PM_{2.5} exposure disparities persist despite strict vehicle emissions controls in California

4	Libby H. Koolik ¹ , Álvaro Alvarado ² , Amy Budahn ² , Laurel Plummer ² , Julian D. Marshall ³ , Joshua S. Apte ^{1,4*}
6	¹ Department of Civil and Environmental Engineering, University of California, Berkeley;
	Berkeley, 94720, USA
8	² California Office of Environmental Health Hazard Assessment; Sacramento, 95814, USA
	³ Department of Civil and Environmental Engineering, University of Washington; Seattle, 98195,
10	USA
	⁴ School of Public Health, University of California, Berkeley; Berkeley, 94704, USA
12	*Corresponding author. Email: apte@berkeley.edu

14 Abstract

	As policymakers increasingly focus on environmental justice, a key question is whether
16	emissions reductions aimed at addressing air quality or climate change can also ameliorate
	persistent air pollution exposure disparities. We examine evidence from California's aggressive
18	vehicle emissions control policy from 2000-2019. We find a 65% reduction in statewide average
	exposure to PM _{2.5} from on-road vehicles, yet for people of color and overburdened community
20	residents, relative exposure disparities increased. Light-duty vehicle emissions are the main
	driver of the exposure and exposure disparity, although smaller contributions from heavy-duty
22	vehicles especially impact some overburdened groups. Our findings suggest that a continued
	trend of emissions reductions will likely reduce concentrations but may not reduce relative
24	disparities without greater attention to the systemic factors leading to this disparity.

26 Main Text

	Despite decades of progress improving ambient air pollution in the United States (U.S.), people
28	of color still bear a disparate burden of air pollution $(1-11)$. Solutions to this persistent inequality
	are increasingly a focus for academic research and environmental policy at the federal, state, and
30	local levels (11-14). A growing body of research investigates how air quality policies might
	contribute to a "triple win" that simultaneously achieves meaningful benefits by reducing
32	population-wide exposures; mitigating greenhouse gas emissions; and reducing exposure
	disparities and extreme exposures $(15, 16)$. Here, we consider how multi-decade emission trends
34	shaped by air quality and climate policies have affected environmental justice (EJ) outcomes,
	using California's aggressive on-road mobile source strategy as a case study.

36 Introduction

Recent research on how to reduce air pollution exposure disparities in the U.S. presents two conflicting approaches (11, 12, 15-17). The first approach starts from the recognition that 38 many major emitting sectors lead to disparate exposures for people of color (4). Thus, focusing on emissions reductions for sectors that especially impact people of color could have EJ co-40 benefits (16,18–21). This approach mirrors the policy structure in the U.S. and elsewhere, where environmental regulations are targeted to individual economic sectors (e.g., vehicles, industries, 42 power plants) and tailored to relevant technology and infrastructure. The second body of research suggests that sector-oriented policies may not be effective in addressing relative disparities in air 44 pollution. Wang et al. (2022) found that aggressive nationwide emissions reductions targeting 46 economic sectors with higher-than-average disparity impact would not eliminate racial-ethnic fine particulate matter $(PM_{2.5})$ exposure disparities without nearly eliminating emissions (11). In contrast, a location-specific approach -i.e., emissions-reductions by location rather than by 48

	economic sector – rapidly eliminated disparities. Building upon this finding, Polonik et al. (2023)
50	and Picciano et al. (2023) simulated climate policies with substantial abatement of $PM_{2.5}$ and its
	precursors across most U.S. economic sectors and found modest potential reductions in
52	disparities. They too reported that "location-specific" policies that target emissions reductions in
	all sectors within specific overburdened geographies may have high potential to address
54	disparities even with small emissions changes $(11, 12)$.

To complement prospective studies, which model ways to reduce future disparity, we consider the disparity impacts of historical emissions trajectories. We focus on the transportation 56 sector, which is often highlighted as having high potential to reduce disparities. Historically, 58 racist urban planning and infrastructure decisions (e.g., redlining, freeway siting) have concentrated vehicle emissions in communities of color (4,6,9,18). Furthermore, people who are exposed to the highest levels of traffic-related air pollution often are not the communities who 60 drive the most (19-21). As such, a recent study found that emissions controls for the transportation sector have the greatest potential to mitigate racial-ethnic inequality in U.S. air 62 pollution (16). Simultaneously, the transportation sector is a priority area for regulatory agencies and EJ-oriented community groups; emissions reductions from these sources could potentially 64 reduce exposure disparities, human health impacts, and greenhouse gas emissions (22).

For nearly 60 years, California led the U.S. in reducing on-road vehicle emissions.
Because California's motor vehicle emission regulation preceded the Clean Air Act of 1970,
California is delegated the authority to set vehicle emissions standards more stringently than the federal equivalent (23–25). In the present analysis, we consider years 2000 through 2019, during
which California's regulatory agencies pursued an aggressive and interlinked suite of multipollutant policies to reduce emissions across the entire on-road vehicle fleet (25). Examples
include requiring cleaner fuels and technological advancements (e.g., hybrid drivetrain,

alternative fuel and propulsion technologies, advanced emissions controls) specific to light-duty, medium-duty, and heavy-duty vehicle classes (respectively: LDV, MDV, HDV).

74

	California's mobile source strategy resulted in a large aggregate reduction in on-road
76	vehicle emissions (26). Long-term near-road measurements across California confirm declining
	nitrogen oxides (NO _x) and volatile organic compound (VOC) emission rates $(27-31)$. Despite
78	statewide and fleetwide on-road vehicle miles traveled increasing $\sim 24\%$ – from 292 billion
	(2000) to 364 billion (2019) – emissions of the four species that principally drive population-
80	weighted PM _{2.5} exposures from on-road vehicles have decreased (primary PM _{2.5} , NO _x , and VOC:
	decreased ~70%; ammonia (NH ₃): decreased ~15%; Fig. S1) (31). Tailpipe primary PM _{2.5}
82	emissions have decreased > 80% from 2000-2019, while non-exhaust (e.g., brake- and tire-wear)
	emissions of $PM_{2.5}$ have increased ~20% (33). Overall, on-road emissions reductions were
84	greater in California than for the national aggregate (excluding California), especially for NO _x
	and VOC (34). On-road mobile emissions are anticipated to continue to decline in California due
86	to two major new regulations: Advanced Clean Cars II (starting in 2035, requires all new
	passenger cars, trucks, and SUVs sold in California to be zero-emission vehicles) and Advanced
88	Clean Fleets (starting in 2045, all trucks that drive in California must use zero-emissions
	technology).

