deviations were averaged against. Figures 5c and S20 further confirm that these di↵erences

in binding energy are due to rearrangement of atom positions on the surface, with strong

correlations between �Eb and the PDD distance. As expected, configurations with higher

nCO undergo larger restructuring during geometry relaxations (higher PDD distance). Taken

together, these results suggest that sampling configurations with low unrelaxed energies can

lead to smaller �Eb and, consequently, may require fewer relaxation steps to converge.

Although recalling the ground state configuration cannot be guaranteed within any method,

our approach provides an e�cient strategy to minimize the significant computational cost

associated with structural relaxations.

The previous results show that relaxing structures with low unrelaxed binding energies

on a per-facet, per-coverage basis is an e�cient way to estimate low-energy relaxed struc-

tures without having to exhaustively sample the space of relaxed structures. To evaluate the

properties of interest, we performed geometry optimizations for all 312 low-energy structures

obtained from the MCMC sampling using DFT calculations (see Methods). When the re-

sulting energies from the sampled dataset are compared with the energies from the original

dataset, we found that the sampled structures relax to lower energies than their counter-

parts (Fig. S21), further supporting the previous results. The only exception is Cu(111),

as expected from the shifted recall curves in Fig. S16. Using the final low-energy (relaxed)

structures allows us to investigate the coverage of *CO on specific adsorption sites for the

di↵erent facets. For example, the coverage-dependent occupancy of *CO adsorbates on the

sites of Cu(410) is shown in Fig. 5d. To avoid labeling the surface atoms with discrete coor-

dination numbers after reconstruction upon geometry optimization, we computed an average

coordination number (aCN) for each copper atom on the surface using a sum over neighbors

defined from a smooth cuto↵ (see Methods). Then, for each carbon atom, we compute the

average coordination of the binding site by taking the average of aCN of all the neighboring

copper atoms. Figure 5d shows with a red bar the aCN of each CO for the lowest energy
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structure associated with each coverage. At low coverage, *CO adsorbs preferentially on

undercoordinated sites that have lower aCN values, specifically the on-top sites on steps (see

also Figs. 5e and S22 for a visual guide). After step sites are occupied, lateral repulsion

between adsorbates forces the occupancy of higher coordination sites, with a larger prefer-

ence for terrace sites (aCN < 11) for coverages above 0.25 monolayer (nCO = 6 in our slab

model). Then, as the coverage continues to increase, the occupancy of terrace and overco-

ordinated sites increases, with high preference for on-top sites, until all sites are occupied.

This behavior agrees very well with *CO desorption experiments on Cu(410). For example,

Makino and Okada47 verified with infrared reflection-adsorption spectroscopy (IRAS) and

temperature-programmed desorption (TPD) that the preferential adsorption sites for *CO

at low coverages is the on-top site of steps, with their saturation point at ⇡ 0.25 monolayer.

Similar behavior is found for all stepped facets considered in this work, where *CO prefer-

entially adsorbed on the undercoordinated sites at low coverages, and structural relaxations

tilted the *CO adsorbates away from each other due to lateral interactions. On the other

hand, for the flat Cu(100) and Cu(111) surfaces, the relaxation led to geometrical deviation

of adsorbates from their initial configuration only at higher coverages (Figs. S23-S28). Our

results show that Cu(100) is preferred over Cu(111) at higher CO coverages, as also proposed

from other experimental and computational investigations.34 Additionally, we find that the

on-top sites are occupied at low coverages, with the occupancy of the multi-coordinated sites

(hollow, bridge) increasing at higher coverages (Figs. S23,S24).

To further compare experimental values with the calculated results, we computed the

di↵erential binding energy curves of *CO on all facets. By considering all relaxations, we

computed the Boltzmann average of relaxed binding energies on a per-coverage, per-facet

basis. Then, we fitted a piecewise continuous and di↵erentiable linear-cubic polynomial to

the integral binding energy (see Methods). The data points and fitted integral binding en-

ergy curve are shown in Fig. S29. Then, by di↵erentiating the integral binding energy curve

with respect to the coverage, we obtained the di↵erential binding energy curves in Fig. 6. A
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Figure 6: Di↵erential binding energy curves for CO on Cu facets. Di↵erential
binding energy curves were computed using structures relaxed with DFT from ML-sampled,
unrelaxed configurations. Binding energy curves for Cu(100) and Cu(111) (left) have similar
behavior and initial binding constant, with higher coverages being energetically favorable
for Cu(100) compared to Cu(111). Stepped facets such as Cu(211), Cu(331), and Cu(410)
(right) are demonstrate similar behavior, with di↵erent curvatures indicating the di↵erences
in availability of energetically favorable binding sites at higher coverages.

