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Abstract

Structure-based methods in drug discovery have become an integral part of the mod-

ern drug discovery process. The power of virtual screening lies in its ability to rapidly

and cost-effectively explore enormous chemical spaces to select promising ligands for

further experimental investigation. Relative Free Energy Perturbation (RFEP) and

similar methods are the gold standard for binding affinity prediction in drug discovery
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hit-to-lead and lead optimization phases, but have high computational cost and the re-

quirement of a structural analog with a known activity. Without a reference molecule

requirement, Absolute FEP (AFEP) has, in theory, better accuracy for hit ID, but

in practice, the slow throughput is not compatible with VS, where fast docking and

unreliable scoring functions are still the standard. Here, we present an integrated work-

flow to virtually screen large and diverse chemical libraries efficiently, combining active

learning with a physics-based scoring function based on a fast absolute free energy

perturbation method. We validated the performance of the approach in the ranking

of structurally related ligands, virtual screening hit rate enrichment, and active learn-

ing chemical space exploration; disclosing the largest reported collection of free energy

simulations to date.

Introduction

In the last decade, the impact of structure-based methods in drug discovery has increased

thanks to improvements in the accuracy of force fields, GPU computing, and machine

learning.1 A prime example of these advances is the development and implementation of

structure-based virtual screening (VS) methods, which have become an integral part of the

modern drug discovery process. The effectiveness of VS lies in its capacity to quickly and

cost-efficiently examine vast chemical landscapes, reducing potential drug candidates from

millions to a more manageable number for subsequent analysis. This capability has pro-

found implications for drug discovery, potentially saving significant amounts of time and

resources.2 Despite its considerable advantages, virtual screening also poses challenges and

limitations, particularly concerning the accuracy of predictions.

One of the biggest limitations of VS is the scoring functions used to predict binding affin-

ity. These scoring functions are often rough approximations and usually do not accurately

predict the true binding energy or correct binding pose.3 They often struggle to balance speed

and accuracy, making it difficult to reduce both false positives and negatives in VS appli-
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cations.4 Additionally, in ligand-based virtual screening, structurally similar compounds are

often assumed to have similar activity. However, minor structural changes can sometimes

lead to significant changes in activity, a phenomenon known as an “activity cliff”, which can

dramatically impact predictive accuracy.5

In that context, binding free energy calculation methods offer a unique advantage in the

field of computer-aided drug design and virtual screening. Binding free energy calculations

can be more accurate than simple docking scores as they consider not just the static inter-

action of the ligand and protein, but also the dynamic changes that occur upon binding,

including conformational changes and solvation effects.6 Leveraging binding free energy cal-

culations that rely on physics-based approaches can facilitate the identification of the most

promising candidates during virtual screening. Furthermore, they can guide the optimiza-

tion of lead compounds, indicating the necessary modifications that might improve binding

affinity.7

Methods like Relative Free Energy Perturbation (RFEP) represent the gold standard for

predicting binding affinity in the hit-to-lead and lead optimization stages of drug discovery.

RFEP is hindered in its application to large libraries due to its high computational cost

and the necessity for a structural analog with known activity, which prevents its use in

hit identification campaigns.8 In theory, Absolute FEP (AFEP), which does not require a

reference molecule, offers improved accuracy for hit identification. However, in practice, its

slow throughput is incompatible with virtual screening, where rapid docking and simple, less

reliable, scoring functions remain the norm9 (See Table 1 for a general speed comparison).

To overcome the computational cost and low throughput that have made the application

of AFEP to virtual screening campaigns infeasible, we make two advancements. First, we

present AQFEP, a novel physics-based function based on a fast absolute free energy pertur-

bation method that shows superior ranking performance when compared to other standard

scoring functions. This advancement allows us to screen tens of thousands of molecules in

a fraction of the time compared to other absolute free energy methods. Second, we com-
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bine this increased in-silico screening throughput with Bayesian optimization algorithms,

to substantially decrease the computational cost of screening the majority of top-scoring

compounds with AQFEP. We analyze various surrogate model architectures and acquisition

functions to evaluate their effectiveness in efficiently screening the most promising ligands

with AQFEP in the context of a virtual screen for drug discovery. We perform these anal-

yses on both straightforward and challenging systems to demonstrate the flexibility of our

approach. Finally, we utilize this workflow on a prospective virtual screen through a 1.17m

compound library for hit-finding on a novel protein target.