Here, we investigate whether the combined impacts of the ensemble of mobile source strategies have contributed to a reduction in PM_{2.5} exposure disparities for overburdened
 communities on average and at the concentration extremes. We then decompose our results by two aspects (vehicle type; spatial scale) that are central to current regulatory design. We
 conclude with implications from this California-focused retrospective analysis for future EJ-focused policy for the U.S.

96	We developed and employed a novel open-source analysis method based on atmospheric
	simulations from the Intervention Model for Air Pollution (InMAP, see SI) to estimate total
98	$PM_{2.5}$ concentrations resulting from emissions of $PM_{2.5}$, NO_x , VOC , NH_3 , and sulfur oxides
	(SO _x) emitted by California's on-road mobile source sector from 2000 to 2019. Estimates of on-
100	road mobile emissions are from California's regulatory model (EMFAC v2021) and represent the
	California Air Resources Board's (CARB) best estimate of on-road emissions. Variably sized
102	gridded $PM_{2.5}$ concentrations (1 km – 48 km, higher resolution in greater population density
	locations) are combined with tract-level 2010 Census population data to estimate exposure
104	disparities among demographic groups (2). We disaggregate mobile source impacts into four
	vehicle types: LDV, MDV, HDV, and all other vehicles (e.g., buses, motorcycles, motorhomes;
106	Table S1).
	In the U.S., air pollution disparities tend to be larger by race-ethnicity than by other
108	socioeconomic and demographic indicators (e.g., income, education, urbanicity) (4,5,35,36).
	Accordingly, we focus our analyses on racial-ethnic disparities. In addition, we consider two
110	statutory geographic designations (AB617, SB535) of cumulative impacts that California uses
	for prioritizing EJ for overburdened communities (Fig. S2) (37,38). Although these geographies

socioeconomic and demographic indicators (e.g., income, education, urbanicity) (4,5,35,36).
Accordingly, we focus our analyses on racial-ethnic disparities. In addition, we consider two
statutory geographic designations (AB617, SB535) of cumulative impacts that California uses
for prioritizing EJ for overburdened communities (Fig. S2) (37,38). Although these geographies
have only recently been established (and thus past policy may or may not have aimed to benefit
those communities), we focus on them here because they are an example of location-specific
policies that target emissions reductions in overburdened communities. Through the Community
Air Protection Program (AB617), California has designated specific communities (2.7M people,
year-2010; 8.1% of the state's population) for priority in community-based air pollution
monitoring and emissions reduction plans (37). A second policy, SB535 (10.2M people, 30.0%
of the state's population), focuses on targeting financial investments towards people living in
disadvantaged communities, identified using several environmental, socioeconomic, and public

health indicators for each US Census tract in California (38,39). The demographic makeup of residents of these overburdened communities has a higher proportion of people of color than the
 statewide population (Table S2; people of color: 92.9% in AB617 communities, 82.9% in SB535 disadvantaged communities).

124 **Results and Discussion**

Statewide Exposure Disparities Have Sustained Despite Overall Exposure Reductions

California's mobile-source policy has clearly succeeded in its overall goal of reducing population-average mean (PWM) PM_{2.5} exposures (Fig. 1a). We find that the statewide PWM
PM_{2.5} exposure concentration attributable to on-road vehicles decreased from approximately 3.2 to 1.1 µg/m³ from 2000 to 2019, a ~65% (i.e., nearly a factor-of-3) decrease in exposure on average for all Californians. This reduction in PM_{2.5} exposure from on-road vehicles outpaced the overall statewide improvement in ambient air quality. For context, satellite-derived estimates of PWM PM_{2.5} in California decreased 44% from 15.4 to 8.7 µg/m³ from 2000 to 2019) (40).

	We evaluate PWM exposure from on-road mobile sources for racial-ethnic groups and
134	residents of overburdened communities (Fig. 1a). PWM declined for all groups, and the ordering
	of exposures by group is generally consistent over time. Among all racial-ethnic groups,
136	Hispanic Californians experienced the highest PWM exposure for all years, with PWM exposure
	concentrations of approximately 3.5 and 1.3 $\mu g/m^3$ in 2000 and 2019, respectively. Black
138	Californians experienced the next highest exposure concentration, followed by Asian
	Californians. Of the four racial-ethnic groups in Fig. 1a, White Californians were exposed to the
140	lowest average concentrations: approximately 2.7 and 0.9 $\mu g/m^3$ PM_{2.5} from 2000 and 2019,
	respectively. Residents of SB535 and AB617 communities were exposed to higher average

142 concentrations of PM_{2.5} from on-road mobile sources than the PWM for any racial-ethnic group shown in Fig. 1a.

144	For each demographic group, we compute disparity as the absolute ($\mu g/m^3$) and relative
	(percent) difference between the average concentration experienced by a group versus the overall
146	state population (Fig. 1b, see also Methods and Table S3). Reflecting the nearly parallel
	concentrations evident in Fig. 1a, relative disparities in PM _{2.5} exposure from on-road mobile
148	sources (Fig. 1b) were strikingly persistent and slightly increasing across time. The relative
	disparity in exposure to on-road mobile sources for Hispanic Californians increased slightly from
150	12.0% (year-2000) to 13.9% (year-2019) while the relative disparity in exposure for White
	Californians decreased slightly from -13.5% to -15.5%. Thus, the overall relative difference
152	between the most and least exposed race-ethnicity increased from 30% to 35%. Absolute and
	relative disparities in AB617 and SB535 communities are even larger. For example, the relative
154	disparity in exposure (i.e., relative to the overall population average) for on-road mobile source
	PM _{2.5} is more than three times as large for AB617 communities as for the most-exposed racial-
156	ethnic group, and it increased from 40% (year-2000) to 45% (year-2019). Thus, we find the
	remarkable success in reducing overall PWM exposures and absolute disparities to PM _{2.5} from
158	on-road vehicle emissions is juxtaposed against large and persistent relative disparities.

