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ABSTRACT: Described herein is our effort towards achieving the decarboxylative functionalization of 2,2-difluorobicy-
clo[1.1.1]pentane (BCP-F2) building blocks.  When compared with the non-fluorinated bicyclo[1.1.1]pentane (BCP) analogues, 
we discovered divergent reactivities.  This is the first successful decarboxylative coupling of BCP-F2 building blocks reported 
via photoredox mechanism. 

Bicyclo[1.1.1]pentane (BCP) analogues, first synthesized 
by the Wiberg group in 1964,1 have been recognized and 
used recently as unique bioisosteres for phenyl and tert-bu-
tyl groups, as well as linear linkers within the realm of me-
dicinal chemistry.2 BCP groups introduce C(sp3) characters 
which has been observed to improve aqueous solubility, 
membrane permeability, oral absorption, and metabolic 
stability, making BCP one of the ideal scaffolds for drug de-
sign.3 Two examples were shown in Figure 1 as BCP groups 
incorporated in bioactive compounds.  Compound I was ex-
emplified by Pfizer as an Hsp90 inhibitor analogue4 and 
compound II (IACS-52825) was disclosed recently by scien-
tists from the University of Texas MD Anderson Cancer Cen-
ter as the lead DLK inhibitor advancing into preclinical de-
velopment.5 
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Figure 1. Bioactive compounds containing BCP groups. 
 

In the last decade, the research in synthetic methodolo-
gies blossomed to explore ways to access and install BCP 
groups into structures relevant to medicinal chemists.2b-e 
We have been interested in the pursuit of functionalization 
at the methylene position to mimic ortho- and meta-substi-
tutions on arenes.  In 2019, we reported a methodology to 
access 2,2-difluorobicyclo[1.1.1]pentane (BCP-F2) deriva-
tives 2 via difluorocarbene insertion into bicyclo[1.1.0]bu-
tanes (BCB) 1 bearing an aryl group and an ester function-
ality at the bridge heads (Scheme 1).6 It is worth noting that 
a similar strategy to access the same type of motifs was 

reported by Mykhailiuk and co-workers concomitantly.7 We 
later expanded the scope of BCP-F2 building blocks by 
known transformations analogous to the non-fluorinated 
BCP derivatives.8 However, throughout our exploration of 
functionalizing BCP-F2 derivatives, the decarboxylative 
functionalization efforts have been unsuccessful. 9 
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Scheme 1. Synthesis of BCP-F2 from BCB. 

 
Inspired by the metallaphotoredox transformations de-

veloped by the MacMillan lab,9h specifically the synthesis of 
divergently functionalized BCPs utilizing hypervalent io-
dine species,9g,i,10 we decided to examine the reactivity dif-
ferences between BCP and BCP-F2 in further detail. 
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Scheme 2. Decarboxylative C-N coupling results of hyper-
valent iodine species 3 and 5. 

 
We started by examining the decarboxylative C-N cou-

pling conditions reported by the MacMillan group (Scheme 
2A).10 Application of these conditions to the parent BCP, the 
hypervalent iodine species 3 provided the desired indazole 
analogue in 80% yield.10 However, when we applied the 
same conditions to the BCP-F2 derivative 5, the C-N coupling 
product 6 was not observed based on liquid chromatog-
raphy-mass spectrometry (LC-MS) analyses (Scheme 2B).  
During reaction set-up using 5, we observed a drastic color 
change as soon as the solvent was added into the reaction 
vessel, which was not observed when we used 3.  As a result, 
we suspected that the BCP-F2-derived hypervalent iodine 
species 5 could present compatibility issues with certain re-
agents in the reaction conditions.  To study the stability of 5 
in the reaction mixture, we treated a solution of 5 in ace-
tonitrile-d3 with individual species in the reaction mixture 
and monitored the 19F NMR signal (Table 1). 

From this study, we concluded that the hypervalent io-
dine species 5 was compatible with the iridium photoredox 
catalyst (entry 1), the nucleophile (3-chloroinrazole, entry 
3), and the ligand bathophenanthroline (BPhen, entry 4); 
however, 5 decomposed rapidly in the presence of cop-
per(I) thiophene-2-carboxylate [CuTC, entry 2] and 2-tert-
Butyl-1,1,3,3-tetramethylguanidine (BTMG, entry 5).  In a 
follow-up study (not shown), we found that 5 was incom-
patible with a variety of copper(I) species; however, cop-
per(II) species did not induce such rapid decomposition.  
Unfortunately, despite extensive condition optimization, we 
were not able to observe any desired product using 3-
chloroindazole as the nucleophile.  Consequently, we 

decided to include other classes of heterocycles as the nu-
cleophile. 