qualitative analysis of Fig. 6 highlights the similar behaviors of *CO adsorption on Cu(100)

and Cu(111), given the similar adsorption modes on the flat surfaces (also see Figs. S23

and S24). However, Cu(100) allows up to 0.7 monolayer of *CO coverage, in contrast to

lower thresholds for Cu(111). The behavior of Cu(711) also shows a large saturation point

for *CO, with increasing di↵erential binding energies near 0.5 monolayer. However, due

to the nature of the stepped surface (Fig. S28), *CO adsorption energies are more favor-

able compared to (100) and (111), shifting the di↵erential binding energies down. In the

case of the other stepped surfaces, Cu(211) and Cu(331) have similar adsorption energies at

the low coverage regime, but their smaller curvature reflects the less favorable energies of

terrace sites occupied at higher coverages compared to undercoordinated steps (Figs. S25

and S26). Furthermore, when the di↵erential binding energy of these facets are compared

against experimental results, good agreement is found despite the limitations of the RPBE

functional in predicting the binding preferences and *CO adsorption energies on Cu com-

pared to experiments.48 Cu(100) and Cu(111) have experimental desorption energies at low
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coverages equal to 530 ± 15 and 490 ± 15 meV/CO,47 respectively, while our computed

values are 432 and 440 meV/CO. Cu(211) exhibits an experimental *CO desorption energy

of 605 ± 15 meV/CO (attributed to the step-edge),47 similar to our calculated desorption

energy of 619 meV/CO at low coverage. Finally, Cu(410) exhibits an experimental desorp-

tion energy of 725 ± 31 meV/CO (attributed to the step-edge),47 in excellent agreement

with the calculated value of 728 meV/CO from the binding energy curve at low coverage

where *CO exclusively occupies the step-edges (Fig. S27). Taken together, these results

further validate the combination of fast data pipelines, ML-accelerated sampling, and selec-

tive relaxation when predicting coverage-dependent binding energies for *CO on Cu. The

overall agreement of our results with experimental observations o↵er a roadmap on the ex-

tension of these methods towards other catalyst systems — for instance, to accelerate the

sampling of potential- and coverage-dependent adsorption energies and properties relevant

in electrocatalysis.49

Sampling the co-adsorption of *CO and *CHOH on Rh(111)

As a second example, we show that the proposed workflow can also be used to study the co-

adsorption of di↵erent adsorbate species. In particular, we sampled the adsorption of *CHOH

with increasing *CO coverage on Rh(111). This system was motivated by the fact that Rh is

an active catalyst for the conversion of syngas to C2+ oxygenates,15 where both species play

an important role in the reaction. To explore the space of *CHOH and *CO on Rh(111), we

first computed the binding energies of *CHOH on Rh(111) in the absence of CO species using

a supercell with 9 surface sites. Then, the geometry of the system was optimized and the

four lowest-energy configurations were selected. The most stable configuration was *CHOH

on a top site, followed by three di↵erent conformations on bridge sites. Afterwards, similarly

to the *CO on Cu system, we generated data by randomly sampling configurations of *CO

on the four CHOH-adsorbed Rh(111) systems, followed by single-point DFT calculations to

obtain unrelaxed binding energies. A MACE model was then trained to predict unrelaxed
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binding energies of co-adsorbed systems across all CO coverages. The model performance

was evaluated on a held-out test set, leading to the parity plot in Fig. 7a. Despite the

existence of two co-adsorbates and the range of coverages, the model successfully predicted

binding energies of the enumerated systems, with a total RMSE of 8 meV/CO. Although the

initial four configurations of *CHOH on Rh(111) are kept constant, the binding energy due

to *CO coverage accounted for the presence of the co-adsorbate species. Using this model,

we then explored the space of *CO configurations using the MCMC and simulated annealing

approach (see Fig. S31 for an example profile). Figure 7b shows that unrelaxed binding

energies of original (blue) configurations are higher than the top-3 sampled (red) ones, in

line with the results in Fig. 4b for CO on copper. Because the configurations of one and two

CO adsorbates had been exhaustively sampled, we only sampled cases with at least three

CO adsorbates, obtaining the lowest energy states in all but one coverage (see Fig. S32 for

the configurations).

