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Abstract

Force Fields (FFs) are an established tool for simulating large and complex molec-

ular systems. However, parametrizing FFs is a challenging and time-consuming task

that relies on empirical heuristics, experimental data, and computational data. Re-

cent efforts aim to automate the assignment of FF parameters using pre-existing

databases and on-the-fly ab-initio data. In this study, we propose a Graph-Based

Force Fields (GB-FFs) model to directly derive parameters for the Generalized Am-

ber Force Field (GAFF) from chemical environments and research into the influence

of functional forms. Our end-to-end parameterization approach eliminates the need

for expert-defined procedures and enhances the accuracy and transferability of GAFF

across a broader range of molecular complexes. The GB-FFs model, which is only

grounded on ab initio data, is implemented in the highly parallel Tinker-HP GPU

package. Simulation results are compared to the original GAFF parameterization and

validated on various experimentally and computationally derived properties, including

free energies.

Introduction

The high numerical cost of quantitative ab-initio methods restricts their application to small

systems, composed of a few hundred atoms,1,2 limiting the ability to study larger molecular

systems. As an alternative, force fields (FFs) have emerged as valuable tools, employing

physically-motivated functional forms to model potential energy surfaces. These FFs are

parameterized to match ab-initio as well as experimental data, offering a computationally

cheaper alternative for simulating diverse systems, ranging from biology to polymers and

complex materials. Indeed, there is a wide range of FFs developed for different purposes and

compounds.

FFs can be categorized into two main families. The most commonly used FFs are known

as classical, or non-polarizable, FFs, that include AMBER,3,4 CHARMM5,6 and GAFF.7,8
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These non-polarizable FFs employ a combination of fixed-charge Coulomb potential and

Lennard-Jones interactions to model intermolecular interactions. They are highly efficient

numerically, enabling simulations of very large systems over long time scales.9,10 However,

their simple functional form lacks polarization and many-body effects, which are crucial for

accurately describing complex phenomena such as pi-stacking or allosteric effects.11,12

On the other hand, there are polarizable force fields (PFFs) such as AMOEBA,13,14 AMOEBA+,15,16

CHARMM Drude,17 and SIBFA.18,19 These force fields have been specifically developed to

explicitly incorporate polarization and many-body effects. This enhanced flexibility and ac-

curacy come at a higher computational cost compared to non-polarizable FFs. Nevertheless,

PFFs provide a more comprehensive representation of intermolecular interactions and are

particularly suitable for studying complex systems.20–23

In recent years, significant attention and resources have been devoted to the development

of Machine Learning Potentials (MLPs), aiming to bridge the accuracy and generality gap

between FFs and ab-initio methods.24–28 MLPs employ flexible functional forms from the

field of Machine Learning (ML) to accurately fit ab-initio energies or forces. They offer a

favorable balance between computational efficiency and accuracy, circumventing the need

for empirical functional forms used in FFs. MLPs possess the ability to capture complex

interactions, including polarization effects29–31 and metal-ligand interactions,32,33 which are

challenging to model using traditional FFs.

However, the accuracy of MLPs depends on the quality of the training data and the archi-

tecture of the ML model, which can limit their transferability. Moreover, MLP models are

often difficult to interpret, posing challenges in identifying and understanding the underly-

ing physics and chemistry of the systems under study. Additionally, the use of MLPs versus

FFs in molecular dynamics significantly slows down those simulations. Note that the FF

parameters are assigned once for each system at the beginning of a simulation, and newer,

more accurate parametrizations are regularly updated by FF developers.

Parameterizing a FF is however a challenging task since its accuracy and transferability
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heavily depend on the quality of its parameters. This offline process is time-consuming,

often taking years, as it relies on empirical heuristics, experimental data as well as computa-

tional data. FFs have established robust parameterization procedures, such as Antechamber

for GAFF8 and poltype2 for AMOEBA.34,35 Additionally, these FFs rely on local frames,

known as atom types or atom classes, to assign parameters (e.g., bonds, angles). To enhance

the generalization and reliability of FFs, one tendency is to expand the atom type space.

However, this leads to an increasing number of possible valence compositions, introducing

significant complexity in the parameter fitting process. Moreover, even with modern param-

eter optimization frameworks36 and sufficient data, FF parameters defined by fixed atom

types can sometimes suffer from low transferability.

Advances in the computational efficiency and scalability of ab-initio methods have also pro-

vided new opportunities to enhance the transferability and accuracy of FFs by building

larger and more accurate databases.37,38 Consequently, there has been an increased effort to

leverage ML for predicting FF parameters trained on these large ab-initio databases, while

still maintaining the predefined functional form of the potential and atom types or classes.

Wang et al.39 combined Graph Neural Networks (GNNs) and automatic differentiation to

predict FF parameters. By focusing on intramolecular interactions, they demonstrated that

GNNs can effectively predict FF parameters based on potential energies.

Building upon these developments, we propose a Graph-Based Force Fields (GB-FFs) model

for FF parameterization. GB-FFs automatically derive accurate FF parameters using basic

atom features and bond features and aims to extend the generalization of FFs by using

a Directed Graph multi-head Attention Network. It serves as a continuous alternative to

traditional discrete atom typing schemes, eliminating the need for assigning atom types and

obtaining FF parameters directly from atomic representations.

To assess the overall quality of our GB-FFs model, we compared its performance to the

original GAFF parameterization using the highly parallel Tinker-HP GPU package.40,41 Our

model is freely available (MIT Licence) on GitHub at https://github.com/GongCHEN-1995/
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GB-FFs-Model, and a tutorial is included for generating GAFF parameters from a smile, as

well as for fine-tuning the model on a newer database.

In particular, this paper presents the following contributions:

• Enhancement of the existing GAFF by refining its parameters.

• Treatment of the molecules as directed molecular graphs and the use of a self-attention

mechanism to aggregate information.

• Inclusion of charge transfer to predict fixed atomic charge, enabling O(N) complexity.

• Validation on various experimental, as well as ab-initio, properties, including hydration

free energies of diverse molecular systems.

• Versatility and ease of use of the model facilitate its extension to other non-polarizable

FFs.

• Investigation of GAFF’s limits by modifying its functional forms.
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Methods

In the following sections, we will provide a brief introduction to GAFF and present the

GB-FFs model.

The General AMBER Force Field (GAFF)

GAFF7 is among the most popular classical FFs to simulate organic molecules. It is an

extension of the Amber force field.4 GAFF is specifically designed to be compatible with a

broad range of organic molecules, including drug-like compounds, carbohydrates, and nucleic

acids.

GAFF incorporates a comprehensive set of parameters for bond stretching, angle bending,

torsional, and non-bonded interactions. These parameters allow for accurate modeling and

simulation of the behavior of organic molecules under various conditions (e.g high pressure,

low temperature). Due to its computational efficiency, relative reliability and especially its

simple functional form, GAFF has been widely implemented in many popular molecular

simulation software packages, such as AMBER,4 GROMACS,42 CHARMM,6 and Tinker-

HP.27,40,41 Finally, a main advantage of GAFF is the publicly availability of its parameters.

Thus facilitating its widespread use within the scientific community.