Methods

System Preparation and Molecular Docking

The published10 3D coordinates of the cMet protein structure and congeneric ligand set were

downloaded from https://github.com/MCompChem/fep-benchmark/tree/master/cmet. The

3D structure of GLP1R was downloaded from the Protein Data Bank11 (pdb ID 7S15), and

hydrogens were added using the open-source PyMol software12 and visually inspected. The

GLP1R agonist ligands considered in this study,13 were drawn using JSME14 to generate the

SMILES. Using RDKit15 in Knime16 the 3D structures were created, hydrogens added, and

protonation states were generated using in-house rule-based SMIRKS and visually inspected.

The commercially available compound library used in the prospective screen was gener-

ated starting from the MCULE in stock database https://mcule.com/database/, including

more than 5M ligands. The library was deduplicated and filtered in Knime to ensure drug-

like properties, removing reactive groups and unwanted chemical moieties. The resulting

compounds were visually inspected and further curated using Datawarrior.17 We focused in

particular our analysis on ligands at the extreme of the selected range for the different prop-

erties. The final set including 1.177M ligands was prepared for ligand docking as described

above. Part of this library was used for the cMet and GLP1R VS tests. GNINA 1.018 with
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the Vinardo19 scoring function was used for all molecular docking studies.

AQFEP

AQFEP is a physics-based approach to predicting ligand binding affinities that is superior

in accuracy to traditional docking scoring methods. Because it is based on first-principles

statistical mechanics, AQFEP can handle a wide range of situations (e.g. various ligand

charge states, imperfect protein specification, unusual binding geometries) that would be

difficult for traditional scoring functions that are based on fitting to a limited benchmark

dataset. In addition, compared to traditional physics-based methods, AQFEP is significantly

faster and requires less human guidance.

AQFEP uses an absolute free energy perturbation calculation based on the double-

decoupling alchemical protocol (Fig. 1). The double-decoupling approach is considered

the “gold standard” for absolute free energy calculations by ensuring thermodynamic con-

sistency, accurate sampling of the free-energy landscape, and wide applicability to a variety

of different systems. For a more detailed description of this method and its advantages, we

refer the reader to a comprehensive text on the topic.20 By using an absolute free energy

calculation, which directly calculates the binding free energy of the given ligand-protein pair,

the procedure requires much less human guidance than the more typical relative free energy

calculations. RFEP calculates differences in binding free energies between pairs of ligands

and thus requires careful selection of congeneric ligand pairs and specification of the scaffold

relationship between the ligands. While absolute free energy calculations are known for be-

ing difficult to converge and giving inconsistent results unless run for very long simulation

times,21 the AQFEP method is tuned to reduce simulation noise and allows for significantly

reduced simulation time.

In order to achieve the speeds needed for free energy simulations to be applied to VS

workflows we made several adjustments to AQFEP. First, the simulation time per lambda

window was chosen to be shorter than standard free energy perturbation calculations (usually
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Figure 1: Double-decoupling alchemical protocol

5 ns21), in order to evaluate the energy minimum closer to the provided complex conforma-

tion. For the method to perform as a scoring function for a given ligand pose, it must ensure

it is evaluating a thermodynamic state indicative of that pose. In spirit, this is quite different

from attempting to sample the full state space in the hope of calculating the partition func-

tion and measuring the binding free energy of the ligand-protein pair, which would ignore

the given pose of the ligand. In practice, sufficiently sampling the state space for such a

calculation requires far too much simulation time, and running the simulations longer than

is done in AQFEP only allows the ligand to briefly sample conformations too dissimilar from

the proposed pose, significantly increasing the statistical noise. Due to this design choice,

the method is very dependent on the quality of the proposed ligand pose(s) which can impact

ranking performance (cf. Section System Preparation and Molecular Docking). Despite this,

AQFEP performs a rigorous, multi-step alchemical transformation, unlike end-point meth-

ods such as MMGBSA or MMPBSA,22 and is thus significantly more accurate and physically
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realistic than such end-point methods.

Chemical Space Search Strategy

The goal of virtual screening campaigns is to find some set of high-performing compounds

within a large chemical search space. This problem is often solved by exhaustively searching

a chemical library to find the best-scoring compounds according to some scoring function

(e.g. molecular docking or AFEP). However, as virtual libraries grow this approach has

become computationally infeasible. For example, several recent high-throughput docking

campaigns applied to libraries in the hundreds of millions required upwards of 40,000 core

hours.23 Applying RFEP simulations to libraries that are as small as 10,000 molecules can

take upwards of 80,000 GPU hours.24 AFEP methods are 4-10 times slower than RFEP,21

resulting in 320,000-800,000 GPU hours (36.5-91.3 GPU years) for 10,000 ligands.