 
Table 1. Stability studies of hypervalent iodine species 5. 
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CD3CN, 24 °C
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entry reagent added decomposition of 5? (Y/ N) 

1 [Ir-I] Y 
2 CuTC N 
3 Nua Y 
4 BPhen Y 
5 BTMG N 

aNu = 3-chloroindazole; bStability of 5 was judged by 19F 
NMR. 

 
To effectively identify a suitable heterocyclic substrate 

for this transformation, we selected a library of various ni-
trogen-containing 5-membered heterocycles casting a wide 
net of varieties.  After several rounds of experimentation, 
we were delighted to discover that triazolol 7 was a suitable 
nucleophile for the decarboxylative C-N coupling with hy-
pervalent iodine 5 using [Ir-I] as the photoredox catalyst, 
copper(II) acetylacetonate [Cu(acac)2] as the copper cou-
pling catalyst, and acetonitrile as the solvent (Table 2, entry 
1).  Under these conditions, the desired C-N coupling prod-
uct 8 was obtained in 48% isolated yield.  Triazoles are an 
important class of heterocycles utilized as core scaffolds in 
medicinal chemsitry.11 Among various triazole analogues, 
triazolone derivatives have seen recent interests in their ap-
plication in biologically active compounds.  For example, re-
searchers from China Pharmaceutical University reported a 
triazolone derivative III (H11), which shown potential as an 
anti-nonalcoholic steatohepatitis (anti-NASH) agent (Figure 
2).12 In addition, Ganetespib (IV) demonstrated signifi-
cantly superior pharmacokinetic and safety profiles in a 
study reported in 2012, as Hsp90 inhibitor in cancer ther-
apy.13  The transformation shown in Table 2 is the first re-
port of trazolone functionalization via photoredox chemis-
try to our knowledge. 
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Figure 2.  Biologically active compounds harboring tria-
zolone core structures. 
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Table 2. Condition optimization of decarboxylative C-N 
coupling with triazolol 7.a 
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entry [Ir]b [Cu] yieldc 

1 [Ir-I] Cu(acac)2 48% 
2 [Ir-II] Cu(acac)2 36% 
3 [Ir-III] Cu(acac)2 31% 
4 [Ir-IV] Cu(acac)2 < 5% 
5 [Ir-V] Cu(acac)2 78% 
6 [Ir-VI] Cu(acac)2 55% 
7 [Ir-VII] Cu(acac)2 67% 

8 [Ir-V] Cu(CH3CN)4(P
F6) 0% 

9 [Ir-V] Cu(TC) 0% 
10 [Ir-V] Cu(dpm)2 25% 
11 [Ir-V] Cu(tfacac)2 0% 
12 [Ir-V] Cu(hfacac)2 0% 

aConditions: triazolol 7 (72.0 μmol, 1 equiv), hypervalent io-
dine 5 (144 μmol, 2.00 equiv), [Ir] (1.4 μmol, 2 mol%), [Cu] 
(36 μmol, 50 mol%), CH3CN (0.1 M), 450 nm blue LED, 24 
°C, 2.5 h; bList of iridium catalysts shown below; cIsolated 
yields. 
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Noticing that such photoredox decarboxylation process 
relies heavily on the matching of redox potentials of the irid-
ium catalysts and the electrophile substrate, we examined a 
series of iridium catalysts first (entries 1-7).  With increas-
ing amounts of fluorinated substituents around the ligand 
of the iridium catalyst, we observed a decrease of the yield 
of 8 (entries 1-4).  As a result, we decided to evaluate the 
catalyst that lacks all fluorinated substituents on the lig-
ands.  To our delight, [Ir-V] afforded 78% isolated yield of 8 
(entry 5).  We also examined tris[2-phenylpyridinato-
C,N]iridium(III) ([Ir-VI], entry 6, 55%) and tris[2-(2,4-
difluorophenyl)pyridinato-C,N]iridium(III) ([Ir-VII], entry 
7, 67%) as the photoredox catalyst; however, neither of 
these catalysts provided superior results. 