Disparities in exposure for those living at the extreme ends of the concentration distribution are also relevant for understanding environmental injustice. We estimated population-weighted distributions of exposure by race-ethnicity for each individual vehicle class (Figs. S4-S5). In general, trends at the upper (i.e., 75th and 90th) percentiles are consistent with trends at the PWM and consistent across time. Considering the disparity in exposure at the 75th and 90th percentiles relative to the statewide mean, we find large and increasing relative

disparities (e.g., 90th percentile exposure for Hispanic Californians increasing from 104% to 118% higher than statewide PWM from 2000 to 2019).

	We also evaluated the degree to which the California populations who experience the
168	highest overall exposure to PM2.5 from on-road vehicles are disproportionately comprised of
	people of color, and how this trend evolved over time. To do so, we binned the California
170	population by decile of exposure to $PM_{2.5}$, and then compared the racial-ethnic composition of
	each decile in 2000 and 2019 (Fig. 2, midpoint result in Fig. S6). From 2000 to 2019, Hispanic
172	Californians are overrepresented at the highest exposure deciles. While the California state
	population is 37.6% Hispanic, the highest decile of exposure for emissions in 2000 and 2019
174	consists of 47.9% and 50.8% Hispanic people, respectively. Similarly, White Californians, who
	comprise 40.1% of the population, are overrepresented among the populations with the lowest
176	exposures (62.0% of the lowest-exposure deciles in 2000 and 2019) and are underrepresented in
	the highest-exposure decile (29.9% [2000], 27.7% [2019]). The results mentioned here compare
178	only to the 2010 Decennial Census; we do not account for population changes that have occurred
	between 2000 and 2019. Still, we find that the trend of relative disparities increasing slightly
180	over time is not only true at the PWM, but at the extremes as well.
	Light-Duty Vehicles are the Dominant Contributors, but the Highest Relative Disparity is

182 from Heavy-Duty Vehicles

166

Because California's vehicle emissions control policies generally differentiate by vehicle types, we disaggregate our analyses of emissions, exposures, and disparities by vehicle type based on the official EMFAC2021 documentation (Table S1) (*32*). We evaluate the disparities and additive contributions of each vehicle fleet type at the state-level for the most exposed racial-

ethnic group, Hispanic Californians to identify which vehicle types have an especially influential role on their exposures and disparities.

188

At the statewide average, we find that that LDVs are the vehicle fleet with the largest aggregate impact on overall PM_{2.5} exposures and disparities, but that HDVs also produce the 190 greatest disparate relative impacts. LDVs account for 65-70% of the 0.2-0.4 μ g/m³ PM_{2.5} 192 disparity in exposure for on-road mobile sources for Hispanic Californians (Figs. 3a and 3b). Contributions to disparity from HDVs (16-24%), MDVs (9-14%), and all other vehicles (<5%) 194 are substantially smaller. Owing to the relatively low contributions from MDVs and all other vehicles, the following discussion focuses on comparing LDV and HDVs (full results in Table 196 S6). This LDV-dominated result is consistent across racial-ethnic groups and for residents of AB617 and SB535 communities (Figs. S7-S8), but with different overall magnitudes of exposure 198 for different subpopulations. Over time, the contributions to disparity from individual vehicle fleet types are stable, likely reflecting the relatively constant distribution of vehicle activity patterns by vehicle fleet. 200

The dominant influence of LDVs on exposures and disparities arises for two reasons.
First, LDVs dominate the overall emissions of PM_{2.5} and its precursors. Based on the CARB emissions inventories employed, LDVs contribute most of the NH₃ and VOC emissions (70-95% of NH3, > 80% of VOC) from vehicles, which contribute ~44-56% of total PM_{2.5} exposure from vehicles. LDVs and HDVs contribute more similarly to primary PM_{2.5} (23-45% LDV, 29-56% HDV) and NO_x (35-48% LDV, 36-43% HDV) emissions, and these species contribute the remaining ~44-56% of total PM_{2.5} (Figs. S9-S12). Second, LDV emissions are more
concentrated near population centers than other vehicle fleets, so LDVs result in a substantially higher-than-average exposure impact (Fig. S13 metric: µg/m³ population-weighed exposure per
ton of annual emissions; this metric is directly related to intake fraction) (41-43). Revisiting the

	exposure distributions by race-ethnicity and fleet (Fig. S4), we find no remarkable differences
212	between distributions of different fleets (i.e., it is not the case that the most exposed populations
	are generally exposed to a different mixture of fleet types than the population average).
214	As a complement to apportioning the overall relative disparity to emissions from
	individual vehicle types (i.e., largest aggregate impact), in Fig. 3c we also consider which
216	vehicle fleet types have an especially disparate impact on specific racial-ethnic groups (largest
	relative impact regardless of magnitude of emissions). Here, we find that HDVs are remarkable
218	for the singularly large relative disparities they cause relative to other vehicle types. For
	example, the relative disparity caused by HDVs for Hispanic Californians (range: $16 - 17\%$) was
220	larger than the relative disparity caused by LDVs (range: $11 - 14\%$).
	Community-Level Analysis Shows Substantial Spatial Heterogeneity in Fleet-wise
222	Contributions to Exposure Disparity
	While trends in contribution at the statewide PWM persist over time, we find that there is
224	substantial spatial heterogeneity in fleet contributions to exposures. We compare contributions
	by vehicle type at four spatial scales (Fig. 4): (a) statewide, (b) regional, (c) within overburdened
226	communities, and (d) community-scale. Whereas the previous section and Fig. 4c evaluate
	aggregate exposure and disparity across all AB617 communities, in Fig. 4d we compare

228 contributions to exposure and disparity within individual communities.

