
1 

 

One chiral fingerprint to find them all 
 

Markus Orsi,a and Jean-Louis Reymonda* 

a) Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 

Freiestrasse 3, 3012 Bern, Switzerland  

e-mail: jean-louis.reymond@unibe.ch 

 

 

 

Abstract 

 

Background: Molecular fingerprints are indispensable tools in cheminformatics. However, 

stereochemistry is generally not considered, which is problematic for large molecules which are 

almost all chiral.  

Results: Herein we report MAP4C, a chiral version of our previously reported fingerprint MAP4, 

which lists MinHashes computed from character strings containing the SMILES of all pairs of 

circular substructures up to a diameter of four bonds and the shortest topological distance between 

their central atoms. MAP4C includes the Cahn-Ingold-Prelog (CIP) annotation (R, S, r or s) 

whenever the chiral atom is the center of a circular substructure, a question mark for undefined 

stereocenters, and double bond cis-trans information if specified. MAP4C performs as good as the 

achiral MAP4, ECFP and AP fingerprints in non-stereoselective virtual screening benchmarks. 

Furthermore, it readily distinguishes between thousands of stereoisomers in complex natural 

products and peptides.   

Conclusion: MAP4C is recommended as a generally applicable chiral molecular fingerprint.    
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Introduction 

Many computational tasks related to small molecule drug discovery, such as similarity searches,1,2 

target prediction,3–7 ligand-based virtual screening8 and visualization of large databases of drug-like 

molecules,9–18 can be performed using vectors encoding molecular structure, called molecular 

fingerprints.19,20 Remarkably, molecular fingerprints work quite well to classify and compare 

bioactive molecules without considering stereochemical information, which is somewhat surprising 

considering that biological matter is essentially chiral and stereo-defined at the molecular level,21–23 

but also reflects the fact one only rarely needs to distinguish between different stereoisomers of 

small molecule drugs, in part simply because many drug-like compounds are achiral. 

In the context of developing computational tools for new modalities including beyond-Ro5 

molecules,24,25 in our case for peptides with variable chain topology and stereochemistry,26–28 we 

have adapted molecular fingerprints based on atom-pairs29–32 for large molecules such as peptides 

and proteins.33–35 In particular, we combined atom-pair analysis and circular substructures as 

encoded the Morgan fingerprint ECFP4,36,37 with the principle of data compression using 

MinHashing,38–41 to design MAP4, a MinHashed Atom-Pair fingerprint. MAP4 encodes all possible 

pairs of circular substructures up to a diameter of four bonds in a molecule.42 These pairs are written 

in the form of two canonicalized SMILES43,44 separated by the shortest topological distance, 

counted in bonds, between the corresponding pair of central atoms. Remarkably, MAP4 

distinguishes molecular structures across different compound classes spanning from small 

molecules to natural products, peptides and the metabolome, for which other fingerprints such as 

the classical Morgan (ECFP4)37 and Atom Pair (AP)29 fingerprints fall short. In addition, MAP4 

outperforms these and many other fingerprints in virtual screening benchmarks for both small 

molecule drugs20 and peptides.42  

Similarly to commonly used molecular fingerprints however, MAP4 does not include 

stereochemistry (cis-trans double bonds, enantiomers and diastereomers), which is clearly an 

omission considering that most molecules beyond Ro5, such as diverse natural products and 
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synthetic compounds in the public databases ChEMBL,45 COCONUT,46 and ZINC,47 are chiral 

(Figure 1a). To correct this omission and enable the cheminformatic analysis of compounds with 

multiple chiral centers such as carbohydrates and peptides, we now report MAP4C, an improved 

version of the MAP4 fingerprint. MAP4C includes the description of chiral centers following the 

Cahn-Ingold-Prelog (CIP) nomenclature in a fraction of molecular shingles (Figure 1b/c), as well 

as double bond stereochemistry.  

 

Figure 1: Molecular chirality and fingerprints. (a) Correlation between chirality and heavy atom count 

(HAC) across ChEMBL, COCONUT, and ZINC datasets. The blue line depicts the percentage of chiral 

molecules relative to HAC. A steady increase in the percentage of chiral molecules is observed with 

increasing HAC. The yellow line represents the total count of molecules corresponding to each HAC. 

