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Abstract 

It is tenable to argue that nobody can predict the future with certainty, yet one can learn from the past 

and make informed projections for the years ahead. In this Perspective article, we overview the status of 

how theory and computation can be exploited to obtain chemical understanding from wave function 

theory and density functional theory, and then outlook the likely impact of machine learning (ML) and 

quantum computers (QC) to appreciate traditional chemical concepts in decades to come. It is maintained 

that the development and maturation of ML and QC methods in theoretical and computational chemistry 

represent two paradigm shifts about how the Schrödinger equation can be solved. New chemical 

understanding can be harnessed in these two new paradigms by making respective use of ML features and 

QC qubits. Before that happens, however, we still have hurdles to face and obstacles to overcome in both 

ML and QC arenas. Possible pathways to tackle these challenges are proposed. We anticipate that 

hierarchical modeling, in contrast to multiscale modeling, will emerge and thrive, becoming the workforce 

of in silico simulations in the next few decades. 
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I. INTRODUCTION 

        Theoretical and computational chemistry employs physics methodologies to simulate properties of 

chemical systems. It started from the application of quantum mechanics in the early 20th century to 

appreciate the behavior of atoms and molecules. The introduction of digital computers in the late 1950s 

revolutionized the numerical solution of the Schrödinger equation, making it possible to apply wave 

function theory (WFT)1,2 to polyatomic molecules. In the late 1980s, density functional theory (DFT)3,4 

emerged as a rigorous yet efficient tool by bypassing solving the Schrödinger equation directly. Later, 

incorporating classical mechanics with quantum mechanics empowered multiscale modeling,5,6 which has 

become state-of-the-art, enabling us to simulate complex systems such as enzymes and macromolecular 

processes. Meanwhile, applying WFT and DFT to achieve better understanding for traditional chemical 

concepts has been continuously pursued and fruitfully accomplished in terms of, e.g., FMO (frontier 

molecular orbital) theory7,8 and CDFT (conceptual DFT).3,9-12 It is generally accepted that theoretical and 

computational chemistry has nowadays become a mature chemical discipline that enjoys widespread 

applications across pharmaceutical, materials, and biological sciences. Nevertheless, to tackle the pressing 

challenges facing humankind in coming decades in health, energy, environment, etc., which are often 

complex systems involving multiple components working together, we still have a long way to go.    

       In the recent theoretical and computational chemistry literature,13-19 we have witnessed a gigantic 

growth of applications of artificial intelligence, machine learning (ML), and deep learning (hereafter we do 

not distinguish these terminologies from each other by generally referring them as ML). We also started 

noticing booming theoretical and computational chemistry publications using quantum computers (QC).20-

26 These newly developed methodologies are fascinating and their impacts could be far-reaching. However, 

general views in the theoretical and computational chemistry community about the impact of ML and QC 

are diversified and sometimes controversial. While optimists are constantly looking for more applications 

to fundamentally overhaul the field, pessimists hold negative views about their impact, if any, on 
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theoretical and computational chemistry. The key difference is whether ML and QC are merely offering 

better tools to enhance efficiency and accuracy in computation, or they provide turf-breaking 

opportunities to revolutionize the territory of theoretical chemistry. In this contribution, we argue the 

future might prove that the latter is the case. Our basic premise is that there could be multiple approaches 

to numerically solve the Schrödinger equation and WFT, DFT, ML, and QC are four alternative yet viable 

examples of such approaches. Also, based on our past experiences in exploiting chemical understanding 

with theory and computation, we discuss the possible impact on how chemical understanding can be 

harvested with these new tools in decades to come. Before getting started, we should make the following 

two points clear. First, exhaustive citations can never be possible, so we apologize if we miss any relevant 

publications. Also, we are aware that our vision is limited by our experiences, so our projection may be 

over-reaching and thus could be proven inappropriate or completely incorrect later. Nevertheless, if any 

of what we will present below provides any insight from a different perspective to our readers, that meets 

the precise intention of this work. The cautiously optimistic, yet heuristic per se, views presented here 

represent our long-held belief that anything is possible in the future and what we do today might 

determine what we will end up with tomorrow.  

        In what follows, we will first present the challenge of simulations in the era of multiscale modeling. 

