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Abstract

Most QM-cluster models of enzymes are constructed based on X-ray crystal structures, which

limits comparison to in vivo structure and mechanism. The active site of chorismate mutase

from Bacillus subtilis and the enzymatic transformation of chorismate to prephenate is used

as a case study to guide construction of QM-cluster models built first from the X-ray crystal

structure, then from molecular dynamics (MD) simulation snapshots. The Residue Interac-

tion Network-based ResidUe Selector (RINRUS ) software toolkit, developed by our group to

simplify and automate the construction of QM-cluster models, is expanded to handle MD to

QM-cluster model workflows. Several options, some employing novel topological clustering

from Residue Interaction Network (RIN) information, are evaluated for generating conforma-

tional clustering from MD simulation. RINRUS then generates a statistical thermodynamic

framework for QM-cluster modeling of the chorismate mutase mechanism via refining 250
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MD frames with Density Functional Theory (DFT). The 250 QM-cluster models sampled

provide a mean ∆G‡ of 10.3 ± 2.6 kcal mol-1 compared to the experimental value of 15.4

kcal mol-1 at 25 0C. While the difference between theory and experiment is consequential,

the level of theory used is modest and therefore “chemical” accuracy is unexpected. More

important are the comparisons made between QM-cluster models designed from the X-ray

crystal structure versus those from MD frames. The large variations in kinetic and ther-

modynamic properties arise from geometric changes in the ensemble of QM-cluster models,

rather from the composition of the QM-cluster models or from the active site-solvent inter-

face. The findings open the way for further quantitative and reproducible calibration in the

field of computational enzymology using the model construction framework afforded with

the RINRUS software toolkit.

Introduction

Through multiscale QM/MM or QM-only “cluster model” studies, stationary points along a

reaction mechanism can be optimized, which allows a structural probe of the enzyme kinet-

ics that is impossible to directly observe experimentally.1 As the reliability of computational

enzymology and the tractable size of QM-regions increase, a greater focus on cyberinfrastruc-

ture is required for building consistent and reproducible atomic-level enzyme models. Our

group has developed the Residue Interaction Network ResidUe Selector (RINRUS ) software

toolkit to facilitate studying the reaction mechanisms of enzymes with quantum chemistry.2–4

Instead of relying on chemical intuition or distance-based criteria to prioritize the critical

fragments within the enzyme active site, RINRUS algorithmically constructs enzyme mod-

els based on several possible qualitative and quantitative criteria. In this work, we explore

the enzyme chorismate mutase in conjunction with a proof-of-concept expansion of RINRUS

capabilities: interfacing QM-cluster modeling with Molecular Dynamics (MD) techniques.

Chorismate mutase (CM) catalyzes the reaction of chorismate to prephenate, participat-
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Scheme 1: Schematic representation of the Claisen rearrangement of chorismate to prephen-
ate

ing in the shikimate pathway that biologically produces phenylalanine and tyrosine amino

acids (Scheme 1).5–14 The shikimate pathway does not occur in the animal kingdom, and

thus provides a target for the development of new antibiotics, fungicides, and herbicides.15

While chorimsate mutase has been widely studied experimentally and computationally, there

are still mysteries to be unraveled with respect to the extraordinary kinetic enhancement of

its active site. The chorismate mutase enzymatic reaction promotes a 106-fold rate accelera-

tion of prephenate production through a Claisen rearrangement in the catalytic elementary

step.16,17 This Claisen rearrangement is one of the few known examples of a naturally-

occurring catalyzed pericyclic reaction.18 In 1993, Lipscomb and coworkers published an

X-ray crystal structure of Bacillus subtilis chorismate mutase (BsCM, PDB: 2CHT) at 2.2

Å resolution that forms the basis of most theoretical works.19 This structure contains an

endo-oxabicyclic transition state analogue (TSA), 8-hydroxy-2-oxa-bicyclo[3.3.1]non-6-ene-

3,5-dicarboxylic acid, which offered structural insight into the enzyme mechanism. Since the

pericyclic reaction does not involve covalent substrate-protein bonding or acid-base chem-

istry, CM makes an intriguing, and in some respects, simplified case study of enzyme catal-

ysis.20,21

Mutagenesis, computational enzymology, and biochemical kinetics have been indispens-

able tools to study the mechanism of the CM reaction, especially for exploring the transition

state stabilization (TSS) and near-attack conformation (NAC) hypotheses or for describ-
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ing manifestations of their complementary kinetic and thermodynamic behavior.9,18,22–25

Mutagenesis experiments of Escherichia coli chorismate mutase (EcCM)26–30 and BsCM

revealed the catalytic importance of many charged active site residues for establishing hy-

drogen bonding with the negatively charged substrate. For example, replacement of Arg90

with a positively-charged lysine still decreases the catalytic efficiency by at least three orders

of magnitude in BsCM.19,31

Theoretical studies of chorismate mutase with QM/MM-MD first emphasized the im-

portance of a near attack conformation (NAC) as the main catalytic driving power behind

the proposed mechanism.20,32,33 Studies done by Bruice and co-worker showed that NAC

rearrangement of chorismate structure is a result of activated carbon and oxygen ligand

atoms approaching within the van der Waals contact distance at very small bond angles,

creating a favorable orientation of π-orbital overlap.20,32 The proponents of the NAC hy-

pothesis focus on geometric distortion of the substrate in the active site. However, those

who argue for the TSS hypothesis indicate that positively charged residues like Lys39 in