Bayesian optimization25 is a subset of active learning that helps guide the choice of

experiments based on some surrogate models’ predictions. Formally, we seek to find the set

of top-k molecules (M) from a chemical library (D) that maximizes some black-box objective

function (here AQFEP of a candidate compound):

Top-k scoring molecules x ∈M where M is such that:

argmaxM⊂D:|M |=k

∑
x∈M

f(x) (1)

We begin by first calculating the objective function f(x) on a set of n points. The eval-

uations of this function are stored in the dataset L which contains the labeled observations

(AQFEP score for a given candidate compound). A surrogate model f̂(x) is trained with

this dataset and makes predictions on the remaining unlabeled set of data D′. The model

predictions are passed to an acquisition function α that determines the utility of acquiring

new data points to be labeled. These selected points are then evaluated and added back

into the labeled set L. This process is repeated until some stopping criteria are met. In
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this work, we use a fixed budget size divided into T steps to determine when the algorithm

should stop acquiring labels.

Algorithm 1 Bayesian Optimization

Input: objective function f(x), acquisition function α, surrogate model f̂(x), and some
chemical library D
Select random batch S ⊂ D
Evaluate objective f(x) to generate labels ys for s ∈ S
Initialize L, the labeled set of data (s, ys) for s ∈ S
for t← 1 to T do

Train surrogate model f̂(x) using labeled dataset L
Select new batch St ⊂ D using acquisition function α
Evaluate objective function f(x) on St

Update L with new labeled batch
end for

Acquisition Function

Below we provide brief descriptions of the acquisition functions used in this work. We refer

the reader to other works that describe these acquisition functions in more detail.26

In this work, we evaluated the following acquisition functions:

Random(x) ∼ U(0, 1) (2)

Greedy(x) = µ̂(x) (3)

Greedy is a naive method where the top-scoring molecules ranked by the model are always

selected for evaluation, without taking into account uncertainty.

EpsilonGreedy(x) =


µ̂(x), with probability 1− ϵ

U(0, 1), with probability ϵ

(4)

Epsilon greedy is analogous to the greedy strategy except that it makes a random selection
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from the library with probability ϵ. In experiments, we report, a value of ϵ = 0.1 was used.

UCB(x) = ˆµ(x) + βσ̂(x) (5)

The upper confidence bound acquisition policy is an ‘optimistic’ method that selects molecules

based on their potential to yield optimal values. The utility of acquiring a given molecule is

calculated by summing the predicted mean value with its predicted standard deviation. It

attempts to balance exploration and exploitation by enabling molecules to be selected that

have moderate mean predicted scores but large standard deviations. The β parameter can

be adjusted to more heavily weight the standard deviation term. In the experiments we

report, a value of β = 2 was used.

PI(x) =


Φ(z), σ̂(x) > 0

1, σ̂(x) = 0 and γ(x) > 0

0, σ̂(x) = 0 and γ(x) <= 0

(6)

The probability of improvement acquisition policy aims to select the molecule that has the

highest probability of improving upon the currently identified best score. The PI score for

a molecule is computed utilizing the standard deviation associated with that molecule to

compute the amount of probability mass that molecule has above the current best solution.

It is important to note that PI does not consider the magnitude of the improvement.

EI(x) =


γ(x)Φ(z) + σ̂(x)ϕ(z), σ̂ > 0

γ(x), σ̂ = 0

(7)

The expected improvement policy is analogous to the PI policy but considers the magnitude

of the improvement. The value is computed for a molecule by calculating the expected value

of the probability density that the molecule has above the current best solution. The EI
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method can be augmented with a parameter that can encourage more exploration.

For PI and EI: γ(x) := µ̂(x)− f∗ + ξ; z(x) := γ(x)
σ̂(x)

; µ̂(x) and σ̂2 are the surrogate models

predicted mean and uncertainties for point x, respectively. Φ and ϕ are the CDF and PDF

of the standard normal distribution and f∗ is the current maximum objective function value.

In experiments we report using EI and PI, we use a value of ξ = 0.01.

Surrogate Models

Random Forest

Random forest regression is an ensemble learning technique that utilizes a set of decision

trees. Each individual tree is fit with a random subset of the training features and observa-

tions in an attempt to de-correlate the trees.27 During inference, uncertainty estimates can

be derived by examining the mean value of the ensemble of trees and the variance of the pre-

dictions from the ensemble. Chemical libraries were featurized with molecular fingerprints.

There are a variety of molecular fingerprints that differ in their specific implementations,

however, they all can be broadly understood as representing the presence or absence of a

specific sub-structure within a molecule into a vector of fixed length. In this work, we utilized

the Morgan Fingerprint with a bit length of 2048 and a radius of 3. The RF surrogate used

was fit with n estimators = 100, max depth = 8.