(b) Chiral shingle generation concept exemplified on a selected atom pair of polymyxin B2. The generated 

shingle corresponds to the pair of circular substructures (blue) separated by the shortest topological distance 

(red) of their central atoms. Whenever the central atom of a substructure is chiral, the atom symbol in the 

substructure SMILES is replaced by the Cahn-Ingold-Prelog (CIP) descriptor (R, S, r, or s), or by a question 

mark (?) if the stereochemistry is not defined, bracketed by two “$” characters (yellow). (c) Percentage of 

molecular shingles containing chiral information vs. percentage of chiral atoms in the molecule for MAP4C 

(largest diameter of four bonds). These percentages were computed using a dataset of chiral molecules 

uniformly sampled from the Riniker & Landrum benchmark. The high r2 and Pearson correlation coefficients 

underscore a strong association between the two variables. 
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Methods 

Fingerprint design 

The chiral version of the MinHashed Atom-Pair fingerprint (MAPC) was implemented in Python 

using RDKit following these steps:  

1. At every non-hydrogen atom, extract all circular substructures up to the specified maximum 

radius as isomeric, canonical SMILES. Isomeric information (“@” and “@@” characters) is 

manually removed from the extracted SMILES, while the implicit E/Z-isomerism (“/”, and 

“\” characters) are maintained. Allene chirality and conformational chirality such as in 

biaryls or in helicenes are not considered, as they cannot be specified in the SMILES 

notation. Radius 0 is skipped.  

2. At the specified maximum radius, whenever the central atom of a circular substructure is 

chiral, replace the first atom symbol in the extracted SMILES with its Cahn-Ingold-Prelog 

(CIP) descriptor bracketed by two “$” characters ($CIP$). The CIP descriptor of the chiral 

atom is defined on the entire molecule, not on the extracted substructure.   

3. At each radius, generate shingles for all possible pairs of extracted substructures. Each 

shingle contains two substructures and their topological distance in following format: 

“substructure 1 | topological distance | substructure 2”. 

4. MinHash the list of shingles to obtain a fixed sized vector. The MinHashing procedure is 

explained in detail in our previous publication.38,42 

Benchmark 

The virtual screening performance of the MAPC fingerprint was evaluated in a comparative study 

with commonly used fingerprints (ECFP4,37 ECFP6,37 Atom-Pair29) in a benchmark adapted from 

Riniker and Landrum.20 Since the structure SMILES in the original benchmark do not contain any 
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stereochemistry, the respective chiral SMILES (when applicable) were retrieved from the DUD,48 

MUV49 and ChEMBL45 databases using the provided compound IDs.  

Additional 60 peptide sets were included in the benchmark to test the performances of the 

fingerprints for large biomolecules. For each of 30 random linear sequences, a set containing 10,000 

single-point mutants and a set containing 10,000 scrambled versions of the random sequence were 

generated and BLAST analogues labelled as actives. The precise generation procedure of the 

peptide datasets is described in our previous publication.42 

For every set, 5 randomly selected actives were extracted and stored in a separate file. Each 

of the selected actives was used as a query to rank the remaining compounds in the set based on 

fingerprint similarity (Jaccard similarity for MinHashed fingerprints; Dice similarity for folded 

fingerprints). AUC, EF1, EF5, BEDROC20, BEDROC100, RIE20 and RIE100 metrics were 

calculated for the obtained ranked lists and averaged along the 5 queries for every set in the 

benchmark. Additionally, the fingerprints were ranked based on the obtained performance metrics 

and finally the average rank of each fingerprint determined for all metrics.  

Stereoisomers, isomers and scrambled sequences 

We enumerated all possible stereoisomers of molecules 1 – 14 (Figure 1c and Figure 4) by 

generating all possible isomeric SMILES combinations, canonicalizing them, and removing 

duplicates. We additionally enumerated all possible permutations of ln65 (7) and polymyxin B2 (1) 

sequences, obtaining a total of 330 and 1,512 scrambled sequences respectively. Structural isomers 

of 1,4-diaminocyclohexane (15) and aminopiperazine (16) were extracted from GDB-13 using the 

MQN-browser.50,51 The extracted sets contained 203 structural isomers of 15, of which 156 

contained one or more stereocenters and 48 structural isomers of 16, of which 29 contained one or 

more stereocenters. For each structural isomer, all possible stereoisomers were generated using the 
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RDKit “EnumerateStereoisomers” function, yelding 746 unique structures for 15 and 126 for 16. 

For all stereoisomers and permutations, fingerprints were calculated as 2048-bit vectors.  