EcCM and Arg90 in BsCM stabilize the developing negative charge during bond breaking

at the ether oxygen.25,31,34 Bond-breaking then leads to electrostatic stabilization of active

site residues, lowering the activation energy. Subsequent QM/MM and QM-cluster model

calculations have provided evidence that catalysis is due to both near attack conformation

and transition state stabilization, but with TSS being the main driving force of the proposed

mechanism.21,22,35

While computational enzymology has advanced rapidly over the last two decades,6,36–38

one persistent challenge in this research area is designing effective QM-regions that reliably

predict catalytic activity, with kinetic and thermodynamic properties that can converge

quickly with respect to model size. Ad hoc methods of selecting residues for inclusion in

the QM regions of QM/MM models or in QM-cluster models are poorly reproducible and

not well calibrated. One technique for QM region selection is to include all residues that

are within a specific radial distance from the center of the active site or from the center of
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mass of the substrate. This construction paradigm is based on the idea that spherical active

site models are appropriate. Several studies by our group and others reveal that this is not

always the case,3,4,39–46 though CM active sites are known to be fairly compact and spherical.

To facilitate improved benchmarking in computational enzymology, our group has created

the RINRUS software toolkit to automate the process of generating QM-cluster models. Our

goal is to address various community-wide challenges in computational enzymology, such

as standardizing QM-cluster (and eventually QM/MM) model construction, lowering the

learning curve for new users, and reducing trial and error caused by ad hoc model-building

schemes. RINRUS uses an automated approach to trim and cap the active site fragments.

With a given protein structure and a user-defined “seed”, which consists of the substrate

and any active site fragments necessary to describe the chemical reaction, RINRUS identifies

proximal fragments that have important non-covalent interactions with the seed using the

graph theory concept of the Residue Interaction Network (RIN).47,48

To summarize the RINRUS procedure, a protein structure is converted into a RIN graph

composed of only a subset of the fragments (referred to as “nodes” in graph theory) that have

an identifiable electrostatic and/or steric interaction (referred to as “edges” in graph theory)

with the seed nodes.47,48 The RIN is then processed using one or more user-selected schemes

that identify qualitative interaction types (Structural Interaction Fingerprints, SIFs)49 or

quantitative schemes that utilize first-principles interaction energies like symmetry-adapted

perturbation theory (SAPT or F/I-SAPT, see below).50–53 RINRUS can also be used to rank

fragments via distance-based criteria. Once a ranking scheme is chosen and fragment rank is

enumerated, RINRUS will algorithmically construct QM-cluster models and provide input

files formatted appropriately for several commercial and open-source quantum chemistry

software packages.

This work has two major objectives. First, we analyze how specific residues influence the

enzymatic reaction and contribute to the convergence of RINRUS -built QM-cluster mod-

els of chorismate mutase. Multiple fragment ranking schemes are explored and compared,
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with models built incrementally, growing by one fragment at a time. Second, we explore

QM-cluster modeling in a quasi time-dependent fashion by sampling MD snapshots with

refined QM-cluster models to account for conformational averaging. Thermally stable con-

formational change is one of the most important aspects of regulating protein structure and

activity, and conformational sampling of enzymes is typically probed on the micro-second

time scale via MD simulations.54 We have selected 250 snapshots from a 20 ns MD simula-

tion of BsCM and processed each with RINRUS to obtain 250 different QM-cluster models.

The catalytic transition state for each of the 250 QM-cluster models is optimized, and via

computation of the connected reactant and product structures, kinetic and thermodynamic

data is obtained.

Methods

All computations were based on the X-ray crystal structure of the Bacillus subtilis choris-

mate mutase taken from PDB entry 2CHT. The 2CHT enzyme is trimeric with three active

sites formed at the interface of adjacent monomer chains. The active site of the crystallo-

graphic A/C chain was used for QM-model construction in this work. Further justification

of using the chain A/C interface is provided in the Supporting Information. Hydrogen atoms

were added to the enzyme using the reduce program.55 For all QM-cluster models and MD

simulations, the TSA found in the crystallographic active sites was replaced with the native

substrate (chorismate).

Incremental QM-cluster model building with RINRUS

RINRUS identifies and ranks inter-residue interactions based upon two existing packages

that compute the RIN and output node/edge information in machine and human-readable

formats. Probe 56 rolls a small sphere over the internal van der Waals surface of a protein

structure to identify and classify non-covalent interatomic interactions between fragments of
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a protein structure; arpeggio 57 uses interatomic distance and angle criteria to identify and

classify interactions. Throughout this work, “seed”, “substrate”, and “ligand” synonymously

refer to the chorismate molecule shown in Figure S1.

A good fragment ranking scheme is needed to design reliable QM-cluster models, which

is a core feature of the open-source RINRUS package.58 There are three different fragment

ranking schemes being tested in this work. The RINRUS-probe workflow ranks the impor-

tance of active site fragments based on the number of contact counts between each fragment

and the seed. When incrementally building models, fragments (categorized as residue side

chains, residue main chains, or solvent water molecules) are added to the model one at a time

in order from the fragment with the highest number of contacts with substrate to the low-

est. While probe parses interaction types into five simple SIF categories, arpeggio classifies

fourteen different chemical interaction type, based on the CREDO set of protein-substrate in-

teractions.59 While arpeggio also accounts for typical interaction types like hydrogen bonding

and hydrophobic contacts, it can also more flexibly account for weaker inter-residue inter-

actions such as aromatic π-stacking or less common interactions such as halogen bonds. It

should be noted that the proximal interactions computed by arpeggio are ignored in this

study because the focus is on fragments that have recognized intermolecular forces with the

chorismate substrate, rather than distance-based metrics.