D-MPNN

In this work, we utilized the directed message-passing neural network (D-MPNN) imple-

mented by.28 MPNNs treat the molecule as a connected graph and construct a feature vec-

tor for that graph, de-novo. This is in contrast to fixed fingerprints which do not have the

flexibility to adjust their embeddings. Broadly, MPNNs operate in two stages, the message-

passing phase and the readout phase. In the message-passing phase, “messages” are passed

between atoms and/or bonds and their direct neighbors, and incoming messages are used

to update the “hidden state” of each atom and/or bond. The message passing phase is
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repeated over multiple (e.g., 3) iterations, at which point the hidden states of each atom

are aggregated (e.g., summed) to produce a molecule-level feature vector. By training this

model at the same time as an FFNN operating on the feature vector, MPNNs are able to

learn a task-specific representation of an input molecular graph. For more details on the

D-MPNN model and the specific implementation of this architecture, we refer the reader

to.28

The message-passing neural network used here utilized standard settings from the molecule

model class in the Chemprop library:28 messages passed on directed bonds, messages sub-

jected to ReLU activation, a learned encoded representation of dimension 300, and the output

of the message passing phase fully connected to an output layer of size 1. The model was

trained using the Adam optimization algorithm, a Noam learning rate scheduler (initial,

maximum, and final learning rates of 0.1, 0.001, and 0.0001, respectively), and a root-mean-

squared error loss function over 50 epochs with a batch size of 50. For more details on the

Noam learning rate scheduler, see.29 The model was trained with early stopping tracking

the validation score using a patience value of 10. When uncertainty values were needed for

metric function calculation, an MVE model based on the work done by30 was used. This

model featured an output size of two and was trained using the loss function defined by Nix

and Weigend.31

GraphDock

The D-MPNN model presented in the previous section fundamentally utilizes only 2D infor-

mation about the molecule in question. Moreover, by design, it does not utilize information

about the 3D conformation of the molecule, nor the interactions of the molecule with the pro-

tein. In this work, we implement a 3D graph neural network, similar to the PointVS model

described in32(Fig. 2). This model is an E(n) equivariant graph neural network model, that

operates on the 3D protein-ligand complex. The E(n) GNN has demonstrated state-of-the-

art performance in regression and classification of chemical datasets33 while avoiding the use
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of computationally expensive spherical harmonics. The model is capable of exploiting the

symmetries in the protein-ligand complex without the need for augmenting the dataset with

translations, rotations, and reflections, as is required for non-equivariant networks such as

3D convolutional neural networks.34

We make several adjustments to our model to make it more effective for small datasets

and easier to use in Bayesian optimization algorithms where prediction uncertainties are

needed. Specifically, GraphDock is composed of 5 layers of E(3)GNN, with 100 hidden

dimensions, and the same parameters for chemical prediction tasks specified in.33 Node and

edge representations first pass through separate feed-forward neural networks, each with

hidden dimensions 32. The output graph is pooled to give an embedding with 64 dimensions

(See figure 2).

In the PointVS paper, the authors use 48 EGNN layers, we reduce the number to 5

layers in this work to reduce computational complexity and improve training time.32 This

is possible since we are avoiding the pretraining step on a different dataset requiring more

flexibility in the model. In addition, we append a single Bayesian linear layer, with a Gaussian

prior, for use in regression tasks and in order to save computational costs associated with

estimating uncertainty from the model.35,36 Protein-ligand graphs were constructed using

the same protein and ligand conformation as used for AQFEP scoring. In addition, edges in

the protein-ligand graph were generated using a 3Å cutoff distance. This cutoff was selected

because it approximates inter-molecular interactions such as hydrogen bonding within the

complex. The connected protein-ligand complex is then truncated to only atoms within 3

nearest-neighbor connections to the ligand atoms. The graph featurization step utilizes the

same feature set as used in the Chemprop library,28 in addition to the 3D coordinates, and

the identity of a node (atom in protein or in ligand). This was done to ensure that the

addition of features related to the protein and 3D information improved model performance.

The GraphDock model was trained using the Adam optimization algorithm with a batch size

of 64 and a fixed learning rate of 5e-4 for 500 epochs. Early stopping was used to prevent
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Figure 2: The GraphDock architecture. EGNN take 3 inputs: positions, node embeddings,
and edge embeddings. If there are n atoms in an input structure, the position tensor is an n
× 3 tensor containing the x, y, and z coordinates of each atom. Edges in the protein-ligand
graph are generated using a 3Å cutoff distance. Nodes that fall outside of this 3Å radius are
ignored. The protein-ligand graph is then further truncated to include only atoms within 3
nearest-neighbor connections to the ligand atoms in order to reduce the complexity of the
graph.

over-fitting with a patience of 50.