In GAFF, the angle bending, bond stretching bonded interactions are modelled using

a harmonic potential making it not reactive thus greatly simplifying the parameterization

process. The torsional potential is expressed as a Fourier series. For non-bonded interactions,

the Van der Waals (VdW) interactions are described by a 12-6 Lennard Jones potential. The

electrostatic potential, on the other hand, is governed by Coulomb’s law.
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Epotential =
∑
bonds

Kr(r − req)
2 +

∑
angles

Kθ(θ − θeq)
2

+
∑

dihedrals

Vn

2
[1 + cos(nϕ− γ)]

+
∑
i<j

[
ϵij(

σ12
ij

R12
ij

− 2
σ6
ij

R6
ij

) +
qiqj
εRij

] (1)

where req and θeq are equilibrium structural parameters ; Kr, Kθ, Vn are so called “force

constants”; n is multiplicity and γ is phase angle for torsional angle parameters. The ϵ, σ,

and q parameters characterize the non-bonded VdW potential. ϵ, σ follow Lorentz-Berthelot

combination rules.43,44 The GAFF parameters {Kr, req, Kθ, θeq, Vn, ϵ, σ} are directly read

from parameters table according to corresponding atom types while n = 1, 2, 3, 4 and γ = 0

or π.

The parameterization process of GAFF starts by assigning partial charges. In the early

stages of GAFF, Hartree Fock (HF) with the 6-31G* basis set were used to generate electro-

static potentials from which restrained electrostatic potential (RESP) charge45,46 fits were

derived. This process proved to be expensive, especially for large molecules or large numbers

of molecules and led to the development of the AM1-BCC charge scheme that approximate

HF/6-31G* RESPA computation by first calculating charges using the AM1 semi-empirical

model and correct it via bond charge corrections.47,48

In GAFF, the equilibrium bond length θeq are fitted through experimental data from X-

ray and neutron diffraction, as well as MP2/6-31G* computations. On the other hand, bond

angle parameterization uses reference from the Cambridge Structure Database, empirical

rules and MP2/6-31G* computations. Finally, the strategy for developing torsional angle

parameters involves performing torsional angle scanning and fitting the parameters to accu-

rately reproduce the rotational profile obtained from MP2/6-31G* calculations. The VdW

parameters are the same as those used by AMBER and thus extracted from a database.
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In this paper we used the second generation of GAFF. But the GB-FFs general framework

make it transferable to other type of non-polarizable FFs easily.

Graph-Based Force Fields model, a Universal Parameterization

Procedure

GNNs have been proved to be an efficient and powerful way to detect chemical environment

and to extract molecular properties.49–52 In addition, GNNs also have shown potential in

expressing atoms’ representations and bonds’ representations.49,50,53

Figure 1: Framework of Graph-Based Force Fields (GB-FFs) Model: It consists
of molecule processing model, the symmetry-preserving parameter generator and charge
transfer model.

The model is composed of three modules: molecule processing model, symmetry-preserving

parameter generator and charge transfer model (see Figure 1). These components will be

discussed in the following sections.

GB-FF’s runtime complexity is O(N) and processing a molecule with 50 atoms takes

0.018 seconds on a single GPU V100. In comparison, solely the AM1-BCC charge model

used in Antechamber has a computational complexity of O(N2) and takes 111 seconds to

assign atom types and charges for the same molecule.
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Molecules Processing Model

Assigning atom types and deriving FF parameters are typical atom-level tasks. Building on

the notion of directed bonds,54 we applied our recently introduced Directed Graph Attention

Networks (D-GATs) model.52 In contrast to other ML-based molecular processing models,

D-GATs exhibit a remarkable ability to discern local chemical environments and eliminate

unnecessary message flow. They have consistently outperformed state-of-the-art benchmarks

in 13 out of 15 molecular property prediction tasks.

To enhance the robustness, we employ the Smooth Maximum Unit (SMU)55 as an acti-

vation function. SMU offers a smooth approximation to the entire Maxout family, including

ReLU, Leaky ReLU, and their variants.56 Our goal is to predict a set of parameters that can

bring molecular dynamic simulation results closer to ab-initio data. The molecular poten-

tial energy surface is highly sensitive to these predicted parameters. Our experiments have

demonstrated that the discontinuity in the Maxout function can hinder the convergence of

the models’ loss.

Table 1: Input features to the GB-FFs model

Atom Features Size(38) Descriptions
atom symbol 11 [UNK,H,C,N,O,F,P,S,Cl,Br,I] (one-hot)

degree 6 number of covalent bonds [0, 1, 2, 3, 4, 5] (one-hot)
formal charge 7 [-3,-2,-1,-0,1,2,3] (one-hot)
hybridization 8 [unspecified, s, sp, sp2, sp3, sp3d, sp3d2, other] (one-hot)

chirality 4 [unspecified, tetrahedral CW, tetrahedral CCW, other] (one-hot)
ring 1 whether the atom is in ring [0/1] (one-hot)

aromaticity 1 whether the atom is part of an aromatic system [0/1] (one-hot)
Bond Features Size(12) Descriptions
bond type 4 [single, double, triple, aromatic] (one-hot)
conjugation 1 whether the bond is conjugated [0/1] (one-hot)

ring 1 whether the bond is in ring [0/1] (one-hot)
stereo type 6 [StereoNone, StereoAny, StereoZ, StereoE, Stereocis, Stereotrans] (one-hot)

To ensure compatibility with GAFF, we focused on compounds composed of C, N, O, H,

S, P, F, Cl, Br, and I. Using the RDKit package,57 we extracted fundamental atomic and

bond features (see Table 1). These features, in conjunction with the molecular graph repre-

sented in Lewis structure,58 were then input into the GB-FFs model. The model’s outputs
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include atomic and bond representations. For this article, we specifically employ the directed

bond representations to incorporate chemical information and the atomic representations for

predicting FF parameters (as illustrated in Figure 2).”

Figure 2: Molecule processing model: The model to process molecules follows the idea
in D-GATs but with hierarchical structure. Dh is the dimension of model and Nheads is the
number of heads in multi-attention mechanism. Between two stacked layers, there exists
W e and W n to convert the dimension of embeddings. The stacked layers consist of several
interaction layers. However, different from D-GATs,52 here is no ReadOut function.

FFs are intricate and highly parameter-sensitive. To enhance the models’ expressive

capacity and expand their receptive field, we employ a hierarchical structure consisting of

two stacked layers: Small and Larger Layers. Both layers share the same model architecture

but operate in distinct dimensions. Between the two stacked layers, we incorporate linear

transformations (W e andW n) to convert the dimensions of atomic and bond representations.

As depicted in Figure 2, the Large Layers consist of 3 interaction layers with a model

dimension (Dh) of 512. They play a central role in detecting chemical environments and
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forming atomic representations. The Small Layers, on the other hand, employ 4 interaction

layers with a model dimension (Dh) of 128 and four attention heads. These layers are

primarily used for embedding initialization and demand minimal computational resources.

We designate the output atomic representations as hT = hT
i |i = 1, ..., N , while the output

directed bond representations are denoted as hT p⃗(ij) for all connected atoms i and atoms j.

It’s important to emphasize that the directionality in bond representation is critical, with

hT p⃗(ij) indicating the bond from atom i to atom j.