To further exemplify the importance of configurational sampling in modeling reactions

where co-adsorption plays a role, we computed the activation barriers for *CH-OH bond

scission on Rh(111) in the presence of three di↵erent CO configurations with the same

coverage of 0.55 monolayer. The barriers were calculated using the nudged elastic band

(NEB) method and DFT simulations using CO configurations with initial unrelaxed energies

of 0, 150, and 250 meV relative to the lowest energy structure. The results of the NEB

calculations are summarized in Fig. 7c (see Fig. S33 for detailed NEB trajectories). Because

of the structural relaxations prior to NEB calculations, the energy di↵erences between the

three initial systems changed slightly to 0, 72, and 286 meV, but still conserved the energy

ranking. All systems are observed to undergo not only the *CH-OH bond scission, but

also di↵erent restructuring of the adsorbate configurations during the reaction pathway.

Because sterical hindrance from *CO does not allow the formation of separate *CH and

*OH products, the reaction progresses by first reorganizing the CO into a higher energy

state. The energy barrier for this restructuring depends on the initial configuration, with
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Figure 7: Sampling the co-asdorption of CHOH with CO on Rh(111). a, Correlation
between predicted and true binding energies for the CO on Rh(111) with CHOH. a, inset,
per-coverage prediction errors for the co-adsorption model. b, Binding energies of unrelaxed
configurations of CO on *CHOH-Rh(111) systems computed with DFT. Dark blue points
are randomly sampled configurations from the initial dataset, and red points are lowest-
energy configurations sampled using the ML-accelerated MCMC. c, Configuration-dependent
activation barriers for C-O bond scission of the *CHOH intermediate on Rh(111) with a
*CO coverage of 0.55 monolayer. The lowest energy configuration is taken as reference. The
activation barriers were calculated using the nudged elastic band method. d, Snapshots of
the atomistic configuration of the three systems in c. The initial, transition state for *CH-
OH bond scission, and final configurations are depicted from a top view.

configurations 1 and 3 in Fig. 7c showing barriers of 0.46 and 0.38 eV for this restructuring,

leading to intermediate structures less stable than the initial ones. Whereas in system 1

the restructuring is due to CO rearrangement on the surface, in system 3 this increase in

energy is associated with the inversion the OH configuration instead (Fig. S34). After this

restructuring, both systems proceed with the CH-OH bond scission on the Rh(111) surface

with minor rearrangements of CO adsorbates on the surface. However, even though the

25

https://doi.org/10.26434/chemrxiv-2023-f6l23 ORCID: https://orcid.org/0000-0001-9176-0854 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-f6l23
https://orcid.org/0000-0001-9176-0854
https://creativecommons.org/licenses/by-nc/4.0/


energy of restructured configuration 1 is similar to the energy of initial configuration 3 (see

also Table S4), configurations 1 and 3 exhibit energy barriers of 0.85 and 1.98 eV with respect

to the intermediate state, respectively (Fig. 7d), demonstrating that the initial arrangement

of CO strongly influences the reaction kinetics. As another example, configuration 2 does

not show a single barrier with the formation of a more stable intermediate, but the pathway

only increases in energy relative to the initial state until the CH-OH bond scission. In our

simulations, this led to a concerted CH-OH bond breaking and CO rearrangement, with a

single barrier of 1.31 eV along the reaction pathway (see also Figs. S32 and S33). Because

these three systems vary only by the intial *CO arrangement, but exhibit substantially

di↵erent energetics (both kinetic and thermodynamic) and reaction pathways, this example

demonstrates the importance of sampling low-energy configurations. Importantly, because

sampling combinatorial spaces of co-adsorption can be overly expensive, our data and model

pipelines can enable comprehensive exploration of these and other complex interfaces.

Conclusions

In this work, we proposed an e�cient data pipeline to sample combinatorial spaces of adsor-

bate coverage configurations and estimate coverage-dependent adsorption energies. Instead

of relying on expensive active learning loops and relaxed energy data to train a ML model, we

instead ensured NN models were capable of extrapolating under multiple regimes, and then

proceeded to sample new structures without false positives. By using unrelaxed structures

to train ML models, we also avoided expensive data generation and retraining workflows. In

combination with targeted structural relaxations, we obtained coverage-dependent binding

energies of CO adsorbed on six low- and high-index copper facets. Results from the com-

puted di↵erential binding energy and ground-state structures agree well with experimental

observations from the literature, and support the usefulness of the approach. Finally, we

show our sampling strategy can also be used to obtain configurations in the cases of co-
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adsorption, and demonstrate how reaction pathways and the associated kinetics of CHOH

bond scission on Rh(111), a crucial step during syngas conversion can change substantially

depending on the configuration of adsorbed CO at a given coverage. Overall, our combined

approach on data generation pipelines and control of ML extrapolation demonstrates how

scalable workflows can be developed and employed to model increasingly complex interfaces

in heterogeneous catalysis.