Comparison to Other Methods

To evaluate different surrogate models’ performance, we compared two commonly used search

strategies: random search and top dockers. In this case, random search is indicative of an

exhaustive search strategy where every compound has an equal probability of being eval-

uated. In addition, we also evaluated the performance of selecting compounds based on

their docking scores (Top Dockers) obtained from the GNINA docking software with the

Vinardo scoring function. This is a useful comparison because many VS campaigns use the

top-docking compounds from a primary screen to select which compounds to empirically val-

idate or perform additional high-fidelity simulations on.23 Due to computational limitations,

we did not re-dock the compounds with different random seeds and in the figures reported

in the paper, there are no error bars reported for this condition.

Evaluation Metrics

The active learning strategy was evaluated in several different ways. For prospective searches,

we use the median top-k AQFEP score identified (lower is better), as well as the number of

molecules identified that have AQFEP scores below -20 kcal/mol. For retrospective searches,
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we use the fraction of top-k SMILES identified in a pre-computed library and the number

of times a specific active-learning workflow found a known active compound (hit rate).

Results and Discussion

AQFEP Ranking Performance and Speed Comparison

In order to evaluate the effectiveness of AQFEP applied to VS workflows, we tested the

accuracy of AQFEP on the cMet protein kinase using two common applications of interest

for drug discovery: 1) evaluation of the free energy of binding on a set of congeneric ligands;

2) application to virtual screening. In addition, we also performed general speed comparisons

between commonly used methods in structure-based virtual screening.

Speed Comparison

To increase the ligand throughput of AQFEP, so that it could be used within a VS work-

flow, several changes were implemented in AQFEP. Most notably, the MD simulation time

for each lambda window was chosen to be shorter than standard free energy perturbation

calculations. This adjustment allows AQFEP to be used at a throughput much higher than

traditional free energy perturbation methods, allowing the virtual screening of libraries of

tens of thousands of ligands. For instance, using 20k NVIDIA T4 GPUs, AQFEP can reach

10-20k ligands profiled per hour (Table 1). However, this design choice causes the method to

be very dependent on the quality of the proposed ligand pose(s) which can impact ranking

performance. In the sections that follow, we highlight this effect and show its impact on

downstream scoring with AQFEP.

Congeneric ligand test

RFEP is the state-of-the-art approach for evaluating the difference in free energy of binding

of related ligands, and a large number of benchmark sets are available in the literature.37 It
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Table 1: General computational time comparison

Method Time per ligand
on 1 T4 GPU

Congeneric ligand
required

Docking seconds/minutes No
MMGBSA minutes/hours No
AQFEP 1-2 hours No
RFEP 1-2 days Yes
AFEP 1 week No

is commonly used in industry in hit-to-lead and lead-optimization. AQFEP is attractive for

these applications due to its superior speed (Table 1) and the larger applicability domain.

RFEP is known to be challenging for large perturbations, changes affecting opposite regions

of the molecule simultaneously, charge perturbations, large scaffold changes, and pertur-

bations affecting a linker region in the molecule.38 AQFEP can be used in all those cases

and it does not require an expert user to carefully superimpose the ligand to the reference

compound. When evaluating performance on the cMet benchmark set,10 we find promising

ranking performance(Fig. 3), that is close to FEP+, but at a fraction of the computational

cost. The results show clear improvements compared to MMGBSA, or molecular docking

(Glide and GNINA/Vinardo).

Since AQFEP’s MD simulation time is limited for each lambda window to maximize

speed, the final prediction will be strongly influenced by the energy minimum closest to the

starting conformation. If the starting conformation is far from the physically most important

energy well, it is questionable if MD, even with enhanced sampling, will be the best approach

to identify the correct lowest energy configuration. To quantify the impact of incorrect ligand

conformation on downstream affinity predictions using AQFEP, we re-scored the top 10

poses generated from GNINA/Vinardo in the cMet benchmark described above. Re-scoring

with AQFEP the second and third top poses from GNINA/Vinardo (Fig. 3) improved the

ranking performance of our method. Considering additional poses beyond 3 did not result in

large changes in the ranking performance of the method. For this particular case, using the

Vinardo top-scoring pose for each ligand in AQFEP resulted in better performance compared
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Figure 3: Comparison of the predicted vs experimental free energy of binding for FEP+10

(top left), Prime MMGBSA10 (top center), and AQFEP (top right). The effect of binding
pose prediction on AQFEP is shown in the bottom left plot. The X-axis includes the number
of top poses from GNINA/Vinardo scoring function profiled with AQFEP for each ligand.
On the Y-axis is reported the corresponding R2 and Spearman (Rho) correlation based on
the best AQFEP scoring poses. Pose 0 corresponds to the ligand position from simple ligand
alignment available from.10 The bottom right plot includes the comparison of the correlation
and ranking performance of AQFEP compared to other commonly used methods. Glide
R2=0.002 is close to the X-axis and therefore not visible in the plot.

to re-scoring ligand positions generated from ligand alignment (shown as pose 0 in the plot

in Fig. 3).