	The Los Angeles area and its AB617 communities have high PWM exposures and high
230	contributions from LDVs (> 60%). In the Central Valley, while the PWM exposures are lower,
	the contributions from HDVs are substantially higher (e.g., 60% in Arvin/Lamont). The diversity
232	in fleet contributions to individual communities showcases the importance of community-
	specific emissions reduction planning. While a community like East Los Angeles may benefit

234	from policy actions that directly reduce emissions from LDVs (e.g., more electric bus routes,
	street conversion to bicycle paths), communities like Arvin/Lamont would benefit more from
236	policies that reduce emissions from HDVs (e.g., additional diesel fuel emissions limits, truck
	electrification, low emission zones). These differences likely arise from differences in spatial
238	distributions of sources relative to residences and the magnitude and mixtures of vehicle activity
	that occur at the community scale. In sum, our results support the approach of enabling
240	communities to identify and mitigate the largest contributors to local exposures and disparities.
	Insights from California's Historical Mobile Vehicle Control Policies for More Equitable
242	Future Policy
	We have demonstrated that while the PWM PM _{2.5} exposures and absolute exposure-
244	disparities, attributable to on-road mobile sources have decreased over the past two decades
	across all population groups, relative disparities have remained at both the average and at the
246	extreme ends of the exposure distribution for Californians of color and residents of the AB617
	and SB535 communities. At all points of the statewide exposure distribution, emissions from

- LDVs contribute the most to exposure concentrations and absolute disparity, while emissions from HDVs most disproportionately affect people of color relative to other fleet types. Of the
 groups considered here, residents of AB617 communities in aggregate experience the highest levels of exposure from on-road vehicles. There is substantial heterogeneity among AB617
 communities in terms of the total exposure concentration and the relative contribution from each vehicle type.
- These findings are consistent with previous literature. First, we confirm and highlight the successes of California's mobile source strategy in substantially reducing average PM_{2.5}
 exposures for all groups of Californians (26). Second, our finding of highly persistent relative

disparities for Californians of color is disappointing but consistent with a growing body of
 literature on sectoral emissions policy. When policies reduce the overall emissions rate without
 substantially altering the pattern of *where* emissions occur, relative disparities in exposure can
 persist (11, 16).

Our results suggest that relative disparities will persist without a paradigm shift in transportation policy. Creating low emissions zones or promoting mode shift away from private automobiles (e.g., dense public transit networks, bike lane infrastructure) could be more likely to reduce exposure disparities from the on-road vehicle fleet than statewide fleet-specific emissions controls (44). Without systemic changes to transportation infrastructure, it seems likely that these relative disparities will persist even in an all-electric vehicle future, in which future low levels of exposure from non-exhaust emissions (e.g., brake- and tire-wear) will still disparately affect people of color and residents of overburdened areas (Fig. S14). Conversely: by strategically accelerating emission-reductions, such as vehicle electrification efforts, in overburdened areas, EJ communities could achieve substantial short-term reductions in relative exposure disparity.

While we have focused on one sector within California, our findings contribute to an
emerging body of EJ research indicating that to reduce relative disparities in exposure, policy
must not merely continue a trend of emissions reduction, but also target the disparate
geographical distribution of emissions in overburdened communities. While we focused on
California as a case study, it is likely that these general findings apply across the United States,
as most state and national approaches broadly have mirrored California's, with a strong focus on
emission rate reductions. Our work provides a compelling illustration of how a highly successful
emissions reduction strategy does not necessarily reduce relative inequity in exposures (*15*, *16*).
More research is needed to identify the specific suite of strategies that can deliver a "triple win"
for climate, health, and equity goals. We hypothesize that particularly effective strategies may go

beyond aggregate emission rate reductions by ameliorating the inequitable distribution of where
 emissions take place. For the transportation sector, this means spatially shifting activities and
 emissions away from the disparate burden on historically disadvantaged communities. Thus,
 future work could explore the environmental equity impacts of potential policy actions and
 public investments that fundamentally change transportation infrastructure.

286 Methods

Emissions Estimates

288	Estimates of mobile emissions in California were obtained from the CARB's EMission
	FACtor (EMFAC) model (version EMFAC 2021 with MPOv11) for calendar years 2000 through
290	2019 (32). Estimated emissions were spatially allocated to a 1 km by 1 km grid using surrogates
	from the Sparse Matrix Operator Kernel Emissions (SMOKE) Modeling System and ARB's
292	Emissions Spatial and Temporal Allocator (ESTA) models. The resulting dataset contained
	spatially resolved annual total exhaust, evaporative, brake wear, and tire wear emissions for
294	primary PM _{2.5} and four precursor species: NO _x , VOC, NH ₃ , and SO _x . EMFAC2021 reports
	results for 54 vehicle categories and four fuel types (gasoline, diesel, natural gas, and electric).
296	Emissions for this analysis were binned into three main vehicle groups: LDVs, MDVs, and
	HDVs, with all other vehicle types (including motorcycles, motorhomes, and buses) grouped
298	together as "Other" (Table S1).

Estimates of Air Concentrations

Annual average PM_{2.5} concentrations attributable to vehicle emissions in California were estimated using a novel pipeline (see following section) built around the Intervention Model for
 Air Pollution (InMAP) Source-Receptor Matrix (ISRM) (2, 17, 45). The ISRM was developed from the United States InMAP, which used WRF-Chem simulations and U.S. Environmental
 Protection Agency National Emissions Inventory (NEI) emissions estimates for 2014. The

national version of InMAP was sampled on a population-weighted irregular grid (n = 21,705; 1
km - 48 km) for the state of California (2). Approximately 74% of grid cells are the finest resolution, with a population-weighted grid size of 2.4 km (urban: 1.2 km, rural: 7.4 km). The
gridding algorithm ensures that no cell larger than 1 km contains more than 20,000 people or a census block group with population density higher than 2,500 people/km.

The ISRM relates, for the n = 21,705 grid cells in California, marginal changes in groundlevel concentration in every grid cell to marginal changes in emissions in every cell. Because this work only evaluates impacts from on-road mobile sources, all concentrations were estimated using the ground-level (i.e., 0 - 57 m above ground) layer.

314 Novel Open-Source Method: ECHO-AIR

Air pollution modeling, even with reduced complexity modeling tools such as InMAP, can have major accessibility barriers for non-specialists. For the present analysis, we developed an open-source Python-based pipeline that streamlines exposure concentration and health impact analyses. The resulting system, called Estimating Concentrations and Health Outcomes – Automated ISRM Resource (ECHO-AIR), aims to lower barriers of entry for rapid estimation of

320 PM_{2.5} exposure and health assessments.

Running ECHO-AIR for analyses in California requires only estimates of emissions, which
can be input as ArcGIS-compatible shapefiles or comma separated value files. ECHO-AIR is
modular, enabling users to employ any ISRM, population data, and health input data, so long as
they are formatted correctly (see Supplementary Text). ECHO-AIR is managed through a public
GitHub repository to ensure transparency, to maximize usability, and to perform routine model
upgrades and maintenance. The location of additional details, including instructions on how to
download and run ECHO-AIR, are in the Supplementary Text.

