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ABSTRACT: 

Chiral aminoalcohols are omnipresent in bioactive compounds. Conventional strategies to access 

this motif involve multiple-step reactions to install requisite functionalities stereoselectively using 

conventional polar bond analysis. This study reveals that a simple chiral oxazolidine-based 

carboxylic acid can be readily transformed to substituted chiral aminoalcohols with high 

stereochemical control by Ni-electrocatalytic decarboxylative arylation. This general, robust and 

scalable coupling can be used to synthesize variety of medicinally important compounds, avoiding 

protecting and functional group manipulations thereby dramatically simplifying their preparation. 
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INTRODUCTION: 

Enantiopure aminoalcohols are ubiquitous in natural products, active pharmaceutical ingredients 

(APIs), and agrochemicals. The 2-amino-1-arylethanol unit, in particular, is frequently 

encountered (Figure 1A).1–4 For example, Econazole (1) is widely used as an antifungal 

medication5,6; Indacaterol (2) and Salmeterol (3) are effective bronchodilators and enlisted as top-

selling small molecule drugs7; a unique boron-containing molecule GSK-656 (4) is a promising 

antituberculosis drug with a new mechanism of action.8,9 Synthetic approaches to molecules of 

this sort generally rely on a deliberate 

construction of the aminoalcohol in a stepwise 

fashion rather than a modular installation 

through cross-coupling.1–3 Indeed, constructing 

the chiral aminoalcohol motifs in 1-4 requires 

multiple steps, all of which are reliant on polar 

bond retrosynthetic analysis (Figure 1B). Thus, 

asymmetric epoxidation, asymmetric ketone 

reduction followed by SN2 with a nitrogen-

based nucleophile, and asymmetric Henry 

reaction followed by hydrogenation of the nitro 

group are the go-to transformations to access 

such structures. Although Sharpless 

asymmetric aminohydroxylation enables 

single-step construction of chiral 

aminoalcohols from a styrene,10,11 it can be 

complicated by regioisomeric impurities12 and 

requires expensive and toxic osmium catalysts. 

The aforementioned reliance on polar bond 

disconnections (2e- logic), necessitate precise 

choreography of protecting/functional group 

manipulations. 

 

Figure 1. Utility of aryl-substituted chiral aminoalcohols and 
their synthesis via polar- and radical-based strategy. (A) Chiral 
aminoalcohols are a privileged structural motif for bioactive 
molecules. (B) Mainstream methods for preparing substituted 
aminoalcohols exclusively rely on polar (2e-) disconnections. (C) 
Radical (1e-) disconnection enables access to chiral aminoalcohols 
via modular cross-coupling, where the stereochemistry of the new 
C–C bond is controlled by SRS. 
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This study builds on the pioneering work of Seebach and co-workers who employed oxazolidine-

based auxiliaries through the principle of “self-regeneration of stereocenters” (SRS, Figure 1C).13 

In SRS, simple aminoacid feedstocks are protected at a distal site with high diastereoselectivity. 

Subsequent reactions (both radical and polar bond formations) at the C-terminus generally take 

place with near complete stereocontrol to “regenerate” the original stereocenter in a predictable 

way. The SRS approach has been applied in numerous contexts over the years,13,14 although its use 

in radical chemistry has seen only limited applications. Indeed, several examples of intramolecular 

radical C-C bond formation have been reported.15,16 Intermolecular C-C bond formations in this 

context are all reliant Giese-type additions17–19 to electron deficient olefins such as Inoue’s 

acyltellurium studies.20 To our knowledge, the use of Seebach-type SRS in transition metal-

catalyzed radical cross coupling has not been disclosed.21 Meanwhile, radical retrosynthesis has 

been demonstrated in a variety of contexts to achieve more intuitive, perhaps even “LEGO”-like 

modular approaches to synthesis.22–25 This Article discloses how the principle of SRS can be 

leveraged in the union of inexpensive isoserine-derived redox active esters (RAE) to serve as 

convenient “cassettes” for reliable and facile construction of chiral aminoalcohols via Ni-

electrocatalytic decarboxylative coupling. As documented herein, this reaction manifold is 

applicable in both the early and late stages of drug/agrochemical discovery due to its inherent 

modularity and robust scalability. 