Methods

Density functional theory calculations

Simulations: Density functional theory (DFT) calculations of bulk, adsorbate, and inter-

facial systems were performed using the Vienna Ab-initio Simulation Package (VASP),50,51

version 6.3.1, within the projector-augmented wave (PAW) method.52,53 The revised Perdew–

Burke–Ernzerhof (RPBE) functional54 within the generalized gradient approximation (GGA)55

was used as the exchange-correlation functional due to its improved performance in describ-

ing adsorption energies on surfaces. The kinetic energy cuto↵ for plane waves was restricted

to 520 eV. Integrations over the Brillouin zone were performed using Monkhorst-Pack k-point

meshes56 with a uniform density of 64 k-points/Å�3. A threshold of 10�5 eV was adopted

for the energy convergence within a self-consistent field (SCF) cycle.

Structural relaxations: For bulk systems, relaxation of unit cell parameters and atomic

positions was performed until the Hellmann–Feynman forces on atoms were smaller than 20

meV/Å. For interfaces, unit cell parameters were kept fixed and only atomic positions were

relaxed. When performing relaxations for interfacial systems and clean surfaces, the two

topmost layers of the surfaces are allowed to relax, while the others are kept fixed. When

simulating the adsorbates in the gas phase, at least 20 Å of vacuum is used to relax the

molecules.

Binding energy calculations: Binding energies for all systems were computed from the
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isolated relaxed energies for surface and adsorbates. The binding energy Eb for an interface

with n CO adsorbates is given by

Eb = EnCO+surf � Esurf � nECO(g), (1)

where EnCO+surf is the total energy of the relaxed or unrelaxed surface with *CO, Esurf is

the energy of the relaxed, pristine surface, and ECO is the energy of a CO in the gas phase,

as computed by DFT. The average binding energy is obtained by dividing the total binding

energy by the number of adsorbates, Eb/n.

Nudged Elastic Band calculations: Nudged Elastic Band (NEB) calculations have

been performed to determine the activation energies for *CH-OH scission on Rh(111) surfaces

with a *CO coverage of 0.55 monolayer. We used VASP together with VTST tools to perform

these calculations. A spring constant of -5 eV/Å2 was chosen and LCLIMB was set to True

to turn on the climbing image algorithm.57,58 Typically, 5-7 NEB images between the initial

and final state configurations were chosen to identify the saddle point (transition state)

for *CH-OH scission starting from three di↵erent configurations with *CHOH with 0.55

monolayer *CO. Transition states are verified to have a single imaginary frequency and have

forces smaller than 0.03 eV/Å.

Simulation workflow

Workflow integration: Workflows involving sequential structure generation and DFT cal-

culations were integrated using mkite.28 Schematics of the complete workflow are shown in

Figs. 1 and S3. The mkite package allows di↵erent operations to be concatenated and the

combinatorial generation/recording of structures within a database. The complete descrip-

tion of the workflow in a YAML file is provided in the data repository for this project.

Bulk/surface relaxations: Bulk copper (space group Fm3̄m) was initially relaxed

using DFT calculations, and a lattice parameter of 2.60 Å was obtained. Then, surfaces
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for all copper facets (111, 100, 211, 331, 410 and 711) were generated using the Atomic

Simulation Environment,59 and constrained to have at least 6 layers and lateral size of 9 Å.

The atomic positions of the two topmost layers were then relaxed using DFT, as described

above. A similar procedure was adopted for Rh, but only the Rh(111) facet was considered

in our study of co-adsorption. A supercell containing 6 layers and 9 surface sites was created

for Rh(111).