TMAP 

The indices obtained from the MAP4C calculation were used to create a locality-sensitive hashing 

(LSH) forest of 32 trees. For each molecular structure, the 500 approximate nearest neighbors in the 

MAP4C feature space were extracted from the LSH forest and used to calculate the TMAP layout.16 

The resulting layout was displayed in an interactive TMAP using the open-source Faerun package.15  

 

Results and Discussion 

Encoding stereochemistry in MAP fingerprints 

The MAP (MinHashed Atom-Pair) fingerprint of a molecule consists in a series of MinHashes 

computed from the list of its molecular shingles.38–41 A molecular shingle is written for each 

possible pair of circular substructures of a given diameter (2 bonds for MAP2, 4 bonds for MAP4, 6 

bonds for MAP6), written as canonicalized SMILES, separated by the shortest topological distance 

separating the central atoms, counted in bonds.42 We preserve the Z/E double bond information in 

all shingles whenever the entire double bond is included in a shingle. To encode stereocenter 

information into our fingerprints, we label chiral atoms with their Cahn–Ingold–Prelog (CIP) 

descriptor (R, S, r or s), as computed by RDKit, whenever stereochemistry is defined, or label them 

with a question mark (“?”) if stereochemistry is not specified. Importantly, we only apply the chiral 

label when a chiral atom is the central atom of a circular substructure and only for shingles with the 

largest diameter considered. The concept is illustrated for one of the possible pairs involving the 

stereocenter in polymyxin B2 (1, Figure 1b).  

When applied to a dataset of chiral molecules uniformly sampled from the Riniker and 

Landrum benchmark (Figure S1),20 we find that the percentage of molecular shingles containing 
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chiral information is approximately the same as the percentage of chiral atoms in a molecule for 

MAP2C (largest diameter of two bonds, Figure S2a), MAP4C (largest diameter of four bonds, 

Figure 1c) and MAP6C (largest diameter of six bonds, Figure S2b). Most importantly, chiral 

information only appears in a relatively small fraction of all possible shingles, such that any defined 

stereoisomer of a molecule has a relatively high similarity to the molecule without assigned 

stereochemistry, for which the MAPC fingerprint is identical to the MAP fingerprint.  

Virtual Screening Benchmark 

The relevance of any molecular fingerprint for drug discovery can be tested by attempting to 

retrieve known bioactive compounds for a given target by nearest-neighbor searches from one of 

the known active compounds in a dataset in which the known actives have been mixed with so-

called decoys. These decoys are molecules selected randomly from databases to have similar 

physico-chemical properties as the actives, but which are not documented to be active on the target. 

Here we tested MAP4C with the reference benchmarking dataset of Riniker and Landrum for small 

molecule drugs,20 which considers 118 active and decoy datasets taken from DUD,48 MUV,49 and 

ChEMBL.45 For larger molecules, we used our previously reported set of 60 different randomly 

chosen 10-, 15- and 20-mer peptides mixed with either random single point mutants (30 sets), or 

sequence scrambled analog (30 sets),42 for which we challenge the fingerprint to retrieve BLAST 

search analogs.52  

Both of these benchmarks tested the ability of the fingerprints to retrieve bioactive analogs 

without consideration of stereochemistry. Here we compared the performance of MAP2C, MAP4C, 

and MAP6C with their respective achiral counterparts, as well as with reference binary fingerprints 

ECFP4, ECFP6, and AP, and their corresponding chiral versions (ECFP4C, ECFP6C, and APC). 

All fingerprints demonstrated comparable performances across various test sets and performance 

metrics, showing that including chirality information was not detrimental to fingerprint performance 

in these non-stereoselective benchmarks (Figure 2a/b and Figure S3-S7). Interestingly, the ranks 
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of the different fingerprints for the various performances measures showed that the chiral 

MinHashed fingerprints were slightly ahead of the other fingerprints, with MAP4C appearing with 

the best ranks in the small molecule benchmark and MAP6C in the peptide benchmark  (Figure 2c).  