To set the stage for our ensuing discussion, we will add two axes, one for computation and the other for 

understanding. This ultimate challenge of in silico simulations is the foundation and starting point of the 

present discussion. We will then summarize the status of how we tackle the matter using WFT and DFT 

frameworks. Next, brief introductions of ML and QC are to be followed with the emphasis on how 

theoretical and computational chemistry may benefit from them as alternative approaches to solve the 

Schrödinger equation, what their limitations are, and how we can improve. After that, the general scheme 

of how chemical understanding can be harnessed from different frameworks will be shown in an 

orthogonal manner. Finally, we will conclude the discussion by envisaging that hierarchical modeling, a 
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top-down simulation approach traversing multiple scales, will emerge and thrive, becoming more 

attractive than, yet complementary to, multiscale modeling. 

 

II. THE ULTIMATE CHALLEGE OF IN SILICO SIMULATIONS 

        Chemical science in the present times faces multiple challenges, ranging from designing advanced 

materials with novel functions and combating human health problems to converting solar energy and 

addressing sustainable growth. From the theoretical and computational chemistry viewpoint, these issues 

can often, if not always, be boiled down to in silico simulations and dealt with by multiscale modeling,5,6 

which consists of scales along both space and time axes, as shown in Fig. 1a. Depending on the space-time 

domain, we have microscopic, mesoscopic, and macroscopic scales. To simulate these scales, 

computational methodologies must be different, with the microscale employing quantum mechanics, 

macroscale utilizing classical mechanics, and mesoscale using hybrid approaches. These different methods 

form the computation axis in Fig. 1b, whose outcomes are propensities in structural, thermodynamic, 

electronic, spectroscopic, and other properties with varied accuracy. These properties form the property 

space of a given system. 

 

Figure 1. (a) Multiscale modeling of chemical systems and (b) the ultimate challenge of simulations 
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        On the other hand, there is a separate understanding axis in Fig. 1b. One might wonder why we need 

a separate understanding axis perpendicular to the computation axis. This is because computation is based 

on physics laws from quantum mechanics or classical mechanics, whose results obtained are total values 

of physical observables such as energy, force, density, etc. In chemistry and biology, however, we are 

interested in molecular behaviors on the potential energy surface and free energy landscape due to the 

change in the number of electrons or nuclear conformations, so changes in energy, force, density, etc., not 

their total values, are more relevant. These changes are often in very small numbers compared to the total 

value of the physical quantities, yet they make huge differences in understanding chemical transformations 

and biological processes. The patterns, effects, rules, principles, and laws governing the change of these 

quantities are expressed as chemical concepts, which form the foundation of conventional understanding 

and chemical wisdom. In most cases, these differences in physical quantities are not directly extractable 

from computational results because they often involve multiple systems or processes (e.g., barrier heights 

between reactants and products), but they may be obtained by making use of the basic variables from 

different theoretical frameworks. That is the reason why we had the additional axis in Fig. 1b. 

        Historically, chemical science is an experimental discipline. Chemical understanding was obtained 

from experimentation and expressed by chemical concepts, such as bonding, acidity, aromaticity, steric 

effect, electrophilicity, regioselectivity, etc. These concepts were coined by experimental chemists through 

abstraction and generalization to group together objects, phenomena, and processes that share common 

characteristics. They form the foundation of the traditional wisdom of chemical understanding and thus 

are the core of chemical science. These concepts cannot be directly evaluated from the computation axis 

from Fig. 1b, yet computational results can be employed to help improve their understanding. For example, 

there is no concept of bonding in quantum mechanics, but with the orbitals introduced by WFT, covalent 

bonding can be appreciated by orbital overlapping. In DFT, however, there is no concept of orbitals, so, as 

our recent studies have shown, density-based descriptors can be employed to identify different kinds of 
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covalent bonds and various categories of noncovalent interactions.27-29 Other examples are aromaticity, 

steric effect, electrophilicity, regioselectivity, etc. They originated from experimental studies, but different 

theories provide different insights to understand them. How to crank numbers along the computation axis 

in Fig. 1b is paramount, but how to turn numbers into understanding along the understanding axis is 

equally important. These conjoint efforts are never easy, but not impossible. In our view, Fig. 1b 

summarizes the ultimate challenge of in silico simulations in theoretical and computational chemistry. 