Charge Transfer Model

To ensure the net charge of the molecule aligns with the actual scenario and to improve

the physical meaning of charge distribution, we used directed bond states {hT
p⃗(ij)} to predict

the charge transfer between connected atoms. Our molecular processing model is based on

directed graphs, eliminating the need for additional operations, and it can predict the charge

transfer from one atom to its neighbors.

As illustrated in Figure 3, the directed bond features obtained from Figure 2 are fed into

a feed-forward neural network (FFN) to determine the charge transfer in the corresponding

bond direction. The final atomic charge is obtained by summing the original formal charge

and the incoming charges while subtracting the outgoing charges.

We used the AM1-BCC charge model45,46 to calculate the original partial atomic charges

and compared our predicted GB-FFs charges with both AM1-BCC charges and wB97x/def2-

TZVPP MBIS charges. Our charge transfer model performs comparably to AM1-BCC

charges, but with significantly improved efficiency. Detailed results can be found in Sup-

plementary Information (Charge Comparison).

Symmetry-Preserving Parameter Generator

The number of FF parameters depends on the molecule’s geometry. According to the molec-

ular geometry, we use RDKit to list all the combinations of bonds, angles, dihedrals and
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Figure 3: Charge Transfer Model: The charge is allowed to transfer between connected
atoms and the charge in/out is directly calculated by the directed bond embeddings. The
final partial charge of atom is the original formal charge plus charge flows in and minus the
charge flows out.

non-bonded interaction pairs. We input atomic representations into the parameter genera-

tor based on the identified structure to predict all potential bonds, angles, dihedrals, and

non-bonded parameters.

The parameter generator needs to ensure atom ordering symmetries. For example, when

predicting bond parameters, if we exchange the order of two input atomic representations,

the predicted parameters should be invariant. In the previous similar work, Espaloma,39 the

relevant equivalent atom permutations are enumerated, which has a cost. We split the input

atom embeddings by their intrinsic structure and use the linear transformation to ensure its

symmetry:

hrij = hrji = Wrh
T
i +Wrh

T
j (2)

hθijp = hθpji = Wθ1h
T
i +Wθ2h

T
j +Wθ1h

T
p (3)

hϕijpq
= hϕqpji

= Wϕ[h
T
i , h

T
j ] +Wϕ[h

T
q , h

T
p ] (4)
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hφijpq
= hφjipq

= hφjqpi
= hφqjpi

= hφiqpj
= hφqipj

= Wφ1h
T
i +Wφ1h

T
j +Wφ2h

T
p +Wφ1h

T
q

(5)

hV dWi
= WV dWhT

i (6)

where [., .] denote concatenation and hr, hθ, hϕ, hφ ∈ RDh ,Wr,Wθ1,Wθ2,Wφ1,Wφ2,WV dW ∈

RDh×Dh ,Wϕ ∈ R2Dh×Dh . These embeddings for bond ({hr}), angle ({hθ}), torsion ({hϕ}),

improper torsion term ({hφ}) and VdW interaction ({hV dW}) are in the same dimension.

And the number of parameters for each term is fixed (for example, one bond term needs

two parameters {Kr, req}). According to the corresponding embeddings, we can use the fully

connected NNs to predict the FF parameters (see Figure 4).

Figure 4: Symmetry-preserving parameter generator: For a specified molecule, we
input atom and bond features to hierarchical D-GATs and obtain the atomic representations
and directed bond representations. The symmetry-preserving parameter generator predicts
all FF parameters, which can be used to do molecular dynamic simulation.
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Results and Discussions

Training Strategies

To enhance our model’s robustness and performance, it is first trained on the ANI-1 database,

currently one of the largest available database of Density Functional Theory (DFT) computa-

tions for small organic molecules.59 However, the ab-initio accuracy of the ANI-1 database is

relatively low and we thus fine-tuned the model on two more chemically accurate databases:

SPICE60 and DES370K.61

The SPICE dataset is used to ensure the accuracy of fitting intramolecular interactions.

SPICE is a collection of quantum mechanical data mainly built to train MLP for simulat-

ing drug molecules and proteins. The computations are performed at the ωB97M-D3(BJ)

functional62,63 with the def2-TZVPPD basis set.64,65

In contrast, the DES370K dataset is used to ensures the accuracy of intermolecular

interactions. In DES370K, the reference interaction energies for these systems are com-

puted using the highly accurate coupled-cluster singles and doubles with perturbative triples

(CCSD(T))66 level of theory with a complete basis set (CBS).67 The complexes in this

database represent most of the molecular interactions that could occur in chemistry, includ-

ing electrostatic-dominated (hydrogen bonding), dispersion-dominated, and mixed (electro-

static/dispersion) interactions.

As GAFF includes only H, C, N, O, F, P, S, Cl, Br, and I, we exclude the molecules

containing elements Li, Na, Mg, K, Ca in SPICE and DES370K. There are 29,389 compounds

left. The compounds are randomly divided into training/validation/test sets, following an

8:1:1 ratio.

Fitting the potential energy and atomic forces simultaneously is challenging because,

as a first remark, we do not know if there exists a unique global best fit, second if there

exists local ones. Due to this, we have proposed a set of training strategies. We first

performed a pre-training on energies and forces the large ANI-1 Database computed with
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the ωB97x functional with the 6–31G(d) basis set. Once this pre-training is performed, we

then fine-tuned it on the energies and forces from the SPICE and interactions energies from

the DES370K database. More information can be find in Supplementary Information (Pre-

training on ANI-1 Database and Fine-Tuning Strategy on SPICE and DES370K Databases).

This second step allows us to capture not only a much higher level of theory but also a more

accurate chemical diversity and environments. As forces play a crucial role in molecular

dynamics, their weights in the loss function were increased step by step. The results of the

fine-tuning are shown in Table 2. For the SPICE database, compared to the original GAFF,

our GB-FFs GAFF model significantly reduces the Root Mean Square Error (RMSE) for the

energies from 5.8 kcal/mol to less than 3.0 kcal/mol and for the forces from 13.4 kcal/mol/Å

to 6.0 kcal/mol/Å. However, for the DES370K database, the RMSE for interaction energy

has increased from 1.1 kcal/mol to 1.4 kcal/mol due to the sensibility of VdW parameters.

Table 2: RMSE on SPICE database (potential energy, force and charges) and on DES370K
database (potential energy and charges) for GAFF and GB-FFs GAFF.

SPICE DES370K

Energy(Kcal/mol) Force(Kcal/mol/Å) Charge(C) Energy(Kcal/mol) Charge(C)
GAFF 5.7804 13.4398 - 1.1470 -

GB-FFs GAFF 2.9706 5.9232 0.0500 1.4146 0.0713

Additionally, as said before, GB-FFs is 3-4 orders of magnitude faster than AM1-BCC

calculations using Antechamber (the command in AMBER), from 111 seconds to 0.018 sec-

ond for 50 atoms. Furthermore, the GB-FFs charges provided by the charge transfer model

closely approximate AM1-BCC charges (see Table 2), and yield comparable results on ab-

initio MBIS atomic charges68 (Supplementary Information (Charge Comparison).

Intermolecular Interaction Accuracy: S66×8 benchmark

In previous databases, models are trained and tested on the same databases. In this subsec-

tion, we aim to assess the models’ ability to generalize to untrained databases.

The S66×8 database69 comprises 66 dimers positioned at 8 distinct intermolecular dis-
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tances, resulting in a total of 528 unique structures. The S66×8 database is a widely known

reference database for assessing the accuracy of intermolecular interactions.