 

Figure 2: Virtual Screening benchmark. a) AUC and b) EF1 of MAP6 (purple),  MAP4 (magenta), MAP2 

(blue), AP (grey), ECFP6 (orange) and ECFP4 (yellow) and across all small molecules and peptide targets 

(80 ChEMBL targets, 21 DUD targets, 17 MUV targets, 30 mutated peptide targets, and 30 scrambled 

peptide targets). Chiral fingerprints are displayed as bold lines, non-chiral fingerprints are displayed as 

dashed lines. The value displayed for each dataset is the mean metric of 5 runs. c) Mean ranks of fingerprints 

across all virtual screening datasets for each metric. Small molecule sets (ChEMBL, DUD, MUV) and 

peptide sets are presented separately to highlight the differences in relative performance.   
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Finding all stereoisomers 

In addition to be on par with non-chiral fingerprints for the above virtual screening benchmarks, one 

would expect a chiral fingerprint to distinguish all possible stereoisomers of a chiral molecule. To 

test the chiral differentiation of our fingerprints, we investigated their ability to assign a different 

fingerprint value for each stereoisomer on a series of stereochemically complex molecules 

comprizing carbohydrates, peptides and macrocyclic natural products containing up to thousands of 

stereoisomers per molecule (Figure 3 and Table 1).  

For carbohydrates, the six tested chiral fingerprints readily distinguished the 32 

stereoisomers of α-D-glucopyranose (2), the 1024 stereoisomers of the disaccharide lactose (3), the 

528 possible stereoisomers of the non-reducing, C2-symmetrical α-diglucoside trehalose (4), and all 

but APC distinguished the 16,384 stereoisomers of the aminoglycoside antibiotic validamycin A 

(5). However, MAP2C, MAP4C and MAP6C were the only fingerprints capable of differentiating 

the nine possible stereoisomers of the signaling carbocyclic sugar myo-inositol (6), which all gave 

identical ECFP4C, ECFP6C and APC fingerprints.  

 Our MinHashed fingerprints performed very well with peptide stereoisomers. In the case of 

the antimicrobial undecapeptide ln65 (7), a membrane disruptive antimicrobial peptide whose 

activity/toxicity balance is modulated by stereochemical variations and which motivated the present 

study,28 the three chiral MAP fingerprints distinguished all the 2,048 possible stereoisomers. By 

contrast, ECFP6C only saw about half of them and ECFP4C and APC distinguished less than 10%, 

most likely because this peptide is composed of only lysine and leucine residues, which reduces the 

number of possible substructures. The chiral MAP fingerprints also distinguished the 330 possible 

sequence-scrambled isomers of 7 and the 675,840 possible stereoisomers of sequence-scrambled 

isomers of 7. By comparison, APC succeeded for the 330 scrambled sequences but failed on the 

larger set, and both chiral ECFPs failed in both cases, which can be attributed to the absence of 

long-range substructures in ECFP fingerprints.  
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The ability of chiral MAP fingerprints to perceive peptide stereoisomers was also well 

illustrated by their ability to distinguish all 512 stereoisomers of the cell-penetrating peptide nona-

arginine (8),53,54 as well as the 4096 stereoisomers of polymyxin B2 (1), used as last resort antibiotic 

against multidrug resistant bacteria.55 In the latter case, our fingerprints also distinguished between 

the 1,512 possible sequence-scrambled isomers of 1, the 774,144 possible sequence-scrambled 

stereoisomers of 1, as well as between the 531,441 possible assignments of chirality as R, S, or 

undefined stereochemistry in the 12 chiral centers of 1. An undefined stereochemistry corresponds 

to a stereorandomized position accessible by chemical synthesis using a racemic amino acid at that 

position (stereorandomization at multiple position can lead to partially active analogs as reported 

for 1).56 In all of these cases, APC and ECFPCs were unable to distinguish all possibilities.  

Macrocyclic natural products with rotational symmetries were particularly challenging for 

chiral fingerprints. For instance, only MAP4C and MAP6C correctly identified the 136 possible 

stereoisomers of the cyclic peptide antibiotic quinaldopeptin (9) and the 2,080 stereoisomers of the 

cytotoxic macrocyclic depsipeptide onchidin (10), two natural product macrocycles with C2 

symmetry. By contrast, the 528 stereoisomers of the C2 symmetrical antimicrobial macrocyclic 

peptide gramicidin S (11) were only distinguished by MAP6C. Furthermore, none of the chiral 

fingerprints tested was able to cope with the C3 symmetrical dodecadepsipeptide antibiotic 

valinomycin (12, 1,376 stereoisomers), the C4 symmetrical macrolide ionophore antibiotic nonactin 

(13, 16,456 stereoisomers), or the C7 symmetrical hepta-arginine cyclic peptide NP213 developed 

as antifungal agent (14, 20 stereoisomers). Note that all fingerprints were used with 2,048-bits, but 

that performance did not increase significantly when using much larger bit sizes or without 

MinHashing or folding.   
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Table 1. Stereoisomer and scrambled sequence distinction task.   