 

III. WFT AND DFT AS TWO PARADIGMS 

       The size of chemical space is enormous, so is the property space. The mapping between chemical 

space and property space can be one-to-many and many-to-one. For example, one molecule can have 

multiple properties (such as acidity, aromaticity, nucleophilicity, and so on), whereas several molecules 

might possess the same property or functionality (e.g., hydrophobicity, binding affinity, acceptor inhibition, 

etc.). The many-to-one mapping is often called the inverse molecular design. In quantum chemistry, the 

one-to-many mapping is dictated by the Schrödinger equation, whose solution must be approximate 

except for a few special cases. Two categories of approximations are available in the literature.1-4 The first 

is WFT (Fig. 2a), including valence bond theory (VBT) and molecular orbital theory (MOT), and the other is 

DFT (Fig. 2b). In Fig. 2a, the Hamiltonian operator, 𝐻̂, represents a molecular species in chemical space, 

and its electronic energy E and total wave function   can be numerically determined by employing 

orbitals {Øj}, either molecular orbitals in MOT or bond orbitals in VBT, with which all properties, Pi, 

associated with the species, {Pi[Øj]}, can be obtained. Insightful chemical understanding using these 

orbitals for traditional chemical concepts such as bonding and reactivity can also be yielded. Well known 

examples to improve reactivity understanding are Fukui’s frontier molecular orbital (FMO) theory7,8 and 

Woodward-Hoffmann rules.30-32 Using them, chemical reactivity of numerous reactions can be 

qualitatively predicted. 
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Figure 2. The one-to-many mapping from chemical space to property space with 
(a) wave function theory and (b) density functional theory. 

 

        DFT provides another pathway to accomplish the one-to-many mapping, as shown in Fig. 2b, by 

avoiding directly solving the total wave function .  Instead, DFT makes use of the ground state electron 

density, , as the basic variable. According to the basic theorems of Hohenberg-Kohn in DFT,3,33 there is a 

one-to-one correspondence between  and the external potential, ext,   ext, suggesting that all 

properties associated with the system, including the total energy E, are functionals of . DFT has been the 

most successful and widely applied approach in theoretical and computational chemistry in the last few 

decades to simulate the electronic structure of molecules and solids alike.3,4 Even though the Kohn-Sham 

scheme34 of DFT employed Kohn-Sham orbitals to outcome the difficulty of approximating the kinetic 

energy density functional, it is not necessary to do so in principle. The DFT method without using orbitals 

is called orbital-free DFT (OF-DFT), which has been enjoying considerable research attention in recent 

literature.35-37 

        Insightful understanding of traditional chemical concepts can also be obtained in DFT without 

resorting to orbitals. Conceptual DFT (CDFT)3,9-12 is the first DFT framework developed to appreciate 

reactivity related matters, where electronegativity, hardness, Fukui function,38,39 electrophilicity,40 dual 

descriptor,41 etc. were formulated. CDFT was also applied to evaluate molecular acidity42 and metal-

binding specificity,43 and predict proton-coupled electron transfer (PCET) mechanisms.44,45 Also, using 
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density associated quantities such as density gradient and Laplacian, we recently proposed several 

density-based descriptors to identify covalent bonds and noncovalent interactions,27-29 quantify steric 

effect,46 electrophilicity and nucleophilicity,47 and determine regioselectivity and stereoselectivity.48,49 

Recent mini-reviews about these studies are available.50-52 A book to highlight the recent progress of these 

topics in DFT, as well as in VBT and MOT, is being published.53 

 

IV. MACHINE LEARNING AS NEW PARADIGM 

        ML develops algorithms and statistical models that empower computers to perform simulations 

without being explicitly programmed. It does so by using supervised, unsupervised, or reinforcement 

learning algorithms through the features of training datasets. To build ML models, three components, 

datasets, features, and algorithms, are mandatory. ML features54 refer to the attributes of datasets that 

can be employed to train ML algorithms. ML algorithms learn patterns and establish relationships between 

the features and target variables to make predictions for new datasets. Even though ML does not require 

programming implementations as WFT and DFT methods, ML algorithms must be programmed, and the 

training set that ML models are trained on has to come from somewhere, usually the solutions of other 

programmed software in WFT and DFT. 

        We have observed a skyrocketing increase of ML applications in theoretical and computational 

chemistry in the past decade,13-19 involving all space-time domains in Fig. 1a. To most people, applying ML 

to theoretical and computational chemistry is merely taking advantage of a new tool to expediate the 

simulation and improve the accuracy. This is certainly true. However, to us, it means more than just that. 