Symmetry adapted perturbation theory (SAPT) has become an increasingly popular

approach for computing non-covalent interaction energies between two molecules or frag-

ments.50–52,60–63 SAPT calculations are especially useful in that the interaction energies are

readily decomposed into electrostatic, exchange-repulsion, induction, and dispersion com-

ponents. Functional-group SAPT (F-SAPT)52 is an extension of SAPT that provides an

effective secondary two-body partition of the SAPT components. This additional partition-

ing allows computation of interaction energy between a fragment A (in this case study, the

chorismate ligand) and user-defined sub-fragments of a fragment B (the various side chain

and backbone fragments of the active site). F-SAPT is leveraged to decompose the interac-
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tion energy between chorismate and individual residue main chains or side chains, without

cutting or capping fragments differently from what is used in the parent QM-cluster models.

We will use the F-SAPT interaction energies between chorismate and surrounding residue

fragments to rank incremental QM-cluster model building. This work uses the zeroth-order

formulation of F-SAPT, F-SAPT0, described by the equation:

Eint = E
(1)
elec + E

(1)
exh + [E

(2)
ind + E

(2)
exch−ind + δE

(2)
HF ]ind + [Edisp + E

(2)
exch−disp]disp (1)

F-SAPT0 computations employed the jun-cc-pVDZ basis set51,52 for all atoms and frozen core

electrons via the PSI4 v1.3 package.64 The jun-cc-pVDZ basis set has been demonstrated

to provide reliable SAPT interaction energies.65

In recent work, a poor correlation between number of probe contacts and F-SAPT inter-

action energies was observed.66,67 We then hypothesized that F-SAPT interaction energies

will be a more quantitatively reliable metric for ranking the importance of active site residues.

However, SAPT calculations are computationally expensive (days of CPU time) compared

to the near-negligible effort required to compute and parse a RIN from probe or arpeggio

ranking (< 20 seconds of CPU time).

QM-cluster models were generated using the RINRUS software.58 Trimming of residue

fragments is performed algorithimcally by RINRUS depending on if the backbone NH, back-

bone CO, and/or side chain of a residue has interatomic contacts with chorismate. Where

covalent bonds are broken in the trimming procedure (typically across Cα atoms), RINRUS

automatically adds hydrogen atoms to satisfy carbon valency. We refer throughout to the

QM-cluster model that contains all fragments with a quantifiable interaction with the cho-

rismate ligand as a “maximal model”. Trimming details for the maximal model of the X-ray

crystal structure active site are shown in Table S1. To maintain the general shape and mimic

the semi-rigid character of the protein tertiary structure, all Cα atoms, along with the Cβ

atoms of any Arg, Lys, Glu, Met, Trp, and Phe side chains were frozen to their crystallo-
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graphic positions (if obtained from the X-ray crystal structure) or frozen at their positions

in the respective MD frame (if obtained from MD simulation). All chorismate atoms were

unconstrained in the QM-cluster model computations.

The QM computations were carried out using the Gaussian16 software package.68 The

geometries of the models were optimized using density functional theory (DFT) with the

B3LYP exchange-correlation functional.69,70 The 6-31G(d′) basis set was used for N, O, and

S,71 and the 6-31G basis set was used for C and H atoms.60 The Grimme D3 (Becke-Johnson)

dispersion correction (GB3BJ) was also included,72 along with a conductor-like polarizable

continuum model (CPCM) using UAKS sets of atomic radii, a non-default electronic scaling

factor of 1.2, and default cavity parameters for water but with an attenuated dielectric

constant of ε = 4.73,74 Transition states were located for the elementary step of the proposed

mechanism, and the reactants and products were then confirmed by following the intrinsic

reaction coordinate (IRC). 1 The zero-point energies (ZPE) and thermal enthalpy/free energy

corrections were calculated at 1 atm and 298.15 K.

MD trajectory-based QM-cluster models

For the MD simulations, some pre-processing of the X-ray crystal structure was necessary.67

Missing residues in the 2CHT X-ray crystal structure were added from the C-terminus using

PDB entry 1DBF,75 a BsCM structure without substrate or TSA in complex with the protein.

The two structures were globally aligned and atomic coordinates from 1DBF were added

to the 2CHT structure based upon the point where the two structures begin a common

structural alignment. Specifically, residues 1 and 116-127 from 1DBF were added to 2CHT

for chain A, residues 1 and 115-127 were added for chain B, and residues 1-2 and 115-127

were added for chain C (with residues 2 and 115-119 of 2CHT chain C being replaced with

the corresponding coordinates from 1DBF). Hydrogen atoms were added to this structure

1It is important to note that our group employs the “freeze code” scheme in Gaussian16, in which all
Hessian elements are zero when two frozen Cartesian coordinates are involved. The phenomenon in which
several small magnitude imaginary vibrational frequencies appear in thermochemical analysis does not occur
in our treatment of the Hessian matrix.