Population Estimates

330	Population data were obtained for 2010 from the United States Census for California from
	the National Historic Geographic Information System (NHGIS) database version 16.0 (46).
332	Static population estimates were queried at the tract level by age, race, and Hispanic origin.
	Consistent with prior literature (6, 10, 11), racial-ethnic categories were estimated as follows: the
334	population count for Hispanic Californians was defined as Californians of any race who were of
	Hispanic origin; Californians who are not of Hispanic origin and are Black or African American
336	alone, Asian alone, or White alone were defined as Black, Asian, and White Californians,
	respectively; all other Californians were included in the Other category.
338	Exposure Assessment and Equity Analysis
	Statewide group-level exposures to annual average PM _{2.5} concentrations were estimated as
340	population-weighted mean (PWM) concentrations, consistent with other air pollution disparity
	literature (5, 10-12). For all of the metrics below, only the on-road mobile source exposure was
342	considered. To estimate exposure to PM _{2.5} for each year, we calculate geographic intersections
	between the 2010 Census tract boundaries and the gridded concentration estimates. Population is
344	down-sampled based on area-apportionment, but concentration estimates are assumed to be
	constant throughout the grid cell. Exposure concentrations are calculated at the smallest

346 geography possible.

The PWM exposure is estimated by multiplying the annual average PM_{2.5} concentration by the population of the demographic group of interest within that grid cell, summing across all grid cells, and dividing by the total population:

350

 $PWM_k = \frac{\sum_{i=1}^{n} P_{i,k} \times C_i}{\sum_{i=1}^{n} P_{i,k}}$

where PWM_k is the population-weighted mean exposure concentration for group k across n

354 grid cells, $P_{i,k}$ is the population of group k in grid cell i, and C_i is the concentration of PM_{2.5} in grid cell i. Equity was assessed using the absolute and relative disparities at the population-356 weighted mean. The absolute disparity $(D_{A,k})$ is defined as a demographic group's populationweighted mean exposure (PWM_k) subtracted by the statewide population-weighted mean

358 exposure (PWM_T) :

$$D_{A,k} = PWM_k - PWM_T$$

360 Relative disparities $(D_{R,k})$ are estimated as the absolute disparity divided by the statewide PWM exposure to mobile sources.

362
$$D_{R,k} = \frac{(PWM_k - PWM_T)}{PWM_T} = \frac{D_{A,k}}{PWM_T}$$

Because the ISRM is a linear model and the absolute disparity is an arithmetic equity 364 metric, absolute disparities can be apportioned to individual source categories to find a relative contribution to the absolute disparity. Thus, the fractional contribution of a source's emissions to 366 a group's exposure is estimated as:

$$f_{j,k} = \frac{D_{A,j,k}}{D_{A,t,k}}$$

370 where $f_{j,k}$ is the fractional contribution from source *j* on the exposure and disparity for group *k*, $D_{A,j,k}$ is the absolute disparity from source *j* for group *k*, and $D_{A,t,k}$ is the absolute disparity for 372 group *k* from all on-road mobile sources.

Limitations

Our modeling framework is built around a source-receptor matrix developed from a reduced-complexity model, which has several inherent limitations. First, the temporal resolution

376	of our results is limited to annual average and thus incorporates but lacks temporal precision to
	investigate exposure disparities that occur on a smaller time scale (e.g., rush hour traffic
378	locations). Additionally, even with the relatively fine scale grid in urban areas (down to 1 km ²),
	the model misses within-grid near-road exposure gradients; those gradients can occur and be
380	important even at scales smaller than 1 km ^{2} (47). While reduced-complexity modeling cannot
	replace comprehensive chemical-transport modeling (e.g., CMAQ), our methods have been
382	corroborated against these models and have been shown to adequately represent small changes in
	emissions on scales similar to the on-road mobile sector.
384	Additionally, our model employs a static population dataset from the 2010 Decennial
	Census, which has several limitations in addition to known uncertainty in U.S. Census data.
386	First, we assume that exposure is fully coupled with residential address, which may
	underestimate overall disparity in exposure by race and ethnicity (48). Second, we employ a
388	static population dataset, which neglects changes in population over time. We minimize the
	impacts of this limitation by using 2010 (the midpoint of the study). In a sensitivity analysis (Fig.
390	S15), we repeated our analysis with 2000 Decennial Census data and confirmed that the core
	findings are generally unchanged.
392	

References and Notes

- D. A. Paolella, C. W. Tessum, P. J. Adams, J. S. Apte, S. Chambliss, J. Hill, N. Z. Mueller, J. D. Marshall, Effect of Model Spatial Resolution on Estimates of Fine Particulate Matter
 Exposure and Exposure Disparities in the United States. *Environ. Sci. Technol. Lett.* 5, 436–441 (2018). https://doi.org/10.1021/acs.estlett.8b00279.
- J. S. Apte, S. E. Chambliss, C. W. Tessum, J. D. Marshall, "A Method to Prioritize Sources for Reducing High PM2.5 Exposures in Environmental Justice Communities in California" (Research report for California Air Resources Board contract 17RD006, 2019); https://ww2.arb.ca.gov/sites/default/files/classic/research/apr/past/17rd006.pdf. Accessed Dec. 4, 2023.