The minimum distance between two monomers ranges from 0.9 to 2.0 times the equilib-

rium value. When the intermolecular distance varies, the monomers have fixed geometries,

meaning that deformation energies of monomers are not considered.

Table 3: MAE and RMSE of the interaction energy on S66×8 database, as well as the MAE
and RMSE of the potential energy on torsion scan database for GAFF and the GB-FFs
GAFF models.

S66 × 8 Torsion Scan
MAE(Kcal/mol) RMSE(Kcal/mol) MAE(Kcal/mol) RMSE(Kcal/mol)

GAFF 0.9368 1.8388 1.9694 3.5351
GB-FFs GAFF 0.5087 0.8766 0.9892 1.4843

The Mean Absolute Error (MAE) and RMSE on the overall dataset are shown in Table

3. Compared to GAFF, the GB-FFs model reduced by more than half the RMSE. This

demonstrates that the training process significantly benefits the approximation of long-range

interactions in fitting potential energy and atomic forces.

Figure 5: Results of four example on S66 × 8 database.
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Figure 5 depicts the results for four dimers. The remaining dimers can be found in the

Supplementary Infromation (Full results on S66×8 database). The GB-FFs GAFF models

almost perfectly reproduce the intermolecular energy surface of the water dimer, which is a

critical aspect for simulating solvated biomolecules. In other instances, GB-FFs models are

often comparable or outperform GAFF.

Torsion Profiles of 62 Drug-like Fragments

After evaluating intermolecular interactions between molecules, we now turn our attention

to assessing the accuracy of predicting intramolecular interactions.

Torsion energies play a crucial role in biology and in small molecular systems. However,

accurately assessing torsional parameters in FF is challenging as they necessitate computa-

tionally expensive calculations and complicated fitting procedure. Additionally, these param-

eters are highly sensitive to the local chemical environment, making them less transferable

across different molecular systems. Consequently, they often rely on simplistic transferability

rules, which can lead to inaccuracies.

Thus, achieving accurate torsion profiles while avoiding the need for extensive torsion

fitting is of great importance in FF parameterization. In this context, the performance of

the GB-FFs parameterization is also evaluated on a highly accurate torsion scan database.70

It comprises 62 fragments with drug-like functional groups and their CCSD(T) /CBS single

point energies calculated on optimized geometries using MP271,72/6-311+G**.73,74

For each molecule of the 62 fragments, a specific dihedral angle is varied from -170◦

to 170◦ in increments of 10◦ (the chosen dihedral angle for modification is indicated in

Supplementary Information (Full results on Torsion Scan database)

The overall performance is recorded in Table 3. Compared to the original GAFF, the

GB-FFs models refined on the SPICE and DES370K databases provide FF parameters that

better fit the potential energy changes caused by dihedral angle variations. In some cases,

although there may be a gap between GB-FFs model’s predicted results and the reference
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energies (see Figure 6 (c) and (d)), the observed trends in these changes correspond with the

actual scenarios.

Figure 6: Results of four examples on 1D torsion scan database.

This assessment aims to highlight the capabilities of the GB-FFs model in accurately

capturing torsional energies.

Hydration Free Energies

While our previous focus was on potential energy and atomic forces, this subsection tackles

a more challenging property: hydration free energy.

These values are computed for a set of 50 small molecules,35 which have been previously

employed to evaluate AMOEBA’s performance and the recently introduced ANI/AMOEBA

model.27 This set covers common chemistry examples, including benzene, acetic acid, and

ethane. The experimental values are sourced from the Guthrie solvation database.75

In our experiments, the FF parameters for the central molecules are taken from either

the original GAFF or GB-FFs models, while the surrounding water molecules are mod-

eled using the Simple Point Charge (SPC) water model.76 The calculations were performed
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with Tinker-HP GPU and using the newly introduced λ-ABF method.77 As the λ-ABF

was recently introduced we also reported in Supplementary Information (Hydration Free

Energy Calculations) an extensive study of various water models (GAFF, SPC, Q-SPC,

CHARMM22).

(a) Original GAFF (b) GB-FFs GAFF

Figure 7: Comparison of hydration free energies: Computed models versus experimen-
tal values for 41 molecules in SPC water. The simulations were performed using λ-dynamic
ABF, totaling 10 ns of simulation time with the BAOAB-RESPA integrator, 0.25/2 fs setup.
For both GAFF and GB-FFs, three repetitions were conducted with different random seeds.

The overall performance is depicted in Figure 7 and the comprehensive data details are

documented in the Supplementary Information (Hydration Free Energy Calculations). We

conducted three repetitions of 10 ns each to evaluate the standard deviation error for the

λ-ABF method. The original GAFF resulted in a RMSE of 1.70 kcal/mol, an r2 value of

0.70, and a standard deviation, σ, of 0.13 kcal/mol (see Figure 7(a)). In comparison, our best

model achieved a RMSE of 0.87 kcal/mol, an r2 of 0.92, and a σ of 0.12 kcal/mol. Across all

metrics, our model demonstrated superior performance, notably by dividing the RMSE by a

factor of almost 2. The low standard deviation, σ, of 0.12 kcal/mol is attributed to the λ-ABF

method which, not only requires less computational power but also accelerates the sampling

of the conformational space. We found the largest variation on acetic acid, that is due to a

high energy barrier between two conformations of the proton in the carboxylic acid group.
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We found that λ-ABF significantly accelerates the sampling of these two conformations, as

these results were not well replicated with the fixed λ method.

We conducted extensive tests using various training and learning strategies and found

that the RMSE on the hydration free energy of these models varied from 0.87 to 1.1 kcal/mol.

By adding the 0.1 kcal/mol error coming from the λ-ABF, our overall strategy error is ap-

proximately 0.3 kcal/mol. These results underscore the superior performance of FF param-

eters derived from the GB-FFs model. These parameters excel not only in total energies,

forces, intermolecular interactions, and torsional interactions but also in hydration free en-

ergies. These tests reinforce the effectiveness of GB-FFs parameters in molecular dynamics

simulations.

We believe that these results give an idea into the theoretical limitations of the functional

form of GAFF for accurately computing free energies. In the next section, we further explore

the theoretical limits of GAFF, and more generally classical FFs, by evaluating our model

on modified versions of GAFF’s original functional form.

Redefining GAFF: Introducing Novel Formulations

This part is a perspective. The accuracy of FFs is determined by the quality of parameters as

well as the functional forms. We have made some preliminary attempts in the optimization of

FF functional forms by choosing improved functional forms for the bond stretching energies

(Morse fitting) and related to the angle bending energies (Urey-Bradley Terms).

The results are presented in Supplementary Information (Redefining GAFF: Introducing

Novel Formulations).