9

https://doi.org/10.26434/chemrxiv-2023-fvzp6-v2 ORCID: https://orcid.org/0000-0002-1344-9734 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-fvzp6-v2
https://orcid.org/0000-0002-1344-9734
https://creativecommons.org/licenses/by-nc/4.0/


via the H++ server using default parameters.76 The native substrate chorismate in a pre-

reactive conformation was used in MD simulations instead of the TSA. The AMBER18 MD

package77 was used to run the MD simulations, and the AMBER force field ff14SB was used

with periodic boundary conditions and a cutoff value of 9 Å for non-bonded interactions.

The Antechamber package was employed to parameterize the chorismate substrate with the

Generalized Amber Force Field (GAFF).77,78 The protonated structure with chorismate was

solvated in a cubic 10 Å box of water with the explicit solvent model TIP3P.79 The MD

model charge was neutralized by adding 9 Na+ ions.80

An energy minimization of the system was first carried out with protein heavy atoms

constrained to their crystallographic coordinates using a harmonic positional restraint (kpos)

of 200 kcal mol-1/Å2 allowing the solvent bath to be initially relaxed and the hydrogen

bonding networks to be established. The protein heavy atom constraints were then iteratively

relaxed over five 20 ps simulations using Langevin dynamics under constant-temperature,

constant-pressure (NPT) conditions at 300 K and 1 atm; the SHAKE algorithm81 was used

to constrain all bonds involving hydrogen atoms for the initial equilibration simulation. The

protein was then allowed to move freely for a 20 ns production-level run. The timescale of

each frame was 1 ps, for a total of 20,000 frames. The protein RMSDs of MD trajectories

were calculated using the cpptraj module of AMBER18.82

Schemes for selection of frames for the QM-cluster models from

MD trajectories

Designing QM-cluster models from a large number of MD frames will allow consideration

of conformational influence on kinetic and thermodynamic quantities. Eight schemes are

considered in an attempt to cover a diverse sampling of conformations and non-equilibrium

structures. From each scheme, 20 to 40 MD frames are selected and then used to construct

a QM-cluster model of the active site. The first scheme considered (S1) is perhaps the most

common scheme for MD simulation sampling, and involves selecting MD frames at equal
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intervals over the course of an equilibrated simulation. This approach is effectively random

and unbiased. For the next set of schemes (S2, S3, and S4) we chose frames similar to the X-

ray crystal structure. Furthermore, it may be better to consider only the structural variations

of the active site residues rather than of the whole protein, and this idea is incorporated into

S3, S4, S6, S7, and S8. For the final set of schemes (S5, S6, S7, and S8) frames were grouped

by a specific metric and then k-means clustering divided the frames into 3 or 4 clusters. These

schemes should increase the structural diversity of QM-cluster model refinement. Again, note

that the Chain A/C interface was used to construct the QM-cluster models from each selected

MD frame. Detailed frame selection criteria are as follows.

S1 - Twenty frames were selected from the MD simulation at equal intervals of 1,000 ps

over the entire 20 ns equilibrated simulation.

S2 - The RMSD of the backbone atoms (C, O, Cα, N, and H) of the entire protein

structure compared to the X-ray crystal structure was measured for each frame. Frames

with an RMSD within ± 1 standard deviation (0.76 Å) of the mean RMSD (2.66 Å) were

isolated, and a random number generator was used to select 30 frames from this data set.

S3 - The RMSD of the backbone atoms of a selection of active site residues compared to

the X-ray crystal structure was measured for each frame. The subset of active site residues

was defined as all residues present in any of the QM-cluster models obtained from S1: Arg7,

Glu78, Arg90, Tyr108, Leu115, Phe57, Ala59, Lys60, Arg63, Val73, Thr74, and Cys75.

Frames with an active site backbone RMSD within ± 1 standard deviation (0.09 Å) of the

mean RMSD (0.84 Å) were isolated, and a random number generator was used to select 30

frames from this data set.

S4 - This scheme used the RMSD of the side chain atoms of the active site residues (listed

in S3) compared to the X-ray crystal structure. Frames with a side chain backbone RMSD

within ± 1 standard deviation (0.16 Å) of the mean RMSD (1.66 Å) were isolated, and a

random number generator was used to select 30 frames from this data set.

S5 - The RMSD of all heavy (non-hydrogen) atoms of protein and chorismate compared
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to the X-ray crystal structure was measured for each frame. K-means clustering was used

to group the frames into three distinct clusters based on the gap statistic and elbow plots

shown in Figure S2, and a random number generator was used to select 10 frames from each

of the three clusters.

S6 - The RMSD of the backbone atoms of only the active site residues (from S3) compared

to the X-ray crystal structure was measured for each frame. Based on analysis of the RMSD

using the gap statistic and elbow plots in Figure S3, it became apparent that there is only

one unique k-means cluster. We then subdivided the data into four clusters and randomly

selected 10 frames from each of the four clusters.

S7 - This scheme used the RMSD of the side chain atoms of the active site residues

compared to the X-ray crystal structure instead of the backbone atoms. Similar to S6, k-

means clustering with the active site side chain atom RMSD values was not a useful technique

(Figure S4). The MD frames were still split into another four arbitrary clusters and randomly

selected to provide an unbiased sampling of 40 additional MD frames.

S8 - The number of probe contacts between chorismate and surrounding residues was

measured for each frame of the MD trajectory. K-means clustering grouped the frames into

distinct clusters. However, the gap statistics and elbow plots shown in Figure S5 indicate

our MD frames are not easily clustered into less than 10 sets, so the clustering is truncated

at k = 3. A random number generator was used to randomly select 10 frames from each of

the three clusters.