Querya) N / Sym.b) Totalc) MAP6C MAP4C MAP2C  APC ECFP6C ECFP4C 

α-D-glucopyranose (2) 5 /- 32 32 32 32 11 32 32 

Lactose (3) 10 / - 1,024 1,024 1,024 992 443 1,024 1,024 

Trehalose (4) 10 / C2 528 528 528 516 336 528 512 

Validamycin A (5) 14 / - 16,384 16,384 16,384 16,384 7,657 16,384 16,384 

Inositol (6) 6 / C6v 9 9 9 9 1 1 1 

ln65 (7) 11 / - 2,048 2,048 2,048 2,048 196 1,140 36 

ln65 (scrambled) 11 / - 330 330 330 330 330 8 4 

ln65 (dia  scrambled) 11 / - 675,840 675,840 675,840 675,840 90,217 38,500 144 

R9 (8) 9 / - 512 512 512 512 146 88 12 

Polymyxin B2 (1)d) 12 / - 4,096 4,096 4,096 4,096 2,500 4,096 1,536 

PMB2 (scrambled)e) 9 / - 1,512 1,512 1,512 1,512 1,512 861 75 

PMB2 (dia  scrambled)f) 9 / - 774,144 774,144 774,144 774,144 287,631 602,003 9,312 

PMB2 (R, S or undefined) 12 / - 531,441 531,441 531,441 531,441 277,901 531,441 137,781 

Quinaldopeptin (9) 8 / C2 136 136g) 136 134 64 132 90 

Onchidin (10) 12 / C2 2,080 2,080 2,080 2,064 469 1,760 810 

Gramicidin S (11) 10 / C2 528 528 504 334 25 448 243 

Valinomycin (12) 12 / C3 1,376 1,250 714  416 112 616 27 

Nonactin (13) 16 / C4 16,456 16,425 16,176 10,045 13,189 6,474 675 

NP213 (14) 7 / C7 20 7 13 17 13 5 3 
a) Name and nr. of molecule. See Figure 4 for structural formulae. b) N = number of stereocenters in the molecule. Sym. = rotational 

molecular symmetry for the molecule without chiral labels. c) Number of possible stereoisomers considering inversion of all chiral 

centers in the molecule and the internal symmetry, or number of sequence isomers (scrambled). The number of different fingerprint 

values for each fingerprint type is given in the following columns. All fingerprint were used with 2,048 bit size unless otherwise 

noted. d) all stereocenters in the molecule are considered. e) amino acids are scrambled, the N-terminal fatty acid and the branching 

Dab residue are maintained. f) only the α-carbon chirality of the scrambled residues was considered here, which corresponds to 512 

stereoisomers per scrambled sequence. g) with 4,096 bits, only 135 different FP values are obtained with 2,048 bits due to a bit 

collision. 
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Figure 3. Structures of natural products selected for the stereoisomer distinction task. 
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Ranking stereoisomers versus isomers 

The degree of differentiation between stereoisomers should be proportional to the number of 

stereochemical changes between any two stereoisomers, and should also be smaller than the 

difference to a different molecule such as a structural isomer. We tested the ability of our chiral 

fingerprints for this task for small and large molecules separately. As a test case for small 

molecules, we computed Jaccard distances between all pairs involving the 203 structural isomers of 

1,4-diaminocyclohexane (15), a ring fragment which is enriched in bioactive molecules from 

ChEMBL,57,58 and between all pairs of stereoisomers in the set. We similarly analyzed all pairs 

involving the 48 structural isomers of 4-aminopiperazine (16), a similar drug scaffold, and the 

stereoisomeric pairs within the set. In both cases, all six fingerprints ranked pairs stereoisomers 

closer to each other than pairs of structural isomers (Figure 4a/b).  