404 406	3.	S. E. Chambliss, C. P. R. Pinon, K. P. Messier, B. LaFranchi, C. R. Upperman, M. M. Lunden, A. L. Robinson, J. D. Marshall, J. S. Apte, Local- and regional-scale racial and ethnic disparities in air pollution determined by long-term mobile monitoring. <i>Proc. Natl Acad. Sci. USA</i> 118 , e2109249118 (2021). https://doi.org/10.1073/pnas.2109249118.
408	4.	C. W. Tessum, D. A. Paolella, S. E. Chambliss, J. S. Apte, J. D. Hill, J. D. Marshall, PM _{2.5} polluters disproportionately and systemically affect people of color in the United States. <i>Sci. Adv.</i> 7 , eabf4491 (2021). https://doi.org/10.1126/sciadv.abf4491.
410 412	5.	L. P. Clark, M. H. Harris, J. S. Apte, J. D. Marshall, National and Intraurban Air Pollution Exposure Disparity Estimates in the United States: Impact of Data-Aggregation Spatial Scale. <i>Environ. Sci. Technol. Lett.</i> 9 , 786-791 (2022). https://doi.org/10.1021/acs.estlett.2c00403.
414 416	6.	H. M. Lane, R. Morello-Frosch, J. D. Marshall, J. S. Apte, Historical Redlining Is Associated with Present-Day Air Pollution Disparities in U.S. Cities. <i>Environ. Sci. Technol. Lett.</i> 9 , 345-350 (2022). https://doi.org/10.1021/acs.estlett.1c01012.
418	7.	T. W. Collins, S. E. Grineski, Y. Shaker, C. J. Mullen, Communities of color are disproportionately exposed to long-term and short-term PM _{2.5} in metropolitan America. <i>Environ. Res.</i> 214 , 114038 (2022). https://doi.org/10.1016/j.envres.2022.114038.
420	8.	J. Colmer, I. Hardman, J. Shimshack, J. Voorheis, Disparities in PM _{2.5} air pollution in the United States. <i>Science</i> 369 , 575-578 (2020). https://doi.org/10.1126/science.aaz9353.
422 424	9.	J. Liu, J. D. Marshall, Spatial Decomposition of Air Pollution Concentrations Highlights Historical Causes for Current Exposure Disparities in the United States. <i>Environ. Sci.</i> <i>Technol. Lett.</i> 10 , 280-286 (2023). https://doi.org/10.1021/acs.estlett.2c00826.
426 428	10	. C. W. Tessum, J. S. Apte, A. L. Goodkind, N. Z. Mueller, K. A. Mullins, D. A. Paolella, S. Polasky, N. P. Springer, S. K. Thakrar, J. D. Marshall, J. D. Hill, Inequity in consumption of goods and services adds to racial–ethnic disparities in air pollution exposure. <i>Proc. Natl Acad. Sci. USA</i> 116 , 6001–6006 (2019). https://doi.org/10.1073/pnas.1818859116.
430 432	11	. Y. Wang, J. S. Apte, J. D. Hill, C. E. Ivey, R. F. Patterson, A. L. Robinson, C. W. Tessum, J. D. Marshall, Location-specific strategies for eliminating US national racial-ethnic PM _{2.5} exposure inequality. <i>Proc. Natl Acad. Sci. USA</i> 119 , e2205548119 (2022). https://doi.org/10.1073/pnas.2205548119
434	12	. Y. Wang, J. S. Apte, J. D. Hill, C. E. Ivey, D. Johnson, E. Min, R. Morello-Frosch, R. Patterson, A. L. Robinson, C. W. Tessum, J. D. Marshall, Air quality policy should quantify effects on disparities. <i>Science</i> 381 , 272-274 (2023). https://doi.org/10.1126/science.adg9931.
436 438	13	. L. Cushing, D. Blaustein-Rejto, M. Wander, M. Pastor, J. Sadd, A. Zhu, R. Morello-Frosch, Carbon trading, co-pollutants, and environmental equity: Evidence from California's cap- and-trade program (2011–2015). <i>PLoS Med.</i> 15 , e1002604 (2018). https://doi.org/10.1371/journal.pmed.1002604
440 442	14	. Y. Ju, L. J. Cushing, R. Morello-Frosch, An equity analysis of clean vehicle rebate programs in California. <i>Climatic Change</i> 162 , 2087-2105 (2020). https://doi.org/10.1007/s10584-020-02836-w.

444	 P. Picciano, M. Qiu, S. D. Eastham, M. Yuan, J. Reilly, N. E. Selin, Air quality related equity implications of U.S. decarbonization policy. <i>Nat. Commun.</i> 14 (2023). https://doi.org/10.1038/s41467-023-41131-x.
446	 P. Polonik, K. Ricke, S. Reese, J. Burney, Air quality equity in US climate policy. <i>Proc. Natl Acad. Sci. USA</i> 120, e2217124120 (2023). https://doi.org/10.1073/pnas.2217124120.
448 450	17. A. L. Goodkind, C. W. Tessum, J. S. Coggins, J. D. Hill, J. D. Marshall, Fine-scale damage estimates of particulate matter air pollution reveal opportunities for location-specific mitigation of emissions. <i>Proc. Natl. Acad. Sci. USA</i> 116 , 8775-8780 (2019). https://doi.org/10.1073/pnas.1816102116.
452 454	 G. Boeing, Y. Lu, C. Pilgram, Local inequities in the relative production of and exposure to vehicular air pollution in Los Angeles. <i>Urban Stud.</i> 60, 004209802211454 (2023). https://doi.org/10.1177/00420980221145403.
456	 Y. Lu, Drive less but exposed more? Exploring social injustice in vehicular air pollution exposure. <i>Soc. Sci. Res.</i> 111, 102867 (2023). https://doi.org/10.1016/j.ssresearch.2023.102867.
458 460	 G. C. Pratt, M. L. Vadali, D. L. Kvale, K. M. Ellickson, Traffic, Air Pollution, Minority and Socio-Economic Status: Addressing Inequities in Exposure and Risk. <i>Int. J. Env. Res. Pub.</i> <i>He.</i> 12, 5355-5372 (2015). https://doi.org/10.3390/ijerph120505355.
462 464	 D. Houston, J. Wu, P. Ong, A. Winer, Structural Disparities of Urban Traffic in Southern California: Implications for Vehicle-Related Air Pollution Exposure in Minority and High- Poverty Neighborhoods. J. Urban Aff. 26, 565-592 (2004). https://doi.org/10.1111/j.0735- 2166.2004.00215.x.
466	 F. Garcia-Menendez, R. K. Saari, E. Monier, N. E. Selin, U.S. Air Quality and Health Benefits from Avoided Climate Change under Greenhouse Gas Mitigation. <i>Environ. Sci.</i> <i>Technol.</i> 49, 7580-7588 (2015). https://doi.org/10.1021/acs.est.5b01324.
468	23. California Air Resources Board, "History" (2023). Accessed Dec. 4, 2023. https://ww2.arb.ca.gov/about/history.
470 472	 24. United States Code of Federal Regulations. Clean Air Act Extension of 1970: Section 177. 42 CFR § 7507 (2). New motor vehicle emission standards in nonattainment areas (1977). Available at: https://www.law.cornell.edu/uscode/text/42/7507. Accessed Dec. 4, 2023.
474	 C. Pappalardo, What a Difference a State Makes: California's Authority to Regulate Motor Vehicle Emissions Under the Clean Air Act and the Future of State Autonomy. <i>MJEAL</i>. 10, 169-223 (2020). https://doi.org/10.36640/mjeal.10.1.what.
476 478	26. S. Samuelsen, S. Zhu, M. M. Kinnon, O. K. Yang, D. Dabdub, J. Brouwer, An Episodic Assessment of Vehicle Emission Regulations on Saving Lives in California. <i>Environ. Sci.</i> <i>Technol.</i> 55, 547-552 (2021). https://doi.org/10.1021/acs.est.0c04060.
480	 B. C. McDonald, T. R. Dallmann, E. W. Martin, R. A. Harley, Long-term trends in nitrogen oxide emissions from motor vehicles at national, state, and air basin scales. <i>J. Geophys. Res.</i> 117 (2012). https://doi.org/10.1029/2012JD018304.
482 484	 K. A. Yu, B. C. McDonald, R. A. Harley, Evaluation of Nitrogen Oxide Emission Inventories and Trends for On-Road Gasoline and Diesel Vehicles. <i>Environ. Sci. Technol.</i> 55, 6655-6664 (2021). https://doi.org/10.1021/acs.est.1c00586.