VS enrichment test

We created a realistic VS test set including 1 active ligand for every 54000 commercially

available drug-like compounds. The 5 low micromolar inhibitors of cMet were selected from

the previously discussed congeneric series test set.10 For this evaluation we used a classical

funnel approach, selecting the top 1000 ligands from molecular docking for AQFEP rescoring.
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Figure 4: Ranking performance on cMet enrichment test set with 5 known actives. En-
richment using a standard docking workflow performs well and is improved further using
AQFEP.

Protein kinases are known to be ideal cases for molecular docking and the Vinardo scoring

function was able to rank the 5 ligands in the top 1k compounds (Fig. 4). Rescoring with

AQFEP identified 2 actives among the top 10 compounds and all 5 active ligands in the

top 50 (Table 2). This analysis showed a clear advantage for AQFEP in early enrichment

ranking performance when compared to Vinardo.

Table 2: Ranking performance of the 5 active ligands for AQFEP vs. Docking using Vinardo

Ligand IC50 (µM) Vinardo Rank AQFEP Rank
CHEMBL3402751 2.1 550 13
CHEMBL3402747 3.4 53 20
CHEMBL3402755 4.2 9 7
CHEMBL3402748 5.3 124 9
CHEMBL3402752 30 870 49
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ML Driven Chemical Space Exploration Maximizes Efficiency and

Hit Rate

Retrospective Test - GLP1R

Despite large improvements in computational efficiency, AQFEP in practice is still too slow

to be applied to the ultra-large virtual screens that have now become the norm. For ex-

ample, ZINC, a popular open-source database of commercially available compounds, now

has close to 30 billion entries.39 These libraries are challenging to screen against even with

standard structure-based drug design tools (e.g. docking) and were previously thought to be

unattainable for free energy calculations. Search optimization strategies exist to efficiently

search through chemical libraries for compounds that have desirable properties, such as ac-

tive learning or Bayesian Optimization (BO). However, due to the computational cost of free

energy methods, generating sufficiently large quantities of data needed to train models that

are broadly generalizable to vast chemical space is not possible. Bayesian optimization and

active learning have been previously applied to virtual screening campaigns using molecu-

lar docking e.g.40,41 and RFEP,8,24 but to our knowledge, we disclose its application to the

largest set of AFEP calculations to date.

To mitigate the impact of growing library size, we employ a Bayesian optimization strat-

egy to perform a model-guided search and seek to find a set of top-k molecules that optimize

some criteria with the fewest number of black-box function calls. In this study, the black

box function is AQFEP and we seek to find a set of top-k molecules that have the lowest

binding affinity as measured with this function.

During each iteration of optimization, newly evaluated compounds are appended to the

training set and used to train a surrogate model. Here, we define our surrogate as some

supervised machine learning model trained with labels generated from AQFEP simulations

and use these surrogate model’s predictions to guide the acquisition of AQFEP labels. The

mean and variance of the model outputs are used to calculate the acquisition function and
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define the utility of acquiring labels for compounds in the next batch (see Methods - Chemical

Space Search Strategy).

We tested this approach on the GLP1R receptor, a challenging Family B GPCR mem-

brane protein related to type 2 diabetes.42 We included two weak agonists as actives13 in a

library of more than 12,000 commercially available ligands with drug-like properties. As an

initial evaluation to demonstrate how AQFEP and Bayesian optimization algorithms can be

used together, we generated a dataset of 12,720 AQFEP scores screened against GLP1R. As

mentioned previously, we also included in this library 2 known active molecules to evaluate

the ability of our method to screen known actives in the presence of a large number of decoys.

Data acquisition was simulated with an initial random 2% selection followed by sequential

2% acquisitions for 5 iterations totaling a 12% total library screen. We test several surro-

gate models that are typically used in Bayesian optimization strategies including Random

Forest (RF) with Morgan fingerprints and D-MPNN.28 In addition, we also compare these

to a 3D Graph Neural Network architecture (GraphDock) (2). To quantify the advantages

of model-guided search, we benchmarked our approach against random search, indicative of

an exhaustive search through the library, and the top-scoring compounds from the docking

program GNINA using the Vinardo scoring function (see Methods).