From the eight selection schemes, a total of 250 unique MD frames were chosen and

then refined into QM-cluster models generated by RINRUS. Note that the composition

of the QM-cluster models is not uniform. Each QM-cluster model constructed from MD

includes all fragments recognized by the probe software as having inter-residue interactions

with chorismate for that specific MD frame. Interestingly, nearly adjacent and even adjacent

frames that were selected by the various schemes showed non-uniform RIN composition

[frames 159 (S8) and 161 (S7); 1218 (S6) and 1221 (S7); 2473 (S8) and 2475 (S6); 7603 (S6)
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and 7607 (S5); 9748 (S6) and 9750 (S2); 12378 (S6) and 12379 (S5), 19719 (S2) and 19721

(S7)]. Active site RIN composition of the adjacent frames 12378 and 12379 is shown in Table

S2.

Results and Discussion

Building QM-cluster models with different ranking schemes

We began by examining how different schemes to prioritize residue interactions affect the

construction of QM-cluster models and the convergence of predicted reaction properties. Full

information about model size, model charge, and kinetic and thermodynamic properties are

provided for all iterative building schemes in Tables S1 and S3. Using the X-ray crystal

structure, 12 QM-cluster models were built by incrementally adding one residue based on

their cumulative probe contact counts with chorismate within the X-ray crystal structure.

The maximal probe-derived model, which includes all residues with any probe contact with

the chorismate, contains 203 atoms and is shown in Figure 1.

The computed ∆G‡ and ∆Grxn values is plotted in Figure 2 for the Claisen rearrangement

reaction as model size increases. For this study, we define models as being converged for a

given building scheme if both ∆G‡ and ∆Grxn of a model and all subsequent larger models

are within ± 1 (tight convergence criteria) or ± 3 kcal mol-1 (loose convergence criteria) of

their reference values (∆G‡ and ∆Grxn of the maximal model), respectively. The maximal

probe-based RINRUS -designed QM-cluster model has values of ∆G‡ = 9.1 kcal mol-1 and

∆Grxn = -16.3 kcal mol-1. As the size of the model increases, the predicted ∆G‡ and ∆Grxn

become converged at the 155-atom model within the defined metric of convergence of ±

3 kcal mol-1, after Arg63 was added to the 133-atom model. None of the probe models

converge both ∆G‡ and ∆Grxn to within 1.0 kcal mol-1 of the maximal QM-cluster model.

Overall, the ∆Grxn value qualitatively agrees with other QM-cluster model and QM/MM

studies of the chorismate mutase catalytic step that exhibited strongly exergonic reaction
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free energies.5,12,16,22,35,83,84 Below, we will explain why the computed ∆G‡ of converged and

maximal QM-cluster models is significantly lower than the known experimental value.

The Arpeggio interaction classification may be more robust than probe in that it is not

inherently limited to only the local interatomic contacts. Indeed, all residues identified in

the probe ranking scheme are included in the arpeggio ranking scheme in addition to Glu78,

as well as the side chains of Val73, where only backbone atoms had been included in the

probe-based models as shown in Table S4. Due to differences in which specific residue atoms

interact with chorismate, some fragments in the arpeggio-based models are trimmed and

capped differently. Additional details of the arpeggio trimming scheme are shown in Table

S1. The maximal arpeggio-based model has 245 atoms, which makes it somewhat larger than

the maximal probe-based model (203 atoms). Figure 3 shows the computed values of ∆G‡

and ∆Grxn when employing the arpeggio-based RIN to construct the QM-cluster models.

The maximal arpeggio-based model (used as the reference for convergence tests) has ∆G‡ =

10.2 kcal mol-1 and ∆Grxn = -16.1 kcal mol-1.

Arpeggio-based models predict satisfactory convergence for ∆G‡ and ∆Grxn (Figure 3,

magenta plot) once QM-cluster models are larger than 200 atoms. However, we see a dra-

matic disruption of convergence in the reaction free energy when Thr74 is added to form

the 136-atom model. The computed ∆Grxn of -36.3 kcal mol-1 is artificially too negative

because the chorismate translates far out of the active site in the optimized product struc-

ture. Once Arg90 is added to form the 158-atom model, the chorismate is properly posed;

all substrate-arginine hydrogen bonds seen in the maximal model are accounted for. While

no arpeggio-based models have both ∆Grxn and ∆G‡ converged within ± 1 kcal mol-1 of

the maximal model, convergence to the looser ± 3 kcal mol-1 threshold appears once the

177-atom model is constructed.

One limitation with the arpeggio scheme is the more frequent occurrence of tie scores

for the number of interaction counts. While the number of probe contacts can vary over

3–4 orders of magnitude as it is linked to the continuous inter-residue surface area, arpeggio
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interaction count scores will be much smaller as values arise from summing the categorical

presence/absence of interaction types. The RINRUS code does not yet preferentially discern

between fragments with tied rankings, so there is no chemical significance to the output

ordering for those residues. However, depending on which residues are selected in a tie

situation, the convergence of ∆G‡ and ∆Grxn values can be affected.