Generation of adsorbate configurations at di↵erent coverages: Di↵erent con-

figurations of CO adsorbates on each facet were generated using the CoverageGenerator

recipe in the mkite catalysis package (v 0.1.1). The generator takes in a surface and a

single adsorbate as inputs. Then, it identifies all distinct high-symmetry adsorption sites

on the surface using the AdsorbateSiteFinder class60 implemented in pymatgen.61 Because

fully enumerating all combinations of adsorption sites with n adsorbates is intractable (see

Table S2 for rough estimates), we instead randomly sampled n di↵erent adsorption sites

and checked whether the distances between sampled sites is larger than a given threshold,

ensuring there is no overlap between adsorbate positions. For lower coverages (n < 10), this

threshold was set to 2.0 Å, while for higher coverages (n � 10) this threshold was set to 1.7

Å. The sampling and checking procedure is repeated until a desired number of configura-

tions is achieved or if a maximum number of attempts is reached. In our case, we sampled

up to 100 valid configurations for lower coverages (n < 10) and 50 valid configurations for

higher coverages (n � 10) for all facets, with a maximum of 106 attempts. For all these

systems, adsorbates were placed 2.0 Å away from the surface, including on the step sites.

For the cases of co-adsorption, this procedure was first performed with *CHOH as the only

adsorbate. As discussed in the main text, the four most favorable structures created from

*CHOH adsorption were used as initial structures for sampling the CO coverage.

Deduplication: After the generation of the adsorbate configurations for the di↵erent

surface coverages, structures were deduplicated by computing the earth mover’s distance be-

tween the Pointwise Distance Distribution (PDD) invariants of the crystals.45 This invariant
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is guaranteed to be generally complete, is fast to compute, and has proven useful in finding

duplicate structures in other datasets45 and clustering structures according to their local

environments.46 Within this deduplication procedure, PDD invariants were created using

k = 100 atomic neighbors, and two crystals are considered the same if the distance between

their invariants is smaller than 10�3 Å according to the PDD.

DFT calculations: after the deduplication, structures were added to a database using

mkite, and single-point DFT calculations were performed for all of them. Randomly selected

structures were also relaxed to obtain the results shown in Fig. S19.

Unsupervised learning analysis

SOAP: Descriptors of binding sites were created using the Smooth Overlap of Atomic Posi-

tions (SOAP).40 For each atom in the structure, the power spectrum was computed using 8

radial basis functions, 6 angular basis functions, a cuto↵ of 5.0 Å, and a smearing of 1.0 Å,

as implemented in the package dscribe (v. 2.1.0).62 The cosine distance was used to obtain

the distance between two environments.

Similarity between binding facets: Given the SOAP vectors xi of each binding site

and a kernel K, a similarity matrix K(xi,xj) can be constructed for all binding sites using

the cosine similarity. The similarity (or, rather, degree of overlap) S of facet F1 against

another facet F2 can be measured using the Hausdor↵ distance, which computes, for each

site in the first facet F1, the maximum distance between this site and all other sites in the

second facet F2,

S(F1|F2) = min
i2F1

max
j2F2

K(xi,xj). (2)

This measure implies that, if all binding sites in F1 are also contained in F2, then S(F1|F2)

is large. On the other hand, if one or more binding sites of F1 have small overlap towards

binding sites of F2, then the similarity S(F1|F2) decreases.
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UMAP: Dimensionality reduction was performed using UMAP,63 as implemented in the

umap-learn package in Python (v. 0.5.3). The 2D UMAP plot was produced by using the

cosine distance between binding sites, and using 10 neighbors as parameter.

Pointwise Distance Distributions: The pointwise distance distribution (PDD) invari-

ants for comparing unrelaxed and relaxed structures were computed using the average-minimum-distance

package (https://github.com/dwiddo/average-minimum-distance, v. 1.4.1).45 A total

of k = 50 neighbors were used when computing the PDD matrices. The final distance

between the two structures is the earth mover’s distance between the PDD matrices.

Average coordination number: The average coordination number (aCN) of copper

atoms in Fig. 5d was obtained by computing the normalized distance of each atom to all of

its neighbors according to two cuto↵s r0 and rc,

z(r) =

8
>>>>>><

>>>>>>:

0 , r  r0
⇣

r�r0
rc�r0

⌘2

, r0 < r  rc,

1 , r > rc

(3)

then sum these contributions into a “neighborhood density” by using a smooth cuto↵ func-

tion,

f(z) =

8
>><

>>:

exp
� �z
1�z

�
, z < 1

0 , z � 1

. (4)

In our calculations, we selected the cuto↵s r0 = 2.7 Å and rc = 4.5 Å.

For each CO adsorbed on the copper surfaces, the coordination number reported in Fig.