Bayesian optimization using any of the surrogate models tested, yields clear improve-

ments over other heuristic search algorithms. Random Forest operating on molecular fin-

gerprints showed similar performance across acquisition functions in the top-k task with EI,

Greedy, and ϵ-greedy all performing similarly (Fig. 5 and Table 3). The greedy strategy per-

forms best, which finds (253.2 ± 13.5) of the top-performing compounds. A similar pattern

emerges when examining the D-MPNN surrogate with both greedy strategies performing

best (Greedy: 267.5 ± 5.0; ϵ-greedy: 259.6 ± 11.2). The GraphDock model performed the

best in the top-k task where greedy strategies perform best, with UCB finding 322.0 ± 7.3

of the top-k. Surprisingly, docking performs only marginally better than random search on

the GLP1R benchmark, with top dockers finding 73 and random finding 58.6 ± 5.95 of the
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Figure 5: Bayesian optimization performance on GLP1R retrospective test as measured by
the number of top 500 scores found as a function of total compounds evaluated. Each trace
represents the performance of a given surrogate with a specific acquisition function. Each
experiment began with 2% random selection followed by 5 iterations of 2%, for a total of
12% (1530 compounds). The total library size was 12,720. Error bars reflect ± one standard
deviation across 10 runs.

top-k in this library.

An alternative way of understanding the performance of the surrogate model is to calcu-

late the number of times each screening workflow identified one of the known actives placed

within this library (Fig 6 and Table 4). The random forest model utilizing Morgan finger-

prints performed remarkably well with the ϵ-greedy acquisition function having an average

hit rate of 0.12 ± 0.04. When using the D-MPNN as a surrogate, two different greedy

acquisition functions were found both known actives in 10/10 runs (max hit rate is 0.13%

2/1530). Interestingly, while GraphDock performed quite well in the top-k task, this model’s

hit rate was low when compared to other surrogates, with the greedy acquisition function

having an average hit rate of 0.08 ± 0.03. This effect may be due to the structural similarity

of the two active compounds helping a 2D approach (D-MPNN and RF) to identify both

simultaneously. In contrast, GraphDock, is affected by the quality of the docked poses used

to train the model. To further investigate, we examined the individual poses of the known

actives that were generated with GNINA/Vinardo. We found that one of the two active

compounds had a predicted pose that was quite different from the X-ray conformation of

related agonist compounds. In addition, AQFEP scores for the active compounds in this

library had relatively low ranks and both active compounds did not place in the top 500 in

the precomputed library of 12,720 (Active 1 FEP Rank=1102, Active 2 FEP Rank=1737).
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Table 3: Average top-k performance on GLP1R retrospective test with a 2% acquisition size
as measured by the average number (n) of top smiles evaluated in the pre-computed library
across 10 experiment runs. Bolded numbers indicate the best-performing method within
each surrogate model.

surrogate acq mean std
ei 242.8 19.7

epsgreedy 314.0 5.9
gdock greedy 310.6 8.2

pi 234.6 18.5
ucb 322.0 7.3
ei 247.0 5.0

epsgreedy 259.6 11.2
mpn greedy 267.5 5.0

pi 209.7 27.4
ucb 242.7 10.0
ei 239.3 16.9

epsgreedy 248.6 9.8
rf greedy 253.2 13.5

pi 202.7 35.0
ucb 213.4 10.1

top dockers top dockers 73.0 NA
random random 58.6 5.9
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Figure 6: Bayesian optimization performance on GLP1R retrospective test as measured
by the average hit rate across 10 runs. Each bar represents the performance of a given
surrogate with a specific acquisition function and indicates how often a given surrogate-
acquisition pairing can find both known actives in the library. The red dashed line indicates
the theoretical max performance (e.g. finding both actives in all 10 runs). The red dashed
line is 0.13% (2/1530). Error bars reflect ± one standard deviation across 10 runs.

It is likely that this wrong pose, combined with relatively low AQFEP scores for the actives,

hampered the ability of GraphDock to identify this active ligand. Finally, both random

search and docking fail to screen any known active ligands.

Prospective Test - Novel Protein Target

We next turned to evaluate the effectiveness of this workflow applied to a prospective search

in a much larger chemical space. Here, we screened a 1.17m compound library of commer-

cially available compounds (MCULE) against a novel protein target. In this experiment,

we performed two internal controls to show that our method was intelligently sampling the

chemical space. First, we randomly selected 10,000 compounds to evaluate the number of

compounds that have low AQFEP scores. Second, we docked the entire library (1.17m) with

GNINA and selected 10,000 compounds with the lowest (best) docking scores. From here we

can establish a baseline on how conventional heuristic selection strategies score with AQFEP.

To ensure the highest quality labels for our algorithm, we removed AQFEP scores from this

set if the simulation had a convergence error of greater than 1 kcal/mol. This resulted in

7,542 and 8,930 ligands in the Random and Top Dockers selection respectively.