 

DEVELOPMENT: 

The pursuit of a reliable means to access the 2-amino-1-arylethanol unit in high enantiopurity via 

modular cross-coupling was built off of prior studies from this lab; specifically, the recently 

disclosed electrochemical decarboxylative alkenylation/arylation uniquely promoted by Ag-

nanoparticles (AgNP).26,27 Since Csp2–Csp3 bonds are ubiquitous across natural products and 

pharmacophores, this transformation is highly useful for rapid and modular construction of carbon 

skeletons from readily available carboxylic acids and alkynyl/aryl halides. The feasibility of 

controlling the stereochemistry in this radical-based cross-coupling was supported by the recent 

disclosure of 2nd-generation doubly decarboxylative coupling, where careful selection of building 

block structures as well as reaction conditions rendered alkyl-alkyl bond formation highly 

diastereoselective.28 Notably, Ley auxiliary-based RAE 6 (Figure 2A) was used for the highly 

stereoselective synthesis of ent-SF2768 and complanine, which set the stage for our exploration in 
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the context of diastereoselective arylation. Initial forays were directed at identifying an 

inexpensive aminoalcohol “cassette” that could lead to high dr and conversion. Numerous 

constructs based on Ley’s auxiliary were evaluated such as 6-9 in the cross coupling with aryl 

iodide 5. Unfortunately, the observed dr (6 and 7) or yield (8) was too low, or the requisite RAE 

could not be easily prepared (9). Extensive ligand screening to improve the diastereoselectivity 

was fruitless, although ligand structures seemed to modestly affect diastereoselectivity (see SI for 

detail). The promising leads emerged when exploring Seebach-oxazolidines such as 10 wherein 

high dr was observed albeit in low yield. Changing the nitrogen protecting group to Boc (11) 

maintained high diastereoselectivity, confirming a robust stereochemical control regardless of the  

steric bulk of the protecting group.  

Figure 2. Development of the key aminoalcohol coupling unit and reaction optimization. (A) Initial exploration of various 
chiral auxiliaries revealed that oxazolidine is uniquely effective for highly diastereoselective decarboxylative arylation. (B) 
Reaction optimization and control experiments. (C) Practical preparation of oxazolidine-based RAEs. aReaction was performed 
by using the conditions of entry 9. bPhotochemical conditions based on the free acid starting material (see SI for the full conditions). 
cPhotochemical conditions using RAE 10 as starting material (see SI for the full conditions). dArBr was added over 100 min such 
that the addition was finished slightly before the completion of the electrolysis.  
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Based on this observation, extensive optimization was conducted as outlined in Figure 2B between 

RAE 10 and aryl iodide 12. The latter was chosen for an eventual application to the synthesis of 

GSK-656 (4, Figure 1). The organometallic and electrochemical parameters were thus explored in 

a systematic fashion (for a more comprehensive summary, see SI). For instance, the use of simple 

bipyridine (bpy) as ligand resulted in the highest yield of all ligands screened (entry 1). The 

absence of ligand or the use of tridentate ligands such as terpyridine shut down the reaction (entry 

3). Reducing the current from 12 mA to 4 mA doubled the observed yield (entry 4). A further 

improvement was observed after solvent screening with DMA emerging as the best (entry 5-6). 

Increasing the loading of RAE 10 to 1.5 equiv. was also beneficial (entry 7), presumably due to 

the preferential consumption of 10 over ArI. A Mg sacrificial anode proved crucial (entry 8). The 

optimum conditions emerged by combining these observations (entry 9). Control studies showed 

that in this coupling Ag is not crucial, but improved yield moderately (entry 10). This effect can 

be ascribed to the suppression of RAE degradation on the cathode by deposited AgNP.26 To rule 

out in-situ generation of a Grignard reagent, purely chemical conditions using activated Mg-

turnings (entry 11) and reaction progress on an electrochemically activated Mg surface (entry 12) 

were evaluated. Drastically reduced yield in both entries confirmed that Mg itself is insufficient to 

facilitate the reaction. The reaction was also benchmarked against photochemical conditions by 

using both RAE29 and the corresponding free carboxylic acid30,31 as a substrate (entry 13), 

confirming that the electrochemical method described here offer much simpler reaction conditions, 

an important aspect for large-scale execution (vide infra). Finally, under the optimized conditions, 

the corresponding aryl bromide poorly reacted, resulting in low yield of 13 due to preferential 

consumption of RAE 10 (entry 14). This reactivity difference was overcome by slow addition of 

RAE 10 via a syringe pump, furnishing the product in the identical yield that was obtained by 

using ArI (compare entry 10 and entry 12).32  

  