The effects of copper catalysts were also explored.  Reex-
amining the copper(I) catalysts reaffirmed our earlier con-
clusion of its incompatibility with the BCP-F2-derived hy-
pervalent iodine 5 (entries 8-9, 0% yield).  The we consid-
ered some other copper(II) β-diketonates.  Increasing the 
steric bulk around the copper(II) center by employing cop-
per(II) dipivaloylmethide [Cu(dpm)2] was detrimental to 
the reaction process.  Nevertheless, the desired product 8 
was isolated in 25% yield (entry 10).  The decarboxylative 
C-N coupling process was sensitive to the electronic envi-
ronment around the copper(II) center.  As shown in entries 
11-12, fluorination of the β-diketone ligand prohibited the 
C-N coupling process, resulted in unproductive decomposi-
tions of the hypervalent iodine 5.  In addition to acetonitrile, 
we also examined other solvents, which did not provide su-
perior results (not shown).  Thus, we identified the most 
productive reaction conditions involve [Ir-V] as the photo-
redox catalyst, Cu(acac)2 as the copper coupling catalyst 
with acetonitrile as the reaction solvent (entry 5). 

With the optimized conditions in hand, we expanded the 
substrate scope for the decarboxylative C-N coupling pro-
cess.  To demonstrate the divergent reactivities between 
BCP-F2 and BCP analogues, we employed both 3 and 5 in our 
substrate exploration to provide head-to-head comparisons 
(Table 3). 

We first examined a series of triazolol heterocycles.  
When coupling with triazolol 7, the BCP-F2 analogue 9a was 
obtained in 78% isolated yields while the BCP analogue 9b 
was isolated in 25% yield.  The para-halo-derivatives of tri-
azolols all provided synthetically useful yields for both the 
BCP-F2 (10a, 95%; 11a, 98%; 12a, 74%) and BCP analogues 
(10b, 63%; 11b, 55%; 12b, 20%).  Derivatives with para-
methoxy and para-trifluoromethyl groups on the phenyl 
substituent of the triazolol heterocycle also yielded the de-
sired products in 24-56% yields (for BCP-F2 analogues: 13a, 
56%; 14a, 48%; for BCP analogues: 13b, 24%; 14b, 37%).  
Installation of additional substituents on the triazolol heter-
ocycle had profound impacts on the reaction productivity.  
While the additional methyl group yielded comparable re-
sults between the BCP-F2 (15a, 62%) and the BCP analogues 
(15b, 67%).  The additional phenyl substituents completely 
shut down the C-N coupling process providing no desired 
products with either BCP reagents (16a, 0%; 16b, 0%).  The 
piperidinyl triazolol analogues were afforded in 23% and 
59% yields for the corresponding BCP-F2 17a and BCP ana-
logues 17b, respectively. 

To further showcase the possibility of applying this C-N 
coupling chemistry in broader scopes, we evaluated other 
five-membered heterocycles that are structurally closely  
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Table 3. Preliminary substrate scope for the decarboxyla-
tive C-N coupling with direct comparisons between BCP-F2 
and BCP analogues.a 
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12b: X = H, 20% 

13a: X = F, 56% 
13b: X = H, 24% 

14a: X = F, 48% 
14b: X = H, 37% 

N N
N X

X

O

O
CH3

O

Br
H3C

 

N N
N X

X

O

O
CH3

O

Br
Ph

 

N N
N X

X

O

O
CH3

O

BzN

 
15a: X = F, 62% 
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17b: X = H, 59% 
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18a: X = F, < 5% 
18b: X = H, 8% 

19a: X = F, 0% 
19b: X = H, 0% 

20a: X = F, < 5% 
20b: X = H, 32% 
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21a: X = F, 21% 
21b: X = H, 15% 

22a: X = F, 28% 
22b: X = H, 0% 

23a: X = F, 0% 
23b: X = H, 0%b 

aFor details of reaction conditions, see Experimental Section 
and Supporting information.  All yields are isolated yields; 
bRearrangement products isolated. 

 
related to the triazolol heterocycles.  When using a 1,2,4-tri-
azole-3-thiol derivative as the nucleophile, we only ob-
served trace amounts of the desired BCP-F2 product (18a, < 
5%) and the corresponding BCP analogue 18b was also only 
obtained in 8% isolated yield.  Unfortunately, the imidazolol 
heterocycle was not a suitable substrate for the C-N cou-
pling process for either the BCP-F2 (19a, 0%) or BCP ana-
logues (19b, 0%).  To our delight, we found that the imidaz-
olidinone heterocycle provided 32% isolated yield for the 
BCP analogue 20b, while the corresponding BCP-F2 ana-
logue 20a only yielded trace amounts of the desired prod-
uct mass on LC-MS traces.  Interestingly, the imidazol-diol 

heterocycle afforded productive C-N coupling processes for 
both cases, affording 21a and 21b in 21% and 15% isolated 
yields, respectively. 