We used this heterogeneous sample (random selection plus top-dockers) to serve as our
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Table 4: Average hit-rate performance on GLP1R retrospective test

surrogate acq mean std
theoretical max NA 0.130 NA

ei 0.013 0.028
epsgreedy 0.072 0.021

gdock greedy 0.079 0.028
pi 0.020 0.032
ucb 0.060 0.021
ei 0.124 0.021

epsgreedy 0.124 0.021
mpn greedy 0.130 0.000

pi 0.098 0.046
ucb 0.130 0.000
ei 0.111 0.044

epsgreedy 0.118 0.041
rf greedy 0.092 0.063

pi 0.072 0.057
ucb 0.107 0.044

top dockers top dockers 0.000 NA
random random 0.000 0.000

initial seed set of labeled data in our active learning workflow. We performed 3 iterations of

active learning with a 10,000 compound acquisition size. In each iteration, we also examined

the convergence error for our AQFEP scores, and scores with greater than 1 kcal/mol error

were removed. This resulted in 6,792, 3,317, and 3,527 compounds profiled in tranches 3

through 5 respectively. In total, we performed 30,108 free energy simulations throughout our

active learning workflow, representing the largest reported free energy screens to date. We

can understand how well our active learning strategy is performing by looking for changes

in the median AQ-FEP score across iterations. If our algorithm is performing as intended,

we should see the median AQ-FEP score decrease across active learning iterations. Utilizing

a D-MPNN surrogate, with a greedy acquisition function, we can see in Figure 7, that

across iterations, model-guided selection selects consistently lower-scoring compounds across

iterations, and is substantially better than both internal controls. Based on the analysis of the

AQFEP free energy of binding distribution for the random sample we defined a promising

ligand to have a predicted score of -20 kcal/mol. The number of such promising ligands
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Figure 7: Model guided search results in profiling of compounds with better (lower) AQ-
FEP scores across tranches against a novel protein target. In total 30,108 compounds were
profiled which is comprised of 7,542 compounds from Random selection, 8,930 from Top
Dockers selection, and 13,636 selected by a greedy D-MPNN surrogate model.

identified in each iteration (Table 5) showcases the efficiency of the proposed method.

Table 5: Number of ligands with low AQ-FEP scores across tranches

Search Strategy Number of Ligands identified with AQFEP<-20 kcal/mol
Random 16

Top Dockers 46
Tranche 3 (D-MPNN) 305
Tranche 4 (D-MPNN) 351
Tranche 5 (D-MPNN) 267
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Conclusion

In this work, we describe AQFEP, a physics-based approach to evaluating the free energy of

binding for diverse ligands to protein targets that is superior to molecular docking scoring

functions in predicting ligand binding free energy. It balances speed and ligand ranking

accuracy. The speed of AQFEP enables the virtual screening of libraries of tens of thousands

of ligands at unprecedented accuracy in a target-independent way. Compared to RFEP,

AQFEP does not require a similar compound with known activity, it can be used to score a

pose directly after docking without the need for careful alignment to a congeneric compound.

It is significantly faster, with one ligand typically taking 1-2 hours on one Nvidia T4 GPU,

approximately 10 times faster than RFEP and 40-70 times faster than other AFEP solutions

on comparable hardware.

Most importantly, the speed of AQFEP also enables the generation of high-quality labeled

datasets large enough for the training of a variety of supervised machine learning models.

These models achieve speeds comparable to standard docking scoring functions. A pose-

dependent 3D-EGNN using AQFEP labels can be used as a surrogate model in a Bayesian

optimization framework enabling efficient search through libraries of millions of ligands. This

potentially reduces the need for profiling additional ligands with AQFEP to only those that

are structurally novel.

This ML-guided search of chemical space using AQFEP as an objective function shows

improvements in both hit rate and percent of top compounds screened when compared to

random and other heuristic search algorithms (top dockers). Across Bayesian optimization

iterations in a prospective search, a greedy D-MPNN surrogate model selects lower-scoring

compounds than other selection strategies (top dockers and random search).

Together, this work demonstrates the effectiveness of the unification of a fast and accurate

physics-based scoring function with BO algorithms to unlock the capability to perform large

virtual screens using free energy calculations.

25

https://doi.org/10.26434/chemrxiv-2023-z3t3b ORCID: https://orcid.org/0000-0002-1631-6363 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-z3t3b
https://orcid.org/0000-0002-1631-6363
https://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgement

The authors thank Mary Pitman, Lauren Winkler, Adam Lewis, Atashi Basu, Martin

Ganahl, Brenda Miao, Dan Zhao, and Emilio Gallicchio for constructive discussion about

this work.

References

(1) Wu, K.; Karapetyan, E.; Schloss, J.; Vadgama, J.; Wu, Y. Advancements in small

molecule drug design: A structural perspective. Drug Discovery Today 2023, 103730.
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