In our opinion, in quantum chemistry, ML represents a paradigm shift away from WFT (Fig. 2a) and DFT 

(Fig. 2b). It provides a completely new way to solve the Schrödinger equation: To solve the equation 

without solving it! Our argument is based on the following two observations. Firstly, ample evidence from 

the recent literature indicates that ML can accurately reproduce, and even predict, the total energy E,55,56 
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total wave function , 57 and all kinds of properties {Pi} of molecular systems,58-60 suggesting that the 

solution of their Schrödinger equations can be accurately obtained and thus the equation can be implicitly 

solved by ML. Secondly, it is well-recognized that the hardware development of digital computers has 

tremendously boosted the implementation of two schemes in Fig. 2 to perform the one-to-many mapping 

for molecules and condensed matters. With the collective development of both hardware and software in 

recent decades, computer hardware is fast enough, and computer software becomes smart enough, so it 

has become feasible now for computers to solve the Schrödinger equation without us explicitly 

programming it.  

        Figure 3 shows the mapping from chemical space to property space using ML. The key for this mapping 

to take place and work well is the choice of the feature set, {ajk}, which is to be trained by the training set 

and applied to make predictions for the test set. This feature set should be (i) size-extensive, (ii) self-

adaptive, (iii) physically explainable, and (iv) able to reproduce the electron density. Size-extensiveness 

enables the trained models to be generalizable to larger systems and self-adaptiveness takes into account 

of the change of the local environment for atoms in molecules or solids. The feature set will also be 

employed for the purpose of improving chemical understanding, so it must be physically explainable. The 

last requirement of the feature set is the criterion based on DFT. If the electron density in the ground state 

is known, according to the basic theorems of DFT,3,33 everything else about the system can also be 

rigorously determined. Examples of descriptors satisfying the last criterion include atom-condensed shape 

functions,61 moments,62 or information entropy.63 This last requirement guarantees that the mapping in 

Fig. 3 is well established, and that the feature set also plays the role of quality control. Lack of meeting 

these requirements all together for ML feature sets will impede the transferability, universality, and 

interpretability of ML models. Even though there are many kinds of widely used feature sets in the present 

literature,54 none of them is found to satisfy all these four requirements yet. 
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        The reason why the ML-based mapping in Fig. 3 is many-to-many is because one starts with a training 

set of many inputs and ends up with the outcome of many predictions. This many-to-many mapping not 

only provides a new pathway to accomplish the one-to-many mapping shown in Fig. 2 for WFT and DFT, 

but also offers desirable opportunities to exploit the many-to-one mapping required by the inverse 

molecular design, which finds crucial applications in drug discovery and catalyst design.64,65 

 

Figure 3. The many-to-many mapping from chemical space to property space through the feature set {ajk} 
and deep neural network in machine learning. 

 

V. THE COMING ERA OF QUANTUM COMPUTERS 

        Quantum computer(s) is a computing device using quantum mechanics. Its origin can be attributed 

to Feynman,66 Manin,67
 and Benioff,68 who independently proposed the idea of using quantum mechanics 

to perform quantum calculations. Unlike classical computers whose information is stored in bits whose 

value can be either 0 or 1, the basic information unit of QC, quantum bit or qubit, can simultaneously exist 

in the superposition state of both 0 and 1. On the other hand, QC makes use of coherence and 

entanglement properties from quantum mechanics for multiple qubits, allowing it to simultaneously 

explore qubit space and thus achieve exponential speedups for a variety of computations. Even though 

quantum supremacy of QC has already been demonstrated in the literature69 and we are certain that it 

has the potential to revolutionize many fields including theoretical and computational chemistry, QC is still 

in the very early stage of development right now, the so-called noisy intermediate-scale quantum (NISQ) 
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era.70 New quantum algorithms and applications in quantum simulations are to be unveiled as larger qubit-

number and longer coherence-time QC device is developed.  