In situations where there is a tie in the number of arpeggio contact counts, we have

manually reordered the RINRUS ranking list. First, the number of arpeggio contact types

are used to break the tie. However, if there are fragments where the number of contact

types is also tied, the following convention was used to manually prioritize ranking: charged

residues > polar > non-polar residues. In situations where there is still a tie between residues

of the same category, the probe-based contact count ranking was used to break the tie, as

in the case of Thr74 being added before Tyr108. Improvements to the RINRUS code to

automatically account for tie-breaking in either probe or arpeggio rankings are currently

in development. Further details about probe, arpeggio, and tie-broken arpeggio QM-cluster

models is given in Table S1.

The tie-broken arpeggio-based models (Figure 3, brown plot) show quicker convergence

to the ∆G‡ value of the maximal model (10.2 kcal mol-1) than in the original arpeggio

building scheme. Adding Arg90 before Thr74 via the tie-breaking scheme also eliminates

the odd disruption of ∆Grxn convergence. However, there is still no model where both the

∆Grxn and ∆G‡ are converged to within ± 1 kcal mol-1 of the maximal model. Tie-broken

arpeggio-based models have kinetic and thermodynamic values converging to the loose ± 3

kcal mol-1 threshold starting with the 191-atom model. The tie-broken models do not have a

significant effect on kinetic or thermodynamic convergence beyond fixing the spurious ∆G‡

value. However, avoiding random ordering of fragments that have tied contact count or

contact type values seems prudent until an automated approach is available.

A third scheme using quantitative chorismate-residue interaction energies as a ranking

method was evaluated. As observed in previous work,66,67 the F-SAPT interaction energies
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prioritize important charged residues which play a key role in transition state stabilization.

Our analysis of several proteins (including chorismate mutase) indicated no apparent corre-

lation between number of probe contact counts and E int between noncovalently interacting

biochemical fragments, raising concern that probe may de-emphasize residues that have a

strong, but directional electrostatic interaction with seed fragments. The substrate-residue

interaction energies were computed using F-SAPT0, and a series of 11 QM-cluster mod-

els were first constructed by adding fragments ranked from largest negative E int with the

chorismate substrate to the largest positive E int value (Table S5). It must be recognized

that a negative total F-SAPT interaction energy signifies a favorable interaction between a

residue fragment and chorismate, while a positive total F-SAPT interaction energy describes

a repulsive interaction. Given a dianionic chorismate substrate, it was expected that posi-

tively charged residues will be ranked first, then polar residues, then nonpolar residues, then

negatively charged residues. The initial F-SAPT scheme ranked the four positively charged

residues highest; Arg7 is first (E int = -140.5 kcal mol-1), followed by Arg63 (E int = -133.2

kcal mol-1), then Arg90 (E int = -113.0 kcal mol-1), and Lys60 (E int = -78.1 kcal mol-1). For

comparison to a few polar residues, the E int of Tyr108 and Thr74 are -15.5 kcal mol-1 and

+10.9 kcal mol-1, respectively.

Matching literature precedence, the probe and arpeggio schemes for constructing QM-

cluster models frequently de-prioritize charged residues compared to F-SAPT.67 While Arg7

is ranked first or second in all three schemes, Arg90 is ranked 3rd by F-SAPT, 5th by

probe, and 6th by arpeggio, as illustrated in Tables S4 and S6. Arg63 (1st by F-SAPT) was

ranked 8th by probe and 3rd by arpeggio. A visual relationship between probe contacts and

the orientation of important charged active site arginine residues can be seen in Figure S6.

Phe57 is ranked first in the probe ranking scheme with a total of 288 contacts with chorismate

(highlighted in grey in Figure S6), but only has an F-SAPT E int of -2.0 kcal mol-1 and is

ranked 10th. Arg63 has only 97 probe (highlighted in yellow) interaction counts, making

it the 8th ranked fragment, but again has the second largest negative F-SAPT interaction
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energy. Charged active site amino acid residues are crucial for both NAC and TSS of

the chorismate substrate. Yet Arg7 is the only one of four positively charged residues in

the BsCM active site that is ranked consistently high in the probe, arpeggio, and F-SAPT

schemes. Our F-SAPT results strongly suggest large residue side chains can be oriented in

such a way that they provide strong hydrogen bonds within an active site, but have low RIN

contact count values.

In a recent analysis of glycine-N-methyltransferase,85 we recognized that residues with

strongly unfavorable (positive) interaction energies should be ranked higher than residues

with near-zero F-SAPT interaction energies. Ranking fragments by |Eint| will thus prioritize

negatively charged active site fragments that have a large, but unfavorable interaction with

the dianionic substrate before fragments that have a small or negligible interaction with the

substrate. Semantically, the difference between F-SAPT schemes is subtle, but the quality

of QM-cluster models could be substantially affected by this choice. The ∆G‡ and ∆Grxn

values for the two F-SAPT ranking schemes (signed in magenta and unsigned in brown) are

overlaid in Figure 4. Both schemes overlap until the 139-atom model, where Ala59 is next

added in the signed scheme and Thr74 is added in the unsigned scheme.