486	 B. C. McDonald, A. H. Goldstein, R. A. Harley, Long-Term Trends in California Mobile Source Emissions and Ambient Concentrations of Black Carbon and Organic Aerosol. <i>Environ. Sci. Technol.</i> 49, 5178-5188 (2015). https://doi.org/10.1021/es505912b.
488 490	 M. J. Haugen, G. A. Bishop, A. Thiruvengadam, D. K. Carder, Evaluation of Heavy- and Medium-Duty On-Road Vehicle Emissions in California's South Coast Air Basin. <i>Environ.</i> <i>Sci. Technol.</i> 52, 13298-13305 (2018). https://doi.org/10.1021/acs.est.8b03994.
492	31. G. A. Bishop, Three decades of on-road mobile source emissions reductions in South Los Angeles. J. Air Waste Manage. 69, 967-976 (2019). https://doi.org/10.1080/10962247.2019.1611677.
494 496	 California Air Resources Board, "EMFAC2021 Volume III Technical Document Version 1.0.1." (2021); https://ww2.arb.ca.gov/sites/default/files/2021- 07/emfac2021_tech_doc_april2021.pdf. Accessed Dec. 4, 2023.
498	33. California Air Resources Board, "Estimated Annual Average Emissions Statewide" (2023); https://ww2.arb.ca.gov/applications/statewide-emissions. Accessed Dec. 4, 2023.
500	34. United States Environmental Protection Agency, Air Pollutant Emissions Trends Data (2023); https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data.
502	35. I. Mikati, A. F. Benson, T. J. Luben, J. D. Sacks, J. Richmond-Bryant, Disparities in Distribution of Particulate Matter Emission Sources by Race and Poverty Status. Am. J. Public Health 108, 480-485 (2018). https://doi.org/10.2105%2FAJPH.2017.304297.
504 506	36. J. Liu, L. P. Clark, M. J. Bechle, A. Hajat, S. Y. Kim, A. L. Robinson, L. Sheppard, A. A. Szpiro, J. D. Marshall, Disparities in Air Pollution Exposure in the United States by Race/Ethnicity and Income, 1990–2010. <i>Environ. Health Perspect.</i> 129 , 127005 (2021). https://doi.org/10.1289/EHP8584.
508 510 512	37. C. Garcia, California State Assembly. An Act to Amend Sections 40920.6, 42400, and 42402 of, and to Add Sections 39607.1, 40920.8, 42411, 42705.5, and 44391.2 to, the Health and Safety Code, Relating to Nonvehicular Air Pollution. Assembly Bill No. 617. Nonvehicular air pollution: criteria air pollutants and toxic air contaminants (2017). Available at: https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB617. Accessed Dec. 4, 2023.
514 516	38. K. De León, California State Senate. An Act to Add Sections 39711, 39713, 39715, 39721, and 39723 to the Health and Safety Code, Relating to Climate Change. Senate Bill No. 535. California Global Warming Solutions Act of 2006: Greenhouse Gas Reduction Fund (2012).
518	https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201120120SB535. Accessed Dec. 4, 2023.
520 522	39. California Office of Environmental Health Hazard Assessment. CalEnviroScreen 4.0. https://oehha.ca.gov/media/downloads/calenviroscreen/report/calenviroscreen40reportf2021. pdf (2021). Accessed Dec. 4, 2023.
524	40. A. van Donkelaar, M. S. Hammer, L. Bindle, M. Brauer, J. R. Brook, M. J. Garay, N. C. Hsu, O. V. Kalashnikova, R. A. Kahn, C. Lee, A. Lyapustin, A. M. Syer, R. V. Martin, Monthly Global Estimates of Fine Particulate Matter and Their Uncertainty. <i>Environ. Sci. Technol.</i> 55,
526	15287-15300 (2021). https://doi.org/10.1021/acs.est.1c05309.

- 41. D. H. Bennett, T. E. McKone, J. S. Evans, W. W. Nazaroff, M. D. Margni, O. Jolliet, K. R.
 Smith, Defining Intake Fraction. *Environ. Sci. Technol.* 36, 206A-211A (2001). https://doi.org/10.1021/es0222770.
- 42. J. D. Marshall, S. K. Teoh, W. W. Nazaroff, Intake fraction of nonreactive vehicle emissions in US urban areas. Atmos. Environ. 39, 1363-1371 (2005).
 https://doi.org/10.1016/j.atmosenv.2004.11.008.