        Applying QC to solve the Schrödinger equation for molecules employed the VQE (variational quantum 

eigensolver) algorithm.71 It variationally minimizes the expectation value of the Hamiltonian for molecular 

systems with ansatz (trial wavefunctions). It does so in a hybrid manner. VQE couples a classical 

optimization loop with a subroutine that computes the expectation value on a QC apparatus. As of now, 

VQE has been successfully implemented for several small molecules such as H2, LiH, H12, etc.72,73  

        Even though it is still decades away for us to use QC for routine quantum simulations, this new 

technology presents to us a potential paradigm shift that will fundamentally change how the Schrödinger 

equation is solved. The QC device beyond the NISQ era will have millions of qubits, much longer coherence 

time, and much better error correction, gate fidelity, and fault tolerance capabilities. Also, as QC hardware 

advances, new and powerful quantum algorithms will emerge to take full advantage of the unique 

properties of the QC device. A significantly improved VQE algorithm is expected. Even a complete 

replacement of this algorithm is not impossible.   

       Besides VQE, one area of QC developments in the next few decades should be closely watched. This is 

quantum machine learning (QML).74,75 QML harnesses the unique capabilities of QC to enhance the 

performance and capabilities of ML algorithms. One plus one is surely greater than two. QML holds 

immense potential for quantum simulations in drug discovery, catalyst design, materials science and 

engineering, and many others. 

 

VI. HOW TO HARVEST CHEMICAL UNDERSTANDING 

        We need to compute for sure, but we should also understand. That was the point that we made in Fig. 

1b as the ultimate challenge of in silico simulations. Significant progress has been accomplished in the past 

decades along the computation axis using multiscale modeling techniques. Nevertheless, how to harvest 

https://doi.org/10.26434/chemrxiv-2023-fwlzj ORCID: https://orcid.org/0000-0001-9331-0427 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-fwlzj
https://orcid.org/0000-0001-9331-0427
https://creativecommons.org/licenses/by-nc/4.0/


Page 12 of 22 
 

chemical understanding from computation has never been adequately addressed and appropriately 

emphasized. In Fig. 4, we present a systematic scheme to describe how chemical understanding can be 

harnessed out of computations from different frameworks. Each square in the Figure represents a 

projection of the entire chemical space onto a particular framework characterized by the basic variable of 

the theory. For example, in WFT, as shown in Fig. 2a, we employed its basic variable, molecular or bond 

orbitals, {Øi}, to appreciate chemical understanding, so the square is featured by the orbitals in Fig. 4. Using 

the orbitals, we can obtain better understanding about covalent bond and chemical reactivity in terms of, 

for instance, FMO theory and Woodward-Hoffmann rules. In DFT, its basic variable is the electron density 

, so the plane in Fig. 4 is symbolized by the density . As shown in Fig. 2b, we can employ density-related 

quantities to identify, determine, and even quantify bonding, stability, reactivity, and other chemical 

concepts. These include strong covalent bonds, weak interactions, acidity, aromaticity, steric effect, 

electrophilicity, nucleophilicity, regioselectivity, stereoselectivity, etc. These two frameworks of chemical 

understanding shown as the squares with green and purple sides in Fig. 4 resulted from the projection of 

the chemical space onto WFT and DFT frameworks. These two squares represent two different manners 

to understand chemical concepts from conventional wisdom. These understandings are not mutually 

exclusive to each other. Instead, they are orthogonal and complementary to each other, representing 

different views for the same species in chemical space.  

        For ML, its basic variable is the feature set, {ajk}. This set of features is the quantities that future 

chemical understandings will be exploited. For example, following FMO theory in WFT, we may look for 

the single or few features that play the most important role. Alternatively, following DFT, we may borrow 

Shannon entropy, Fisher information or other information-theoretic quantities50-52 for the purpose. Since 

current feature sets available in the literature do not meet all four criteria that we specified above, we do 

not exactly know yet what novel chemical understandings can be obtained from ML. However, we know 
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what and how we should expect from ML when all the criteria of features are met, and the paradigm shift 

is accomplished. 

        The situation is the same for QC, whose basic variable of modeling is qubits, {qi}. Qubits will be the 

quantities to be exploited to obtain new chemical understandings from QC. We may employ the same 

strategy as ML to search for new understanding. Figure 4 also shows the additional two squares with red 

and blue sides, respectively, representing the complementary and orthogonal roles of feature sets {ajk} in 

ML and qubits {qi} in QC to harvest chemical understandings. Again, these understanding planes are not 

mutually exclusive. They provide news insights not accessible from WFT and DFT frameworks. 