These results demonstrate that modifying the functional forms enhances the performance

across almost all test datasets. However, it does not further improve the accuracy of hydra-

tion free energy simulation, for which polarization and nuclear quantum effects are crucial

and will be the subject of another study. Our interpretation is that we may have reached the

accuracy limit of what GAFF and, more generally, classical FFs can achieve for hydration
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free energies, which is about 0.9 kcal/mol.
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Conclusion

In summary, the results that have been presented here have demonstrated the efficacy and

viability of using a Directed Graph Attention neTwork (D-GATs) to predict the parame-

ters the General AMBER Force Field (GAFF). The proposed parameterization approach

offered several advantages. First, thanks to its efficient runtime complexity of O(N), and

computational cost, GB-FFs could assign parameters of molecules with hundreds atoms,

all within a few hundredths of a second. This enabled the simultaneous and self-consistent

parameterization of small molecules and biopolymers, eliminating the need for multiple dis-

tinct methodologies. Additionally, the automated workflow could leverage large databases,

further enhancing the development of FFs.

We evaluated the accuracy and performance of the FF parameters from GB-FFs model

through extensive assessments on different databases.

First, we fine-tuned GB-FFs models on the SPICE and DES370K databases, which con-

sists of a wide range of chemical space. The resulting Root Mean Square Error (RMSE) of

SPICE energy is 3.06 Kcal/mol, surpassing that of the original GAFF, which exhibits 6.03

Kcal/mol error. GB-FFs model also improves the performance on DES370K database.

To further assess the precision of our model in capturing intermolecular interactions, such

as VdW’s and Coulomb’s, we tested its accuracy on the S66×8 database. Our results show-

case a reduction in RMSE by nearly half compared to the original GAFF, highlighting the

improved accuracy of our approach in modeling intermolecular interactions. Moreover, we

have evaluated the model’s transferability and accuracy in capturing torsional interactions

by computing one-dimensional torsion profiles. The GB-FFs parameterization exhibits ex-

cellent performance in capturing torsional properties (energy RMSE from 3.53 Kcal/mol to

1.34 Kcal/mol). Lastly, we examined the model’s capability in predicting hydration free en-

ergies for various systems. Our model achieved lower RMSE errors 0.87 kcal/mol compared

to the original GAFF parameterization 1.7 kcal/mol, showcasing its high transferability to

chemically relevant systems.
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Replacing the harmonic function with the Morse function to evaluate bond energy and

adding the Urey-Bradley term significantly enhanced the fitting performance, without losing

computational cost, of FFs on almost all dataset except for hydration free energies which is

slightly worse than our previous best model. One explanation is that we reached the accuracy

limit of classical non-polarizable FFs. Such models can be then further improved by adding

polarization effects18,20–22 and/or neural networks components27,28 to their functional form

and nuclear quantum effects within their dynamics.78,79

The code can be used on multiple GPUs, enabling accelerated calculations and ensuring

efficient processing of multiple molecules simultaneously. Its flexibility allows for its easily

integration into popular molecular dynamics workflows.

We proposed the GB-FFs model as a framework for optimizing existing FFs. While in this

article, our focus was specifically on optimizing GAFF, it is important to note that our model

can be extended to other non-polarizable FFs without the need for scheme modifications.

However, extending it to polarizable FFs presents a more complex challenge that demands

further research. One potential future direction involves integrating additional physical

functional forms, such as the AMOEBA polarizable force field, and we aspire to incorporate

this into the automated Poltype 2 framework in the near future.

Another improvement could be done regarding the partial charges assignment to refine

the charge transfer model, by either accounting directly for polarization effects or by imple-

menting the electronegativity equalization approach proposed by Gilson et al.80

Additionally, one way to enhance the capability of the model in simulating condensed-

phase systems would be to add additional observables, such as binding free energies, into

the training process, thus helping the model in capturing complex molecular behavior in

condensed phases and leading to more accurate and reliable predictions.
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Supplementary Information

Recovering atom types in GAFF

Before training our models on potential energy and forces, we employed a molecular process-

ing model to generate atomic embeddings for reconstructing GAFF’s atom types. We chose

to use the SPICE database over the ANI-1 database due to its broader range of elements

and a wider set of biomolecular-relevant structures. The results are displayed in Table S1.

Table S1: Accuracy of the predicted atom types on SPICE.

H C N O P S F Cl Br I Total
Accuracy 99.80% 99.02% 98.87% 99.51% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 99.42%

Number of Atoms 28,270 24,268 4,685 4,094 86 916 761 473 201 51 63,805

Overall, the predictive accuracy is remarkably high, averaging at 99.42%. Notably, for

elements other than H, C, N, and O, the prediction accuracy reaches 100%. When investigat-

ing the misclassification of atomic types, we observe that the primary source of error comes

from special structures. Taking Figure S1 as an example, our model sometimes incorrectly

identifies “cu” as “c2” and “cx” as “c3”. The reason for these misclassifications is the failure

to correctly recognize triangular system (“c3” v.s. “cx” and “c2” v.s. “cu”). Similarly, for

carbon atoms, sometimes our model cannot recognize square systems(“c3” v.s. “cy” and

“c2” v.s. “cv”), biphenyl system (“ca” v.s. “cp”) and non-pure aromatic system (“ca” v.s.

“cc”) (refer to Table S2).

Figure S1: Comparison of atom types by GAFF and our model. The atom type
in orange are from GAFF, while the red are predicted by GB-FFs model. The incorrect
assignment of atom types is due to the failure to recognize triangular systems.

Although the predictions are not always accurate, it is important to note that such special

systems are quite rare and uncommon. Furthermore, even without identifying these specific

systems, our model has already captured the essential atomic features.
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Figure S2: Full results of predicted atom types on SPICE database. The numbers
in the table represent the frequency for each case.
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Pre-training on ANI-1 Database

To enhance models’ robustness and performance, they are pre-trained on the ANI-1 database

which is, up-to-date, the largest available database of Density Functional Theory (DFT)

computations for small organic molecules.59

This database comprises over 20 millions off-equilibrium conformations of 57,462 small or-

ganic molecules extracted from the GDB database.81,82 The conformations are built through

exhaustive sampling of a subset of the GDB-11 database containing molecules with between

1 to 8 heavy atoms and considering only the species H, C, N and O. The electronic calcu-

lations and structure calculations are carried out with the ωB97x83 density functional and

the 6–31 G(d) basis set84 making it a prime candidate for training Machine Learning (ML)

driven FF parameterization model.

There are originally 57,462 molecules in ANI-1 database. After processing, 55 molecules

fail to generate GAFF parameter files and 57,407 molecules are left. The molecules are

randomly divided into training/validation/test set, following an 8:1:1 ratio.

FFs are mainly designed for conformations that are close to equilibrium states. In the

context of pre-training on ANI-1 database, the filtering threshold is set relatively high to

retain as much pre-training data as possible. If a conformation exhibits more than one

bond energy or angle energy greater than 100 Kcal/mol, or if it has more than one non-

bonded atomic pair with a VdW energy greater than 50 Kcal/mol, we discard that particular

conformation.

Due to the dependence of energy on FF parameters, the filtering process is dynamic

since the parameters provided by ML model vary after each update. After predicting the

FF parameters using the GB-FFs model, we calculate the corresponding energy for each

conformation and then discard conformations that are far from equilibrium state, retaining

the rest conformations for calculating the loss function. Generally, about 2% conformations

are filtered in each epoch.

In the pre-training stage, there are three steps and each subsequent step’s initial model
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is the best model saved from the previous step:

1. Training the GB-FFs model to give the same parameters as GAFF and the loss function

is defined as Equation (7), where MSE(PX) denotes the mean square error (MSE) calcu-

lated by the difference of X (bond or angle or dihedral or VdW or charge) parameters

from GB-FFs model and GAFF parameters. The models are trained for 20 epochs.