After identifying the practical aminoalcohol “cassettes” 10 and 12 and the requisite optimal cross-

coupling conditions, their practical and scalable synthesis was pursued. The analogous oxazolidine 

synthesis described by Schmidt33 and Li34 was modified to improve yields and operational 

simplicity by minimizing chromatography. The synthesis can be readily achieved as depicted in 

Figure 2C by using inexpensive (S)-isoserine as a starting material ($ 0.4 /g,35 the cost per mol is 
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even less than a bulk chemical PPh3) after a sequence of trivial interconversions such as 

esterification, condensation with pivalaldehyde, N-protection followed by hydrolysis of the ester. 

This simple sequence can be accomplished by a single chemist within several days on an 80g-scale  

to deliver the parent carboxylic acid for 11 in >50% overall yield from isoserine 14 without column 

chromatography. Subsequent RAE formation was facile and clean (8g-scale). Fortunately, a large 

difference in crystallinity provided a simple way to separate the diastereomers at this stage. Both 

diastereomers are a useful building block to access both enantiomers of an aminoalcohol. 

Analogous RAE 10 can also be prepared by a similar procedure. The stereochemistry of RAE 

trans-10 was unambiguously determined by X-ray analysis of the parent carboxylic acid. 

 

SCOPE: 

With a general set of conditions and optimized access to RAEs 10 and 11 in hand, the scope of this 

methodology was evaluated across a range of aryl iodides (and an aryl bromide) as shown in Table 

1. Many functional groups that would be problematic in conventional cross-couplings are well 

tolerated in this transformation. For instance, ortho-substituted arenes do not diminish reactivity 

(17b, 17d, 17e, 17o, 18d). Boronic ester and halide-containing arenes can be employed (17c, 17f, 

17o, 17p, 18c, 18d). Reducible functionality such as free aldehydes 17i and 18b or nitrile 17e can 

be employed. The presence of sulfur atoms does not inhibit the reaction (17d, 17m, 17n). Easily 

oxidizable electron-rich arenes remain unscathed in this coupling (17h, 17q, 18a). Of note, highly 

oxidatively sensitive motifs such as free phenols and anilines participate smoothly (17g, 18b, 18c). 

Finally, a range of Lewis-basic heterocycles can be easily coupled (17j, 17k, 17l, 17o, 17p). This 

electrocatalytic method is uniformly superior to state-of-the-art photocatalytic conditions as 

benchmarked on substrates 17a, 17c, 17d, 17e, 17j, 17l, and 17q. An electron-deficient aryl 

bromide (18c) was also employed to demonstrate the satisfactory coupling efficiency. The strategy 

outlined herein is also applicable to other chiral scaffolds based on a-heteroatom substituted acids 

as exemplified with substrates 19-21. In these cases, 1,2-stereocontrol (rather than SRS) leads to 

uniformly high dr in the cross-coupling. Thus, it opens the door to a limitless range of structures 

containing aminoalcohols and chiral diols without recourse to conventional methods that lack 

modularity (chiral epoxide opening, aminohydroxylation, and dihydroxylation).36 This chemistry 

is easily scaled up as will be discussed in the next section. With regards to limitations, the cyclic 

acetal 22 could not be easily obtained as a single diastereomer. In accord with Seebach’s studies, 
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a RAE 23, regioisomeric variant of RAEs 10 and 11, led to low dr in the cross coupling presumably 

because the neighboring N-Boc group affects the ring conformation.37 Finally, 2,6-disubstitution 

(24), nitro groups (25), and substrates that were extremely electron donating (26) represent 

limitations of the aryl donor. 

 

APPLICATIONS AND SCALE-UP: 

Radical retrosynthetic logic has now been shown on numerous occasions to simplify synthetic 

routes.22,23 Similarly, the radical cross coupling approach delineated herein can be leveraged to 

procure chiral aminoalcohol-containing structures that previously required tedious routes guided 

by polar bond analysis. At a high-level, the strategic advantage exemplified with this approach 

involves the modular attachment of the aminoalcohol motif stereoselectively, rather than its 

stepwise construction. As a result, the current approach provides a much simpler and intuitive 

avenue. For example, the simple derivatization of the selected coupling products shown in Figure 

3 led to medicinally useful building blocks (27, 28) or a marketed drug (1). Previous routes to 