 

Figure 4. Schematic representation of how chemical understanding can be harnessed from wavefunction 
theory, density functional theory, machine learning, and quantum computer using orbitals {Øi}, electron 

density , features {ajk}, and qubits {qi}, respectively. 
 

VII. OUTLOOK: HIERARCHICAL MODELING 

        Looking ahead, we envision that ML and QC will make it possible to perform hierarchical modeling 

across multiple scales in theoretical and computational chemistry, as shown in Fig. 5. Not new in other 

disciplines such as computer science and statistics yet to be formally introduced and thoroughly explored 

in theoretical and computational chemistry, hierarchical modeling is in stark contrast to multiscale 

modeling. Multiscale modeling is a bottom-up approach that starts with fine-grained models for the lower 
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scale and then gradually aggregates to coarse-grained models for the upper scale. On the contrary, 

hierarchical modeling is a top-down approach whose components across different hierarchical levels are 

associated with one another in a nested or disjoint manner. In hierarchical modeling, more attention is 

paid to the relationship among components at a given hierarchical level or across different hierarchical 

levels.  

        Historically, hierarchy is known as reductionism. However, hierarchical modeling can be a combination 

of reductionism and holism. It offers a flexible framework for representing complex systems and allows for 

both decomposition and integration at different hierarchical levels. Hierarchical modeling is particularly 

suited to capturing and studying emergent properties at higher hierarchical levels that arise from 

interactions among components at lower levels. These emergent properties are not directly predictable 

from the properties of individual components at lower hierarchical levels, so they go beyond reductionism 

and align with holism. 

        The reason why hierarchical modeling will emerge and thrive in the ML and QC era is because ML and 

QC can accomplish the many-to-many mapping in Fig. 4 for a given hierarchical level. With this done, more 

attention can be shifted to and then focused on the relationship among different components or levels of 

hierarchical structures. There are many kinds of hierarchy in nature, such as structure hierarchy, data 

hierarchy, chirality hierarchy,76,77 taxonomy hierarchy, organization hierarchy, etc. The new modeling 

approach is aimed at dealing with hierarchical structures, which are prevalent in nature, from atoms to 

molecules to cells to tissues to organs to humans to societies to ecosystems to the solar system to the 

Milky Way. Hierarchical modeling captures the impact of one hierarchical level influenced by others, so 

this approach is particularly insightful and productive when dealing with hierarchical structures that 

exhibit patterns and principles across multiple hierarchical levels. These hierarchical structures are often 

bounded together through weak interactions, where the effect of cooperation and frustration are 

ubiquitous,78-80 and the examination and understanding about the concepts of synergy, cybernetics, self-
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organization, emergence, complexity, and evolution from both reductionistic and holistic perspectives will 

become inevitable.82-84  

        Moreover, with the general scheme in Fig. 4 on how chemical understanding can be harnessed from 

different frameworks, novel insights pertaining to chemical and biological processes can be harvested 

through the fundamental descriptors across different hierarchical levels in complicated phenomena. These 

phenomena could include, but are not limited to, macromolecular self-assembly, asymmetrical synthesis, 

enzymic catalysis, and many more. This is done through the feature set in ML or QC or QML from different 

levels of hierarchical structures. If the same feature set can be applied to describe different levels of a 

hierarchical structure, this structure exhibits the key characteristics of a scale-free network85 in 

holographic manner, which has found profound implications in nature such as protein-protein interactions, 

gene regulatory networks, and the World-Wide Web.   

 

Figure 5. The impact of machine learning and quantum computer on hierarchical modeling 

 

       To wrap up, we recall that in 1929, the late U.K. theoretical physicist and Nobel laureate Paul A. M. 

Dirac claimed that “the underlying physical laws necessary for the mathematical theory of ... the whole of 

chemistry are thus completely known, and the difficulty is only that the exact application of these laws 
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leads to equations much too complicated to be soluble.”86 Based on what we have presented in previous 

sections, after about one century, we finally foresee plausible pathways to tackle this problem. ML and QC 

will assist us in overcoming Dirac’s above pessimistic view and provide viable options to make those “much 

too complicated” equations soluble. We do not solve them analytically though. We will make artificial 

intelligence for this purpose. Plus, this may not happen in the next few years because there are still 

obstacles to conquer, but we are cautiously optimistic that it will become likely in the next few decades. 
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