5d is the coordination number of the closest copper atom. In the case of near-degeneracies of

distances, defined when the k-nearest neighbors have distances within 0.05 Å of the smallest

distance, the reported aCN is the average of aCNs of all k neighboring atoms.
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Deep learning models

Data splits: For each facet and coverage, the data was split randomly at ratios 60:20:20

for train/validation/test. This ensures that there is no data imbalance between splits, which

could bias the results. One exception is the case where only one or two adsorbates are on

the surface. Because of their importance for on-site energy predictions and their scarcity, all

configurations with nCO  2 were added to the training set only, and none to validation and

tests sets. The dataset splits were then aggregated on a per-facet basis to train individual

models per facet, and concatenated together for the all-facet model. As figures of merit such

as root mean squared error depend on test splits, all comparisons between models (such as

Fig. 3) were performed using the exact same train-validation-test splits.

MACE architecture: the binding energy models were trained using the MACE ar-

chitecture,26 which is a message passing neural network that uses higher body order mes-

sages. We used the implementation available in the MACE codebase (https://github.

com/ACEsuit/mace, v. 0.2.0). We use two invariant layers (L = 0) and hidden irreps equal

to 128x0e. A body-order correlation of ⌫ = 3 was used in all results except on the ones

shown in Fig. 3c. The models were trained to directly predict the binding energy of the

system, with all atomic energy references set as zero. The highest symmetry order of the

spherical harmonic expansion was set to `max = 3. The number of radial basis functions was

set to 8, with a cuto↵ of 5.0 Å.

Model training: the MACE model was trained with the AMSGrad variant of the Adam

optimizer,64,65 with an initial learning rate of 0.02 and default parameters of �1 = 0.99,

�2 = 0.999, and " = 10�8, along with an exponential moving average with weight 0.99. As

no forces are used for training the models, the energy loss coe�cient was set to 1000.0 and

the force loss was set to zero. The learning rate was reduced by a factor of 0.8 when the loss

plateaus for 50 consecutive epochs, and the model was trained for 1000 epochs. After epoch

500, the training follows the stochastic weight averaging (SWA) strategy implemented in the

MACE code. A batch size of 10 was used for all models.
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SOAP + NN model: The baseline model from Fig. 3d uses the SOAP spectrum

of each carbon atom to predict the unrelaxed binding energy of the system. Because the

position of oxygen atoms is deterministic due to the enumeration of the system, only C-C

and C-Cu pairs are considered in the fingerprint. The SOAP vector was created with 7 radial

basis functions, 6 angular basis functions, a cuto↵ of 5.0 Å, and a smearing of 0.5 Å using

the package dscribe (v. 2.1.0).62 A simple feedforward neural network was implemented

in PyTorch to predict atom-centered contributions which are later summed to obtain the

total binding energy of the system. The NN model had 3 hidden layers with 600 neurons

each, mish activation function, and an input size of 539, corresponding to the length of the

SOAP vector. A mean squared error loss was used to train the models. NN parameters were

updated using the AdamW optimizer66 using a learning rate of 10�3, weight decay of 10�2,

default � values of �1 = 0.9, �2 = 0.999, and " = 10�8. The learning rate was reduced by a

factor of 0.5 when the loss plateaus for 20 consecutive epochs, and the model was trained

for 900 epochs in four NVIDIA V100 GPUs in the Lassen supercomputer, with a batch size

of 50. A stochastic weight averaging (SWA) callback was also used after epoch 700, with a

starting learning rate of 3 ⇥ 10�4 and cosine annealing function every 10 epochs. Training

and evaluation routines were implemented using PyTorch Lightning.

SchNet model: A second baseline from Fig. 3d is the SchNet architecture,41 a model

that demonstrated wide success in fitting potential energy surfaces and properties for molecules

and materials. Because it implements learnable descriptors in a similar way to ACE-GCN22

in a message-passing scheme, SchNet o↵ers a similar baseline in predicting model perfor-

mance in the cases of interest. SchNet models were trained using the SchNetPack package

(https://github.com/atomistic-machine-learning/schnetpack, v. 2.0.4)67,68 using a

Gaussian radial basis with 20 basis functions and a cosine cuto↵ of 5.0 Å. The length of the

atomic representation vectors was set to 128, and six interactions were used. A mean squared

error loss was used to obtain gradients for the model parameters, which were modified using

the AdamW optimizer66 with the default parameters described before. A learning rate of
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5 ⇥ 10�4 was employed along with a scheduler that reduced this magnitude by a factor of

0.8 with a patience of 80 epochs. The model was trained for a total of 1550 epochs on one

NVIDIA V100 GPU in the Lassen supercomputer using a batch size of 10.