Table 1. Reaction generality and limitations.  
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synthesize these compounds are much longer, involving numerous reactions that are undesired 

from both safety (toxic intermediates, hazardous/explosive reagents, high-pressure reaction) and 

sustainability (precious metal-based hydrogenation) perspectives.38–40 In some cases, the 

enantioselective step requires Ru-based catalysts (Noyori reduction for 27)40 or complex thiourea 

catalysts (asymmetric Henry reaction for 1).39 The Ni-electrocatalytic approach can now offer new 

access to an emerging tuberculosis medicine, GSK-656 (4). Thus, unique boron-containing drug 

candidate exhibits highly selective inhibitory activity to Mycobacterium tuberculosis leucyl-tRNA 

synthetase (LeuRS) and is currently in Phase II clinical trials as a promising candidate for 

multidrug-resistant tuberculosis.8,9 The current most practical synthesis involves a 9-step route 

using an asymmetric Cu-catalyzed Henry reaction as a key step for the construction of the 

aminoalcohol motif.41 Although the route is optimized and scalable, multiple Pd-based 

hydrogenation steps and redox manipulations reduce ideality. In contrast, the Ni-electrocatalytic 

approach enables straightforward access to 4 by simply coupling the aminoalcohol unit into aryl 
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iodide 12, followed by boron-installation and protecting group removal. Notably, overall yield was 

considerably improved (33% compared to 7% in the previous route). This particular coupling 

(12+11) was easily performed on gram-scale without the Ag additive, albeit in slightly diminished 

yield, demonstrating robustness of the electrochemical coupling. Finally, the Ni-electrocatalytic 
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approach can provide a new route to well-established drugs that have a large market size.7 For 

example, Indacaterol 2 is a long-acting beta-adrenoceptor agonist developed by Novartis.42 Its 

enantioselective synthesis involves laborious construction of the chiral aminoalcohol motif from 

8-hydroxyquinoline 39, resulting in a 9-step synthesis (longest linear sequence).42–44 Instead, by 

just “attaching” the key aminoalcohol motif 11 to readily accessible heteroaryl iodide 36, the 

synthesis was considerably truncated to 5 steps. The routes to Salmeterol 345 and Vilanterol 47,46 

widely used bronchodilators, can be similarly simplified. Due to their structural similarity, a 

divergent synthesis of these two top-selling drugs was envisioned using 44 as a common 

intermediate. The key Ni-electrocatalytic coupling of free phenol 43 with 11 was performed on  

decagram scale (18 g) without Ag to demonstrate the practicality of this approach. With ample 

supplies of 44 in hand, trivial disposal of the hemiaminal and Boc group (TFA) followed by 

reductive amination (conveniently performed in one-pot) successfully furnished 3 and 47 in merely 

two steps from inexpensive precursor 43.  

 

CONCLUSION: 

In this study, modular and stereocontrolled access to variety of substituted chiral aminoalcohols 

was developed by leveraging the power of Ni-electrocatalytic decarboxylative coupling. A simple, 

isoserine-derived oxazolidine was identified as a useful template to enable highly 

diastereoselective installation of an aminoacohol unit. The high stereochemical fidelity is based 

on Seebach’s SRS principle, which is an underutilized strategy in the context of stereocontrolled 

radical cross coupling. The reaction allow for the coupling of a variety of (hetero)aryl halides and 

tolerates functional groups that are problematic for cross-coupling in general such as free phenols 

and anilines. The reaction is robust and scalable, which is evident in the success of gram-scale 

couplings for compound 30 and 44. In addition, omission of Ag additive on scale further improves 

the practicality and reduces heterogeneity of reaction conditions. The utility of the reaction is 

illustrated in syntheses of 7 useful intermediates or drugs, 4 of which are highly important drugs 

(GSK-656: emerging multidrug-resistant tuberculosis, indacaterol/salmeterol/vilanterol: > 

hundreds of million $ in sales). Of note, the routes developed in this work are considerably more 

concise than their latest process routes, due to completely different disconnections enabled by 

modular Ni-electrocatalytic coupling and radical retrosynthetic logic. Such 1e- disconnections that 

are polarity agnostic enable modular “attachment” of an aminoalcohol unit rather than tedious 
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construction via canonical 2e- reactions such as epoxidation, ketone reduction, and carbonyl-based 

C–C bond formations which are invariably accompanied by protecting/functional group/redox 

manipulations. This work adds to the growing body of literature demonstrating the value of 

stereocontrolled radical coupling to simplify synthesis.47–50 
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