Significant differences in reactivities between 5 and 3 
were observed in both of the pyrazole and tetrazole hetero-
cycles.  When using 4-(trifluoromethyl)-1H-pyrazole as the 
nucleophile, the C-N coupling afforded 28% isolated yields 
of 22a, whereas the corresponding BCP analogue 22b was 
not observed in LC-MS analyses.  In the case of 5-phenyl-1H-
tetrazole, the BCP-F2-derived hypervalent iodine 5 was un-
productive in the C-N coupling process (23a, 0%).  In the 
case of the BCP-derived hypervalent iodine 3 provided 23b, 
although the desired product 23b was not observed, the re-
arranged by-product 25 was isolated in 23% yield with 1:1 
regioisomeric ratio (rr, Scheme 3) with respect to N-1 ver-
sus N-2 alkylation.  We speculated that this transformation 
may occur through an iodo-BCP or iodonium-BCP interme-
diate based on a recent publication by Mandler and co-
workers from Bristol Myers Squibb.14 
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Scheme 3.  The unexpected rearrangement product 25. 

 
Overall, the parent BCP-derived hypervalent iodine spe-

cies 3 appears to demonstrate a broader substrate scope for 
the various heterocycles exemplified in our work, providing 
isolable amounts of desired products in 13 out of the 15 
cases.  The BCP-F2-derived species 5 only provided isolable 
amounts of desired products in 10 out of the 15 cases.  How-
ever, it is reasonable to conclude that the discovered reac-
tion conditions, which are tailored to the reactivities of the 
BCP-F2 derived hypervalent iodine 5, might not be optimal 
for the corresponding BCP-derived hypervalent iodine 3.  
This can be illustrated by the differences in isolated yields 
in various cases in Table 3.  Additionally, considering the 
last six examples in Table 3, there appears to be reactivity 
differences between the putative 2,2-difluorobicy-
clo[1.1.1]pentyl radical and bicyclo[1.1.1]pentyl radical. 

Understanding that the C1 bridge-head substituents pro-
foundly influences the reactivities at the C3 bridge-head po-
sition, we also prepared three BCP-F2-derived hypervalent 
iodine species varying the bridge-head substituents 
(Scheme 4).  Both the tert-butyl ester and the benzyl ester 
analogues successfully provided the desired products 24 
and 25 in 44% and 63% isolated yields, respectively.  We 
attribute the lower yields to the decreased solubilities of the 
corresponding hypervalent iodine species.  The heterogene-
ity of the reaction mixtures can impede light penetration 
and thusly promote unproductive decomposition pathways.  
However, the para-fluorophenyl analogue of the BCP-F2-
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derived hypervalent iodine species only provided traces 
amounts of the desired product mass in LC-MS traces of the 
reaction mixture (26, < 5%).  This result further illustrates 
the “cross-talk” between the two bridge-head substitutions 
on each other’s reactivity. 
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Scheme 4. Further substrate scopes varying the substitu-
ents on the BCP-F2 fragments. 

 
To conclude, we report our efforts in optimizing the de-

carboxylative coupling using the BCP-F2-derived bridge-
head carboxylic acids.  The iridium and copper co-catalyzed 
decarboxylative C-N coupling proceeds smoothly affording 
0-98% isolated yields of the BCP-F2 analogues.  This is the 
first reported successful decarboxylative functionalization 
of BCP-F2 derivatives via photoredox mechanism.  During 
our substrate-scope exploration, we compared BCP-F2- and 
BCP-derived hypervalent iodine species 5 and 3 in a head-
to-head manner.  Thusly, some overall trends and differ-
ences in their reactivities were observed.  We continue to 
explore other decarboxylative functionalization strategies 
of the BCP-F2 analogues.  The mechanistic explanation of the 
divergent reactivities between the fluorinated BCPs and the 
non-fluorinated BCPs are also of interest to us. 
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