 For peptides, we measured Jaccard distances between pairs of scrambled-sequence isomers 

versus pairs of stereoisomers with the same sequence for ln65 (7) and polymyxin B2 (1). For 

peptides, the degree of sequence similarity can also be measured by the Levenshtein distance, which 

represents the minimum number of mutations necessary to transform one sequence into another one, 

considering residue type changes, stereochemical inversions, insertions and deletions (Figure 4c/d 

and Figure S8/9). Jaccard distances generally increased with increasing Levensthein distances for 

all fingerprints. Similar to small molecules, distances between peptide stereoisomers were smaller 

than between sequence isomers only for chiral MAP fingerprints and APC. However, chiral ECFPs 

assigned larger distances to stereoisomers than to sequence isomers, which probably relates to their 

inability to distinguish many pairs of sequence isomers. For both ln65 (7) and polymyxin B2 (1), 

the lower Jaccard distances between stereoisomers compared to sequence isomers was well visible 

in TMAP representations of each dataset constructed using MAP4C as similarity measure (Figure 

5a/b).16 In both cases, there was a complete separation between the 2,048/512 stereoisomers of the 

parent peptide and the 330/1,512 sequence isomers.  
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Figure 4: Differentiation between stereoisomers and structural isomers, shown as box plots of average 

Jaccard distances between pairs of stereoisomers (blue) or structural/sequence isomers (yellow). a) structural 

isomers of 1,4-diaminocyclohexane (203) and 4-aminopiperidine (48) and their diastereomers b) sequence 

isomers (330) or diastereomers (2,048) of ln65 (7) as function of the Levenshtein distance separating each 

pair. c) sequence isomers (1,512) or diastereomers (512) of polymyxin B2 (1) as function of the Levensthein 

distance separating each pair. See Figures S10 and S11 for plots with MAP6C, MAP2C and ECFP6C. See 

methods for details.  
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Figure 5: MAP4C TMAPs showing the Jaccard distance (dJ; rainbow) of stereoisomers (blue) and sequence 

isomers (yellow) towards their respective queries: (a) ln65, 2,048 diastereomers and 330 sequence isomers. 

The interactive version of the TMAP is accessible under https://tm.gdb.tools/map4/MAP4C_ln65/ (b) 

polymyxin B2, 512 diastereomers and 1,512 sequence isomers. The interactive version of the TMAP is 

accessible under https://tm.gdb.tools/map4/MAP4C_pmb2/.  
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Conclusions 

In summary, the data above shows that the chiral versions of MAP fingerprints reported here 

perform as good as their achiral versions in non-stereoselective virtual screening benchmarks. 

Remarkably, our chiral MAP fingerprints are able to distinguish stereoisomers even in cases 

involving up to thousands of stereoisomers where the chiral versions of ECFP and AP do not 

perform well. Furthermore, the chiral MAP Jaccard distances between enantiomers or stereoisomers 

are generally shorter than for structural isomers, allowing to use chiral MAP fingerprints as a 

refinement of their achiral version. Because MAP4C computes faster than MAP6C due to the small 

number of atom pairs considered, we recommend MAP4C as the molecular fingerprint of choice for 

comparing molecules spanning from small drug-like building blocks to large natural products and 

peptides.  

 

List of abbreviations 
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Figure S1. Distribution of molecular weight (MW) (yellow), number of stereocenters (magenta) 

and ratio of stereocenters to heavy atom count (blue) in the set uniformly sampled from the 

extended benchmark. The set contained a total of 10,122 compounds and was used to determine the 

relative impact of stereochemistry encoding on total similarity.  

 

 

 
 

Figure S2. Scatterplots of chiral shingle ratio vs. chiral atoms ratio for a) radius = 1 b) radius = 2 

and c) radius = 3. Additionally, the r2 of the linear fit and the Pearson correlation coefficient (PCC) 

are reported. All reported PCCs are statistically significant.  
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Figure S3. EF5 of MAP2 (blue), MAP4 (magenta), MAP6 (purple), AP (grey), ECFP4 (yellow) 

and ECFP6 (orange) across all small molecules and peptide targets (80 ChEMBL targets, 21 DUD 

targets, 17 MUV targets, 30 mutated peptide targets, and 30 scrambled peptide targets). Chiral 

fingerprints are displayed as bold lines, non-chiral fingerprints are displayed as dashed lines. The 

value displayed for each dataset is the mean metric of 5 runs. 

 

 

 
 

Figure S4. BEDROC20 of MAP2 (blue), MAP4 (magenta), MAP6 (purple), AP (grey), ECFP4 

(yellow) and ECFP6 (orange) across all small molecules and peptide targets (80 ChEMBL targets, 

21 DUD targets, 17 MUV targets, 30 mutated peptide targets, and 30 scrambled peptide targets). 

Chiral fingerprints are displayed as bold lines, non-chiral fingerprints are displayed as dashed lines. 