As the F-SAPT calculations were derived from the maximal probe model, the probe,

signed and unsigned F-SAPT schemes will all have an equivalent maximal model (∆G‡ =

9.1 kcal mol-1 and ∆Grxn = -16.3 kcal mol-1) that does not need to be recomputed. The

unsigned F-SAPT ranking scheme exhibits slightly improved convergence over the signed

scheme, as the last three unsigned models were within ± 3 kcal mol-1 of the maximal model

for both ∆G‡ and ∆Grxn values (Table S6). Despite the expectation that QM-cluster models

derived from F-SAPT rankings would be optimal, none of the truncated F-SAPT models

are within ± 1 kcal mol-1 of both the ∆G‡ and ∆Grxn values. Thus, there is little quali-

tative difference between the largest QM-cluster models built with the F-SAPT, probe, or

arpeggio ranking schemes. The F-SAPT scheme is also quite computationally expensive on

the front end compared to probe and arpeggio schemes. Generally, only QM-cluster models
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of chorismate mutase that closely resemble the maximal models are reliable. To ascertain

how more liberally truncated models can appropriately reproduce NAC or TSS phenomena,

a brute force or combinatorial approach (like the RINRUS-based investigation of Catechol-

O-Methyltransferase)4 would need to be carried out on the chorismate mutase active site.

Previous eznymology studies done by our group have shown that B3LYP generally under-

estimates free energies of activation compared to experiment.2–4,85 Accordingly, all ranking

schemes had maximal QM-cluster models of the chorismate mutase active site that exhibited

∆G‡ values significantly lower than the experimental value86 of 15.4 ± 0.5 kcal mol-1. The

maximal F-SAPT / probe-based model predicted an activation free energy of 9.1 kcal mol-1,

while the maximal arpeggio-based model predicted 10.2 kcal mol-1. QM-cluster models

reported by Burschowsky and coauthors at the B3LYP/6-31G(d)//B3LYP/6-311+G(d,p)

level of theory arrived at an even lower ∆G‡ value for the chorismate mutase catalysis (8.6

kcal mol-1).35 It is important to stress that this work is not concerned with accuracy of the

QM-cluster models, but focused on understanding how kinetics and thermodynamics are

influenced by the decisions involved in QM-cluster model construction.

Our lab (and others) are exploring much-needed benchmarks of one-electron basis set

and density functional on enzyme models.45,46,87–92 To avoid model construction contribut-

ing to kinetic and thermodynamic errors, the current study demonstrates that QM-cluster

models require, at minimum, over ∼150 atoms. This lower bound to model size unfor-

tunately guarantees that employing large basis sets and double-hybrid density functionals

will be intractable for most production-level exploration of enzyme chemical mechanisms.

Ideally, the community will arrive at a consensus on methodological best practices in QM-

cluster modeling to accurately and efficiently compare to experimental observation. Until

then, dispersion-corrected B3LYP with small Pople-style basis sets is an efficient and mostly

reliable level of theory for calibrating the error arising from QM-cluster model composition.
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Building QM-cluster models from MD frames

Next, we explore the impact that fluctuations of residue and substrate positioning can have

on both the design of QM-cluster modeling and the resulting kinetic and thermodynamic

properties. First, 250 frames from a 20 ns MD simulation of solvated chorismate mutase

were sampled to construct maximal QM-cluster models of the active site using probe contacts.

Structures from MD simulations can be advantageous over crystallographic structures in their

unambiguous hydration shells and energy relaxation of the active site structure based on in

vivo substrates rather than inhibitors or transition state analogues. However, building QM-

models from MD simulations will incorporate statistical uncertainty, as sampling many MD

frames are required to represent the diversity of structural conformations.93–95 In particular,

we examine three features particularly relevant for QM-cluster modeling that are expected to

cause variation in the predicted reaction properties: 1) the number and identity of residues

included in the model, 2) the number of waters included in the model, and 3) the statistical

ensemble of sampled frames.

In plotting the activation and reaction free energies for all 250 MD-derived QM-cluster

models (Figure 5, Figure S7, and Table 1), there is a wide range of values wherein the

mean activation free energy is 10.3 ± 2.6 kcal mol-1 and the mean free energy of reaction

is −15.4 ± 3.4 kcal mol-1. These ranges encompass the converged values observed for QM-

cluster models built from the X-ray crystal structure, though this is unsurprising given the

large standard deviation observed in the ensemble of refined MD frames. The size of the

maximal QM-cluster models ranges from 158 to 240 atoms, with the five smallest models

containing only 8 residues and 5 or 6 waters and the largest model containing 13 residues

and 3 waters.

Using probe to identify active site fragments, a total of 22 residues were identified as

having at least one contact interaction with the substrate in at least one frame over the course

of the entire MD simulation. Table S7 shows the mean interaction counts of each identified

residue with chorismate. There is precedence that crystal packing leads to an increase in
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protein-substrate contact counts.67,96 However, replacement of the TSA with chorismate in

the X-ray crystal structure without a subsequent geometry relaxation does not create steric

clashes with the protein, which might have nonphysically amplified the contact counts. As

expected, the Arg90 and Arg7 residues have the highest mean contact counts, 116.3 and

78.3, respectively. Several residues appear in RINs during the entire MD run with very low

mean interaction counts (< 0.02) such as Ala9, Pro117, and residues 242-245. None of these

residues have inter-residue contacts with the TSA in the X-ray crystal structure. Pro117 is

the only “rare” residue from the entire MD simulation that also appears in the 250 selected

frames that were refined to QM-cluster models. The mean interaction counts of residues

modeled in the 250 QM-cluster models is similar to those observed in the 20000 RINs of

the MD simulation (Table S7). This similarity affirms that the selection schemes used to

refine MD frames into QM-cluster models are representative of the entire MD simulation.

From Tables S7 and S8, we find that consistently high-ranking active site residues common

to probe, arpeggio, and F-SAPT schemes can occasionally be missing entirely from specific

MD frames.