Loss = MSE(Pbonds) + MSE(Pangles) + MSE(Pdihedrals) + MSE(Pcharges) + MSE(PV dW ) (7)

2. Training the GB-FFs model to give the same parameters and the same energy as GAFF.

The loss function is defined as Equation (8), where MSE(EX) denotes the MSE of energy

calculated by the X (bond or angle or dihedral or VdW or charge) parameters from

GB-FFs model and the energy calculated by the GAFF parameters. It should be

noted that the energy in this step indicates the energy for each interaction, i.e. for

every bond/angle/dihedrals and VdW/charge interaction pair. The models are trained

for 20 epochs.

Loss = MSE(Pbonds) + MSE(Pangles) + MSE(Pdihedrals) + MSE(Pcharge) + MSE(PV dW )

+ MSE(Ebonds) + MSE(Eangles) + MSE(Edihedrals) + MSE(Echarge) + MSE(EV dW )

(8)

3. Training the GB-FFs model to give the same parameters and the same total potential

energy as GAFF. The loss function is defined as Equation (9), where MSE(∆Etotal)

denotes the MSE of relative energy calculated using the parameters from GB-FFs

model and the total energy calculated by the GAFF parameters. The relative energy

refers to the energy difference between a given conformation and the conformation

with lowest energy. By focusing on ∆Etotal, we can investigate the impact of different

conformations on the potential energy, while the absolute energy is influenced by the

system’s conditions. Our model is capable of predicting partial charge. In the pre-

training stage, our charge is expected to approach AM1-BCC charge but we still use
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the AM1-BCC charge to compute the potential energy. There are also L2 regularization

for dihedral parameters and the transfer charge (not the partial charge). Without the

regularization loss, dihedral terms give unreasonable results. And the relatively small

transfer charge corresponds to the real situation. The weight in loss function for each

part is obtained by experiments. The models are trained for 50 epochs the only the

models with smallest validation error will be stored.

Loss = MSE(Pbonds) + MSE(Pangles) + 10 ∗ MSE(Pdihedrals) + 100 ∗ MSE(Pcharge)

+ 100 ∗ MSE(PV dW ) + 0.1 ∗ L2(Pdihedral) + 0.1 ∗ L2(chargetransfer)

+ MSE(∆EANI1)

(9)

The results of different models on test set are shown in Table S2. It should be noted

that the energy to compute error is the relative energy (the energy difference between the

minima) instead of absolute energy to avoid considering the heats of formation.

Table S2: Pre-training results of GB-FFs model on ANI-1 test dataset.

GAFF GB-FFs GAFF
RMSE for energy (Kcal/mol) 21.6032 12.6212

From the Results showed in Table S2, the FF parameters given by GB-FFs model have

better performance than original GAFF. However, the original GAFF is never trained on

ANI-1 database and it is not surprising that it is inferior to GB-FFs model.

Fine-Tuning Strategy on SPICE and DES370K Databases

SPICE (Small-Molecule/Protein Interaction Chemical Energies)60 is a collection of quan-

tum mechanical data aimed to be use in biomolecular simulation. The computations are

performed at the ωB97M-D3(BJ) functional62,63 and def2-TZVPPD basis set,64,65 which is

known for its high accuracy.
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DES370K61 is a collection of dimer interaction energies computed using the high-level

coupled-cluster singles and doubles with perturbative triples (CCSD(T))66 method at the

complete basis set (CBS)67 level of theory. This database contains 370,959 molecular ge-

ometries for 3,691 distinct dimers, which represent 392 monomers (both neutral molecules

and ions) including, but not limited to, water and the functional groups found in proteins.

The loss function is defined as in Equation (10), and it includes interaction energies from

DES370K, as well as total energies and forces from SPICE.

Loss = MSE(Pbonds) + MSE(Pangles) + 10 ∗ MSE(Pdihedrals) + 100 ∗ MSE(P ′
charge)

+ 1000 ∗ MSE(PV dW ) + 0.1 ∗ L2(Pdihedral) + 0.1 ∗ L2(chargetransfer)

+ MSE(∆ESPICE) + 100 ∗ MSE(∆EDES370K) + 10 ∗ MSE(∆FSPICE)

(10)

In the fine-tuning stage, we also did a study about the scalings on the AM1-BCC charge

within the loss function and observed that a scaling factor of 1.1 provides optimal results.

This questioning originate from the lack of polarization within GAFF and that strategies in

the classical FF community aims to add a scaling factor the charge model. This questioning

arises from the lack of polarization within GAFF and a known strategy in the classical force

field community is to scale the charge.

MSE(P ′
charge) = MSE(GB-FFs charge− 1.1 ∗ AM1-BCC charge) (11)

The filtering rule is set as: if a conformation exhibits more than one bond energy or

angle energy greater than 50 Kcal/mol, or if it has more than one non-bonded atomic pair

with a VdW energy greater than 5 Kcal/mol, it will be abandoned. Generally, about 8.5%

conformations are filtered in each epoch.

The criteria to judge our models are the sum of RMSE in potential energies and in atomic

forces: RMSE(∆ESPICE) + 100 ∗ RMSE(∆EDES370K) + 10 ∗ RMSE(∆F ). The models are trained
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for 2,000 epochs.
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Full results on S66×8 database

Figure S3: All results for S66 × 8 database (1 / 3).
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Figure S3: All results for S66 × 8 database (2 / 3).
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Figure S3: All results for S66 × 8 database (3 / 3). Results of “GAFF” and “GB-FFs
GAFF” on the S66×8 database. It is composed of dimers that have been gradually pulled
apart, and for which ab-initio computations were performed. On the x-axis is the ratio
of the distance to the equilibrium distance value (ranging from 0.9 to 2.0), and the y-axis
represents the potential energy (in Kcal/mol).
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Full results on Torsion Scan database

Figure S4: All results for 1D Torsion Scan database (1 / 3).
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Figure S4: All results for 1D Torsion Scan database (2 / 3).
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Figure S4: All results for 1D Torsion Scan database (3 / 3). Results of “GAFF” and
“GB-FFs GAFF” on 1D torsion scan database.70 It is composed of drug-like fragments for
which torsion scans have been conducted, and ab-initio computations were performed. On
the x-axis is the degrees of dihedral angles (from -170◦ to 170◦), and the y-axis represents
the potential energy (in Kcal/mol).

Hydration Free Energy Calculations

Before conducting hydration free energy simulations, we conducted an extensive study on the

effect of various water models, SPC,85,86 Q-SPC,85 and CHARMM22,17 on the hydration free

energy of water. We focused particularly on flexible water models, as Tinker-HP is designed

for such models, in contrast to most other softwares, which are typically built for rigid water

models such as TIP3P.87 Table S3 depicts the hydration free energy of water, where we

employed a different model for simulating the bulk and the water molecule, the latter is
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in parentheses. The simulations were conducted using λ-ABF with Velocity Verlet 1fs, in

the NPT ensemble with Berendsen Barostat, for a total of 1 ns of simulation. We found

that the SPC water model yields satisfactory results compared to experiments, while the

GB-FF/GAFF bulk water model produces unsatisfactory ones. This is attributed to the

sensitivity of the bulk water model’s properties to slight differences in parameters.78,88 For

GAFF and many FFs a different model is usually used for bulk water and for the water

ligand. In the following, we employed the SPC water model for bulk water while ligand’s

parameter are predicted by GB-FF.