43. J. S. Apte, E. Bombrun, J. D. Marshall, W. W. Nazaroff, Global Intraurban Intake Fractions for Primary Air Pollutants from Vehicles and Other Distributed Sources. *Environ. Sci. Technol.* 46, 3415-3423 (2012). https://doi.org/10.1021/es204021h

- 44. N. P. Nguyen, J. D. Marshall, Impact, efficiency, inequality, and injustice of urban air pollution: variability by emission location. *Environ. Res. Lett.* 13, 024002 (2018).
 https://doi.org/10.1088/1748-9326/aa9cb5.
- 45. C. W. Tessum, J. D. Hill, J. D. Marshall, InMAP: A model for air pollution interventions.
 PloS One 12, e0176131 (2017). https://doi.org/10.1371/journal.pone.0176131.
- 46. J. S. Manson, D. Van Riper, T. Kugler, S. Ruggles, IPUMS National Historical Geographic
 Information System, version 16.0. (2021); http://doi.org/10.18128/D050.V16.0.
 - 47. W. J. Requia, P. Koutrakis, Mapping distance-decay of premature mortality attributable to PM_{2.5}-related traffic congestion. *Environ. Pollut.* 243, 9-16 (2018). https://doi.org/10.1016/j.envpol.2018.08.056.
- 48. P. deSouza, S. Anenberg, C. Makariewicz, M. Shirgaokar, F. Duarte, C. Ratti, J. Durant, P. Kinney, D. Niemeier, Quantifying disparities in air pollution exposures across the United
 States using home and work addresses. arXiv: 2303.12559 [stat] (2023).

550 **Acknowledgments:**

534

544

552

Funding:

California Office of Environmental Health Hazard Assessment.

Author contributions:

554	Conceptualization: JSA, ÁA, AB, JDM, LP
	Methodology: LHK, JDM, JSA
556	Investigation: LHK
	Visualization: LHK, JSA
558	Funding acquisition: JSA
	Project administration: JSA
560	Supervision: JSA, JDM, ÁA
	Writing – original draft: LHK, JSA
562	Writing – review & editing: LHK, ÁA, AB, LP, JDM, JSA
	Competing interests: Authors declare that they have no competing interests.
564	Data and materials availability: to be shared following acceptance

Fig. 1. On-road mobile-source PM_{2.5} exposure and relative disparity in exposure for each **demographic group.** Statewide population-weighted mean PM_{2.5} exposure concentrations (a) 568 and relative disparity in exposure (b) attributable to on-road mobile sources for the four largest racial-ethnic groups and two policy-relevant environmental justice areas in California. In each 570 year, relative exposure disparities (b) for each racial-ethnic group are computed in reference to statewide average PM2.5 concentration attributable to on-road mobile sources. Concentrations in 572 areas designated under California's Community Air Protection Program (AB617, ~10% of state population) and as SB535 Disadvantaged Communities (~25% of state population) substantially 574 exceed those experienced on average for the most-exposed racial-ethnic group, Hispanic Californians. (b) Crucially, despite greater than 50% reductions in mobile-source population-576 weighted mean PM_{2.5} for all groups (a), relative racial-ethnic disparities increased for Hispanic, Black, and Asian Californians, as well as residents of AB617 and SB535 communities. Here and 578 elsewhere, the "Hispanic" population reflects Californians of any racial group identifying on the US Census as Hispanic, while all other groupings exclude Californians identifying as Hispanic. 580

582

Fig. 2. Racial-ethnic population distribution by exposure decile. Differences in racial-ethnic composition of the California population exposed to each decile of the distribution of PM_{2.5} attributable to on-road mobile sources in (a) 2000 and (b) 2019. The statewide population is binned into ten groups of equal population of PM_{2.5} exposure attributable to the full vehicle fleet. At all years in our assessment, Hispanic Californians are strongly overrepresented among the highest PM_{2.5} exposure deciles (and under-represented in the lowest exposure deciles). The opposite pattern holds for White Californians. Data are plotted for individual vehicle types and the analysis midpoint year (2010) in the SI.

592

Fig. 3. Contributions to disparity in exposure to mobile-source PM_{2.5} for Hispanic Californians. Two methods of comparing contributions to disparity in PM2.5 exposures from on-594 road vehicle fleet types shown for the most exposed racial-ethnic group, Hispanic Californians. First, we compare the absolute magnitude in contribution from each vehicle group (a, b); then, 596 we compare the relative disparity in exposure to each vehicle group (c). (a) Absolute disparities in PM_{2.5} exposure from vehicles for Hispanic Californians relative to the overall statewide 598 population declined between 2000 and 2019, consistent with the overall reduction in emissions (Fig. S1) and population-weighted mean PM_{2.5} concentrations (Fig. 1). (b) Fractional 600 contributions to the overall disparity that are attributable to each fleet type are estimated by normalizing the absolute contribution to disparity attributable to a single fleet type to the total 602 disparity attributable to all on-road mobile sources. In each year, light-duty vehicle (LDVs) emissions are the dominant contributor to the disparately high exposures experienced by 604 Hispanic Californians. (c) Disparities attributable to emissions of individual vehicle fleet types relative to the statewide average PM_{2.5} exposure attributable to emissions of that individual 606 vehicle fleet. Note that heavy-duty vehicles (HDVs) especially disparately impact Hispanic Californians, even though HDVs are not the dominant contributor to overall emissions (Fig. S1), 608 PM_{2.5} concentrations (Fig. 1), or absolute disparities (c).

Fig. 4. Spatial heterogeneity in contributions by fleet to mobile-source PM_{2.5} exposure. 612 Contribution to PM_{2.5} exposures from distinct vehicle fleets is shown at four spatial scales: (a) statewide, (b) three major regions, (c) residents of overburdened communities, and (d) for 19 614 individual communities designated by the state of California through the Community Air Protection Program (AB617; see Fig. S2 for identification of each community). At each spatial 616 scale, pie chart icons indicate the fractional contribution to exposure attributable to each vehicle fleet type, with icons scaled in proportion to the population-weighted mean PM_{2.5} concentration 618 from all vehicle types. Light-duty vehicles contribute especially to mobile-source PM_{2.5} exposures in Southern California, while the relative contribution from MDVs and especially 620 HDVs are comparatively higher in the Central Valley and San Francisco Bay Area. There is 622 considerable heterogeneity among AB617 communities in fleet contributions.