Monte Carlo sampling

Sampling of new surface configurations is performed in a per-facet, per-coverage basis. Given

a facet and a number of adsorbates, initial configurations are generated by randomly sampling

valid combinations of adsorption sites and placing the adsorbates at the selected points (as

outlined in the “Simulation workflow” subsection above). Then, the energy of the structures

is evaluated with the production MACE models trained with the data from all the surface

facets and coverages. Because the energies can be evaluated in batches, the evaluation step

is performed for all structures at once, with a batch size of 20. This allows for 1000 replicas

of the Monte Carlo sampling to be performed in parallel.

The sampling procedure follows the Metropolis-Hastings algorithm within the simulated

annealing method. The cooling profile is chosen to be a quadratic decay, following the

equation

kT =

8
>><

>>:

0.15(n� 50)2, n  50

0, 50 < n  60,

(5)

where kT is given in eV and n is the step number. This cooling profile is restarted three

times to allow configurations to move away from local energy minima (see Fig. 4a). The

acceptance probability for the new configuration xn+1 given the current configuration xn is

then computed as

p(xn+1|xn) = min


1, exp

✓
�En+1 � En

kT

◆�
. (6)

Although more sophisticated sampling strategies have shown to improve the acceptance
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ratios,21 the simpler, parallelized implementation of the MCMC algorithm demonstrated

enough success in sampling the configuration space of the cases studied in this work (see

Figs. S12 and S13).

Di↵erential binding energies

Following the work of Grabow et al.,13 the binding energy of a system was computed using

Eq. (1) and normalized by the number of adsorbates n of the system, Eb/n. Then, the

integral binding energy is computed by multiplying the coverage ✓ by the average binding

energy,

E(int)

b = ✓Eb/n, (7)

and the di↵erential binding energy is obtained by deriving this integral binding energy,

E(di↵)

b =
dE(di↵)

b

d✓
. (8)

To avoid computing numerical derivatives of the models, we fitted a piecewise continuous

and di↵erentiable polynomial for the integral binding energy curves,

E(int)

b =

8
><

>:

� a✓ , ✓ < ✓0

b✓3 + c✓2 + d✓ + e , ✓ � ✓0.
(9)

The equation above can be simplified when the function and its first and second derivatives

are constrained to be continuous at ✓ = ✓0, leading to

c = �3b✓0,

d = 3b✓2
0
� a,

e = �b✓3
0
.
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To fit the three parameters (a, b, ✓0) to a relevant binding energy curve, relaxed energies

were averaged using a Boltzmann average at 298 K of energies on a per-facet, per-coverage

basis. Then, the parameters for the integral binding energy (7) were obtained using the

non-linear least squares method implemented in SciPy.
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Bombarelli, R.; Shao-Horn, Y. Human- and Machine-Centred Designs of Molecules and

Materials for Sustainability and Decarbonization. Nature Reviews Materials 2022, 7,

991–1009.

37

https://doi.org/10.26434/chemrxiv-2023-f6l23 ORCID: https://orcid.org/0000-0001-9176-0854 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-f6l23
https://orcid.org/0000-0001-9176-0854
https://creativecommons.org/licenses/by-nc/4.0/


(7) Goswami, A.; Ma, H.; Schneider, W. F. Consequences of adsorbate-adsorbate interac-

tions for apparent kinetics of surface catalytic reactions. Journal of Catalysis 2022,

405, 410–418.

(8) Deimel, M.; Prats, H.; Seibt, M.; Reuter, K.; Andersen, M. Selectivity Trends and Role

of Adsorbate–Adsorbate Interactions in CO Hydrogenation on Rhodium Catalysts. ACS

Catalysis 2022, 12, 7907–7917.

(9) Tang, M. T.; Ulissi, Z. W.; Chan, K. Theoretical Investigations of Transition Metal

Surface Energies under Lattice Strain and CO Environment. The Journal of Physical

Chemistry C 2018, 122, 14481–14487.

(10) Lindgren, P.; Kastlunger, G.; Peterson, A. A. A Challenge to the G ⇠ 0 Interpretation

of Hydrogen Evolution. ACS Catalysis 2020, 10, 121–128.

(11) Li, F. et al. Molecular tuning of CO2-to-ethylene conversion. Nature 2020, 577,

509–513.

(12) Mou, T.; Han, X.; Zhu, H.; Xin, H. Machine learning of lateral adsorbate interactions in

surface reaction kinetics. Current Opinion in Chemical Engineering 2022, 36, 100825.

(13) Grabow, L. C.; Hvolbæk, B.; Nørskov, J. K. Understanding trends in catalytic activity:

the e↵ect of adsorbate–adsorbate interactions for CO oxidation over transition metals.