Table S3: Hydration free energy (kcal/mol) comparison of water. Comparison between
experimental and some ligand(solvent) water models.

Water
GB-FF(GB-FF) -4.59
GB-FF(Q-SPC) -4.05
GAFF(Q-SPC) -5.11
GAFF(GAFF) -5.52
SPC(SPC) -6.36

Q-SPC(Q-SPC) -6.83
CHARMM22(CHARMM22) -6.87

Exp. -6.32

We tested our model’s prediction on the hydration free energy of 41 molecules. The results

can be found in Tables S4 and S5. 10 ns of simulations were performed using λ-ABF, with

BAOAB-RESPA integrator 0.5/2 fs setup, and a Langevin barostat. For assessing sampling

and reproducibility error, we conducted three repetitions for both GAFF and GB-FF, the

results presented here are then the averaged values over these three simulations. ∆Gsolv is

the averaged free energy difference between the ligand within the solvent and the ligand in

vacuum, i.e., the hydration free energy. ∆∆Gsolv is the absolute difference compared to the

experimental value. In parantheses are the standard deviation of each ∆Gsolv over the three

repetitions.

The fine-tuning process is influenced both by the order of molecules in the training dat-
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Table S4: Hydration free energy (kcal/mol) of 41 molecules. Part 1.

∆Gsolv (kcal/mol) ∆∆Gsolv (kcal/mol)
Molecule Exp GAFF GB-FF GAFF GB-FF

22-Dimethylbutane 2.51 3.27(0.27) 3.09(0.07) 0.58 0.76
2-Methyl-2-butene 1.31 2.64(0.08) 1.92(0.17) 0.61 1.33
acetalaldehyde -3.5 -2.85(0.01) -4.45(0.10) 0.95 0.65
acetamide -9.71 -7.79(0.08) -10.66(0.06) 0.95 1.92
benzene -0.87 -0.53(0.20) 0.16(0.07) 1.03 0.34
But-1-ene 1.38 2.81(0.07) 2.44(0.04) 1.06 1.43

diethylsulfide -1.6 0.57(0.14) -0.96(0.14) 0.64 2.17
dimethylamine -4.29 -2.30(0.11) -4.70(0.07) 0.41 1.99

Dimethyldisulfide -1.83 0.29(0.06) -3.01(0.06) 1.18 2.12
dimethylsulfide -1.54 0.78(0.11) -1.57(0.05) 0.03 2.32
Di-n-butylamine -3.24 -0.69(0.17) -3.17(0.36) 0.07 2.55
Di-n-propylether -1.16 0.51(0.08) -1.14(0.03) 0.02 1.67

ethane 1.83 2.76(0.07) 2.19(0.13) 0.36 0.93
ethanol -5 -2.63(0.06) -4.01(0.03) 0.99 2.37

ethylamine -4.5 -1.92(0.13) -5.40(0.13) 0.90 2.58
ethylbenzene -0.8 -0.15(0.10) -0.35(0.18) 0.45 0.65
formicacid -5.11 -4.94(0.06) -4.68(0.10) 0.43 0.17

hydrogensulfide -0.44 -1.13(0.04) -0.27(0.09) 0.17 0.69
imidazole -9.63 -7.53(0.02) -12.17(0.10) 2.54 2.10
isopropanol -4.76 -2.38(0.04) -3.81(0.10) 0.95 2.38
methane 1.99 2.60(0.06) 2.34(0.05) 0.35 0.61
methanol -5.11 -2.68(0.06) -4.15(0.03) 0.96 2.43

Methylacetate -3.13 -2.88(0.05) -3.58(0.11) 0.45 0.25
methylamine -4.56 -2.16(0.06) -5.46(0.14) 0.90 2.40
methylether -1.9 -0.20(0.05) -2.02(0.04) 0.12 1.70

methylethylsulfide -1.5 0.48(0.19) -1.29(0.07) 0.21 1.98
methylsulfide -1.24 -0.04(0.11) -1.35(0.03) 0.11 1.20
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Table S5: Hydration free energy (kcal/mol) of 41 molecules. Part 2.

∆Gsolv (kcal/mol) ∆∆Gsolv (kcal/mol)
Molecule Exp GAFF GB-FF GAFF GB-FF
n-butane 2.08 3.19(0.02) 2.48(0.12) 0.40 1.11

n-Butanethiol -0.99 0.38(0.19) -0.34(0.08) 0.65 1.37
n-Octane 2.88 4.24(0.05) 3.42(0.13) 0.54 1.36
phenol -6.62 -4.64(0.05) -5.61(0.05) 1.01 1.98
propane 1.96 2.73(0.08) 2.46(0.07) 0.50 0.77
propanol -4.83 -2.27(0.06) -3.69(0.08) 1.14 2.56

Propionaldehyde -3.43 -2.45(0.11) -3.85(0.11) 0.42 0.98
propylamine -4.4 -2.00(0.10) -4.38(0.22) 0.02 2.40

trimethylamine -3.24 -2.37(0.02) -3.18(0.06) 0.06 0.87
toluene -0.89 -0.35(0.07) -0.67(0.10) 0.22 0.54

Methylisopropylether -2.01 -0.24(0.78) -2.03(0.11) 0.02 1.77
aceticacid -6.7 -7.96(1.05) -5.05(1.21) 1.65 1.26

Di-n-propylsulfide -1.28 1.32(0.31) 0.34(0.13) 1.63 2.60
water -6.32 -5.07(0.01) -4.53(0.04) 1.79 1.25

aloader and by the random dropout in the molecule processing model, ultimately impacting

the performance of the fine-tuned model. Utilizing the same pre-trained model from the

ANI-1 database, we conducted multiple fine-tuning sessions on the SPICE and DES370K

databases. These fine-tuned models share identical loss functions.

In Figure S5, we present the hydration free energy of the original GAFF, the GB-FFs

model with the best performance (as presented in the main article), and another fine-tuned

model.

Redefining GAFF: Introducing Novel Formulations

This part is a perspective. The accuracy of FFs is determined by the quality of parameters as

well as the functional forms. We have made some preliminary attempts in the optimization

of FFs functional forms.
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GAFF GB-FFs GAFF

Another model

Figure S5: Comparison of hydration free energies of multiple models
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Morse Function for Stretching Energy

FFs typically adopt functional forms based on a balance between computational cost and

approximation effectiveness. Although the harmonic function yields only moderate accuracy,

it offers high computational efficiency, enabling simulations of larger and more complex

systems. The Morse function89 provides a more accurate description of the bond potential,

particularly for bonds that are stretched beyond their equilibrium values. We employ the

following form of the Morse function (the same number of parameters as GAFF):

Ebonds =
∑
bonds

Kr

4
(e−2(r−req) − 1)2 (12)

with {Kr, req} are the parameters directly from GAFF parameters. This model is noted as

“GB-FFs Morse” model.

Urey-Bradley Terms

In this context, we remove the constraint on the number of parameters and use the complete

Morse function to evaluate the stretching energy.

Ebonds =
∑
bonds

Kr

α2
(e−α(r−req) − 1)2 (13)

with {Kr, α, req} are the FF parameters, initialized as {Kr, 2, req} and r is the bond length.