The value displayed for each dataset is the mean metric of 5 runs. 
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Figure S5. BEDROC100 of MAP2 (blue), MAP4 (magenta), MAP6 (purple), AP (grey), ECFP4 

(yellow) and ECFP6 (orange) across all small molecules and peptide targets (80 ChEMBL targets, 

21 DUD targets, 17 MUV targets, 30 mutated peptide targets, and 30 scrambled peptide targets). 

Chiral fingerprints are displayed as bold lines, non-chiral fingerprints are displayed as dashed lines. 

The value displayed for each dataset is the mean metric of 5 runs. 

 

 

 

 
 

Figure S6. RIE20 of MAP2 (blue), MAP4 (magenta), MAP6 (purple), AP (grey), ECFP4 (yellow) 

and ECFP6 (orange) across all small molecules and peptide targets (80 ChEMBL targets, 21 DUD 

targets, 17 MUV targets, 30 mutated peptide targets, and 30 scrambled peptide targets). Chiral 

fingerprints are displayed as bold lines, non-chiral fingerprints are displayed as dashed lines. The 

value displayed for each dataset is the mean metric of 5 runs. 
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Figure S7. RIE100 of MAP2 (blue), MAP4 (magenta), MAP6 (purple), AP (grey), ECFP4 (yellow) 

and ECFP6 (orange) across all small molecules and peptide targets (80 ChEMBL targets, 21 DUD 

targets, 17 MUV targets, 30 mutated peptide targets, and 30 scrambled peptide targets). Chiral 

fingerprints are displayed as bold lines, non-chiral fingerprints are displayed as dashed lines. The 

value displayed for each dataset is the mean metric of 5 runs. 
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Figure S8. Comparative analysis of MAP2C, MAP4C, MAP6C, APC, ECFP4C and ECFP6C 

Jaccard distance assignment on ln65 diastereomers (blue) and structural isomers (yellow). The 

distance distributions are grouped by Levenshtein distance, used to determine the number of 

mutations from any sequence to ln65. MAPC fingerprints display a higher performance than the 

other fingerprints when it comes to distinguishing all possible diastereomers and structural isomers 

from each other. This is not the case for APC, which has difficulties distinguishing diastereomers, 

and ECPFC fingerprints, which cannot distinguish diastereomers or structural isomers robustly. 

MAPC fingerprints also consistently assign lower distances to diastereomers than structural 

isomers. APC follows the same trend, although the lower diastereomer distances are skewed due to 

the APC fingerprint not being able to robustly distinguish all diastereomers. ECFPC show a 

complete overlap of Jaccard distances for diastereomers and structural isomers. Finally, the overall 

Jaccard distances increase with increasing Levenshtein distance for MAPC fingerprints, indicating 

that the obtained distances align with intuitive changes such as stereocenter or residue mutations.  

 

  

https://doi.org/10.26434/chemrxiv-2023-33j02 ORCID: https://orcid.org/0000-0003-2724-2942 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-33j02
https://orcid.org/0000-0003-2724-2942
https://creativecommons.org/licenses/by/4.0/


S7 

 

 
 

 

Figure S9. Comparative analysis of MAP2C, MAP4C, MAP6C, APC, ECFP4C and ECFP6C 

Jaccard distance assignment on polymyxin B2 diastereomers (blue) and structural isomers (yellow). 

The distance distributions are grouped by Levenshtein distance, used to determine the number of 

mutations from any sequence to polymyxin B2. MAPC fingerprints display a higher performance 

than the other fingerprints when it comes to distinguishing all possible diastereomers and structural 

isomers from each other. This is not the case for APC, which has difficulties distinguishing 

diastereomers, and ECPFC fingerprints, which cannot distinguish diastereomers or structural 

isomers robustly. MAPC fingerprints also consistently assign lower distances to diastereomers than 

structural isomers. APC follows the same trend, although the lower diastereomer distances are 

skewed due to the APC fingerprint not being able to robustly distinguish all diastereomers. ECFPC 

show a complete overlap of Jaccard distances for diastereomers and structural isomers. Finally, the 

overall Jaccard distances increase with increasing Levenshtein distance for MAPC fingerprints, 

indicating that the obtained distances align with intuitive changes such as stereocenter or residue 

mutations.  
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