Topics in Catalysis 2010, 53, 298–310.

(14) Getman, R. B.; Schneider, W. F. DFT-Based Coverage-Dependent Model of Pt-

Catalyzed NO Oxidation. ChemCatChem 2010, 2, 1450–1460.

(15) Yang, N.; Medford, A. J.; Liu, X.; Studt, F.; Bligaard, T.; Bent, S. F.; Nørskov, J. K.

Intrinsic Selectivity and Structure Sensitivity of Rhodium Catalysts for C2+ Oxygenate

Production. Journal of the American Chemical Society 2016, 138, 3705–3714.

38

https://doi.org/10.26434/chemrxiv-2023-f6l23 ORCID: https://orcid.org/0000-0001-9176-0854 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-f6l23
https://orcid.org/0000-0001-9176-0854
https://creativecommons.org/licenses/by-nc/4.0/


(16) Schmidt, D. J.; Chen, W.; Wolverton, C.; Schneider, W. F. Performance of Cluster

Expansions of Coverage-Dependent Adsorption of Atomic Oxygen on Pt(111). Journal

of Chemical Theory and Computation 2012, 8, 264–273.

(17) Nielsen, J.; d’Avezac, M.; Hetherington, J.; Stamatakis, M. Parallel Kinetic Monte

Carlo Simulation Framework Incorporating Accurate Models of Adsorbate Lateral In-

teractions. The Journal of Chemical Physics 2013, 139, 224706.

(18) Herder, L. M.; Bray, J. M.; Schneider, W. F. Comparison of cluster expansion fitting

algorithms for interactions at surfaces. Surface Science 2015, 640, 104–111.

(19) Pineda, M.; Stamatakis, M. Beyond mean-field approximations for accurate and com-

putationally e�cient models of on-lattice chemical kinetics. The Journal of Chemical

Physics 2017, 147, 024105.

(20) Liu, F.; Yang, S.; Medford, A. J. Scalable approach to high coverages on oxides via

iterative training of a machine-learning algorithm. ChemCatChem 2020, 12, 4317–

4330.

(21) Sumaria, V.; Sautet, P. CO organization at ambient pressure on stepped Pt surfaces:

first principles modeling accelerated by neural networks. Chemical Science 2021, 12,

15543–15555.

(22) Ghanekar, P. G.; Deshpande, S.; Greeley, J. Adsorbate chemical environment-based

machine learning framework for heterogeneous catalysis.Nature Communications 2022,

13, 5788.

(23) Klumpers, B.; Hensen, E. J.; Filot, I. A. Lateral Interactions of Dynamic Adlayer

Structures from Artificial Neural Networks. The Journal of Physical Chemistry C 2022,

126, 5529–5540.

39

https://doi.org/10.26434/chemrxiv-2023-f6l23 ORCID: https://orcid.org/0000-0001-9176-0854 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-f6l23
https://orcid.org/0000-0001-9176-0854
https://creativecommons.org/licenses/by-nc/4.0/


(24) Li, X.; Grabow, L. C. Evaluating the benefits of kinetic Monte Carlo and microkinetic

modeling for catalyst design studies in the presence of lateral interactions. Catalysis

Today 2022, 387, 150–158.

(25) Hess, F. E�cient Implementation of Cluster Expansion Models in Surface Kinetic

Monte Carlo Simulations with Lateral Interactions: Subtraction Schemes, Supersites,

and the Supercluster Contraction. Journal of Computational Chemistry 2019, 40,

2664–2676.

(26) Batatia, I.; Kovacs, D. P.; Simm, G.; Ortner, C.; Csanyi, G. MACE: Higher Order

Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields.

Advances in Neural Information Processing Systems. 2022; pp 11423–11436.

(27) Vita, J. A.; Schwalbe-Koda, D. Data e�ciency and extrapolation trends in neural

network interatomic potentials. Machine Learning: Science and Technology 2023, 4,

035031.

(28) Schwalbe-Koda, D. mkite: A distributed computing platform for high-throughput ma-

terials simulations. Computational Materials Science 2023, 230, 112439.

(29) Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X.; Engstfeld, A. K.; Horch, S.; Seger, B.;

Stephens, I. E. L.; Chan, K.; Hahn, C.; Nørskov, J. K.; Jaramillo, T. F.; Chorkendor↵, I.

Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous

Electrolyte. Chemical Reviews 2019, 119, 7610–7672.
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