{Kr, req} are the parameters directly from GAFF parameters.

Figure S6: Urey-Bradley term: The 1-3 endpoints distance rUB is taken into considera-
tion.

The Urey-Bradley (UB) terms90 serve as a cross-term addressing 1-3 non-bonded inter-

actions that are not adequately covered by the bond and angle terms (refer to Figure S6).
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Including UB terms enhances the accuracy of replicating subtleties within the vibrational

spectrum.

Nowadays, some FFs, such as CHARMM and AMOEBA, still use UB terms while AM-

BER and GAFF do not. However, it is known that introducing new UB terms raises con-

cerns, particularly regarding limited transferability and the increased complexity in the force

field parametrization process. In the context of general-purpose force fields, the primary

bottleneck is the complexity of parametrization, and this is a key reason why ML-based

parametrization might offer a solution.

For GB-FFs model, the process to learn atomic representations and predict suitable FF

parameters is automated and efficient. Additionally, GB-FFs model generates parameters

based on the atomic chemical environment, which largely mitigates issues related to low

transferability.

Usually, the UB terms apply harmonic function, which is not enough to represent the

complex interaction. We take use of the following function:

EUB =
∑
angles

KUB((
rUBeq

rUB

)2 − 1)2 (14)

with {KUB, rUBeq} are the new FF parameters. As we have no reference data for {KUB, rUBeq},

KUB is initialized as 0.1 (in Kcal/mol) and rUBeq (in Å) is initialized by the equilibrium

structure parameters req and θeq in GAFF. For example, in Figure S6, the equilibrium bond

length for bonds 1-3 and 2-3 are noted as r12eq and r23eq , as well as the equilibrium angle is

noted as θ123eq . We expect the UB term achieves the smallest energy when the structure is in

equilibrium state. According to the Law of cosines, rUBeq is initialized as:

rUBeq =
√

r12eq
2 + r23eq

2 − 2r12eqr
23
eq cos(θ

123
eq ) (15)

Indeed, we can incorporate more correction terms, such as separating the endpoint dis-

tance of the torsion term from the VdW terms, and assigning it as part of the torsion term.
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However, this approach carries the risk of over fitting and can potentially undermine the per-

formance of the original FFs, which goes against our initial goal of optimizing the molecular

FFs. Therefore, we have only made simple modifications to the stretch terms and bending

terms for now. This model is noted as “GB-FFs UB” model.

Results on New Models

In this part, “GB-FFs GAFF”, “GB-FFs Morse” and “GB-FFs UB” are all trained using

the same loss function. The key distinction lies in their utilization of different functional

forms. The overall performance are listed in Table S6.

Table S6: The RMSE of GB-FFs Morse model and GB-FFs UB model on different databases.

SPICE DES370K S66×8 Torsion Scan

Energy
(Kcal/mol)

Force
(Kcal/mol/Å)

Charge
(C)

Energy
(Kcal/mol)

Charge
(C)

Energy
(Kcal/mol)

Energy
(Kcal/mol)

GAFF 5.7804 13.4398 - 1.1470 - 1.8388 3.5351
GB-FFs GAFF 2.9706 5.9232 0.0500 1.4146 0.0713 0.8766 1.4843
GB-FFs Morse 2.8812 5.3050 0.0492 1.3884 0.0698 0.8437 1.4190
GB-FFs UB 2.5723 4.1416 0.0491 1.0941 0.0526 0.8028 1.1054

We observed the significant impact of function forms on the performance of FFs. When we

replace the harmonic function with the Morse function to approximate the potential energy

associated with chemical bonds and incorporate UB terms for bending energy, the RMSE of

the potential energy and atomic forces decrease a lot. Therefore, optimizing the FFs requires

not only data-driven approaches such as optimizing NNs structures and extracting atomic

fingerprints but also considering mathematical and chemical perspectives to employ function

forms that better simulate the potential energy and align with the actual conditions.

Compared to the GB-FFs GAFF model, which applies the same functional form as

GAFF, the modified function forms show improved fitting performance, particularly with

the introduction of the UB term.

We only run the hydration free energy calculation for GB-FFs UB model. It has compa-

rable performance to GB-FFs GAFF model. Although the performance of parameters from
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GB-FFs UB have better performance on SPICE, DES370K, S66×8 as well as Torsion Scan

databases, the free energy is not more accurate.

These are preliminary experiments to assess the influence of the function form on FFs.

Moreover, it explores how to assume suitable FF parameters based on existing data in the

absence of reference values. Subsequent work will further research into the suitable functional

forms as well as parameters.

Research on Non-bonded Interactions

In previous sections, we set 1.1*AM1-BCC charge as targets (Function 11) because it allows

model to achieve better performance. In this section, we delve into the potential factors

contributing to this improvement.

We name the model trained by following charge loss function as “GB-FFs GAFF-1.0”

(without any modifications to the functional forms):

MSE(Pcharge) = MSE(GB-FFs charge− AM1-BCC charge) (16)

Charge Comparison

The ANI-1x database contains DFT calculations for approximately five million diverse molec-

ular conformations.91 ANI-1x uses the Minimal Basis Iterative Stockholder partitioning

(MBIS) scheme68 to calculate atomic charges and other properties with the wB97x/def2-

TZVPP functional.

Following processing by Antechamber and RDKit, only 1,347 molecules remained. We

selected the geometry with the lowest potential energy as the equilibrium geometry and

recorded the corresponding MBIS charge as our reference.

In Figure S7, we compared AM1-BCC charges (S7 (a)) with GB-FFs charges (S7 (b) and

(c)) against MBIS charges. The GB-FFs GAFF model in (b) is trained using 1.0*AM1-BCC

charges, while the model in (c) is trained with 1.1*AM1-BCC charges.
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(a) AM1-BCC charge (b) GB-FFs GAFF-1.0 (c) GB-FFs GAFF

Figure S7: Comparison of charges for different models

The results in Figure S7 illustrate that GB-FFs charges exhibit comparable performance

to AM1-BCC charges. However, it’s worth noting that the charges derived from both the GB-

FFs GAFF model and the GB-FFs GAFF-1.0 model do not display significant differences.

VdW Parameters Comparison

Regarding the Van der Waals (VdW) interactions, we conducted a comparison of the VdW

parameters (ε and σ) between the GB-FFs model and the original GAFF using the ANI-1X

database. The model in Figure S8(a) was trained with a reference energy corresponding to

1.0*AM1-BCC charges while the model shown in Figure S8(b) was trained using a reference

energy based on 1.1*AM1-BCC charges.

(a) GB-FFs GAFF-1.0 (b) GB-FFs GAFF

Figure S8: Comparison of VdW parameters for different models
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Our investigation reveals that the modifications made to VdW parameters primarily

focus on the σ value, which represents the Van der Waals radius, while ε remains relatively

consistent. These modifications to the VdW parameters play a significant role in improving

the simulation of intermolecular interactions on the S66×8 database. Unlike the constraints

imposed by atom types, the VdW parameters in the GB-FFs models are directly determined

by atomic representations, enabling a more flexible range of parameter values.

For now, we have to establish a clear connection between the distribution of VdW pa-

rameters and their impact on the overall performance. This should a future exploration.
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