Surprisingly, QM-cluster models with atypical composition do not necessarily create ki-

netic or thermodynamic outliers. Frame 394 is the only member of the 250-frame subset to

not have any probe contacts with the Arg90 side chain. It also does not contain an Arg63

fragment, making it the only QM-cluster model with net -2 charge. The missing fragments

result in a spuriously high free energy of activation (see below). The QM-cluster models

made from frames 9464, 14007, 16450 are the only three of the 250 that have no probe con-

tacts between substrate and Leu115, yet all three have kinetic/thermodynamic properties

within the uncertainty range of the total set. Frames with rare residues have a small impact

on the overall kinetic and thermodynamic values. For example, the five QM-cluster models

that contain Pro117 have mean ∆G‡ and ∆Grxn values of 11.2 ± 2.9 kcal mol-1 and -15.1 ±

4.3 kcal mol-1, respectively.

Mean probe contact counts of the 250 QM-cluster models arising from MD sampling
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emphasize charged residues more than the X-ray crystal structure, but interestingly, Figure

S8 still shows a lack of correlation with F-SAPT —Eint| values computed at the X-ray

crystal structure. MD-averaged probe counts rank the first five residues as Arg90, Arg7,

Leu115, Ala59, and Arg63. The Lys60 residue has a mean contact count of only 2.9, but as

demonstrated earlier, has the 4th-largest |Eint| with the substrate. The mean probe contact

counts for Leu115 are large (72.3), but it has the smallest absolute F-SAPT interaction

energy. Of the uncharged side chain fragments, Tyr108 has the smallest mean probe count

(28.8) and the largest |Eint| value. These conflicting results demonstrate how various schemes

rank residue importance differently. Great challenges remain in quantifying the impact of

specific amino acid fragments on protein-substrate reactivity.

The catalytic activity of chorismate mutase is particularly driven by charge stabilization

interactions, which might be susceptible to differences in net model charge. Thus, it is of

interest to examine whether differences in model charge of QM-cluster models refined from

individual MD frames can account for the broad range of activation and reaction free energies

observed. Figure 6 shows the distribution of the net model charges for the 250 QM-cluster

models compared to the range of ∆G‡ and ∆Grxn values for each model. The net charge of

our 250 QM-cluster models varies from -2 to +2, with the majority (200 models) having an

overall neutral charge. QM-cluster models with a neutral model charge had mean ∆G‡ and

∆Grxn values of 10.1 ± 2.4 and -15.7 ± 3.3 kcal mol-1, respectively. Only one MD-based

QM-cluster model (frame 394) has a -2 net charge model and it provides anomalously high

values of ∆G‡ and ∆Grxn, 20.0 and -7.7 kcal mol-1, respectively. The outlying energetics of

frame 394 are likely due to missing Arg90 and Arg63 fragments, which have proven to be

critical for the enzyme catalysis.19,31 The 33 QM-cluster models with net +1 charge show

the largest range of ∆G‡ values, encompassing the highest (19.1 kcal mol-1, frame 4114)

and lowest (4.1 kcal mol-1, frame 8310) values. However, the mean energetic values are in

reasonable agreement with the complete set, 11.1 ± 3.6 kcal mol-1 for ∆G‡ and -14.0 ±

3.3 kcal mol-1 for ∆Grxn. The net charge of the QM-cluster models do not systematically
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influence the ∆G‡ and ∆Grxn values.

We have shown the maximal QM-cluster models based on the X-ray crystal structure,

from any of our building schemes, are expected to provide kinetics and reaction thermody-

namics that are reliably converged at a given level of theory (Figure 2). The 250 maximal

QM-cluster models derived from MD will have significant variations in the residues that are

included in each RIN. This heterogeneity opens the question: when comparing QM-cluster

models with the same fragment composition but with different active site conformation

and/or relative frozen atom positions, will the computed reaction kinetics and thermody-

namics show consistent values or large variance? To disentangle model composition from

model structure, the dataset is trimmed to only include MD-derived QM-cluster models

that have an identical composition. This data filtering ignores distinguishing models with

different water molecule positioning. The subset contained 144 total models in 37 different

bins (Figure S9). Among the groups of models with identical designs but taken from different

snapshots, the groups still show a wide distribution of ∆G‡ and ∆Grxn values, with ranges

from 4.1 to 16.4 kcal mol-1 for ∆G‡ and -28.8 to -6.7 kcal mol-1 for ∆Grxn. No patterns seem

to emerge from this data. If the bins in Figure S9 showed a narrow distribution of kinetics

and thermodynamics, we would conclude that the observed wide distribution of values in

the 250 QM-cluster models manifested from differences in active site fragment composition.

However, data in Figure S9 match the large variation of the total set of QM-cluster models

refined from the MD simulation. The variation must be due to conformational fluctuation

of active site residues and water molecules during the course of the MD trajectory.

The active site RIN from the X-ray crystal structure contains only a single crystallo-

graphically resolved water molecule shown to have interactions with the substrate captured

by probe. The chorismate mutase active site is small and quite solvent-exposed, but the lack

of crystallographically resolved water molecules is unsurprising (though rarely quantified in

the literature). The 3D protein structure is typically of greater interest than the poorly

resolved oxygen nuclei of the bulk solvent. In contrast, the QM-cluster models generated
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from the MD simulation encompass a comprehensive hydration shell. In the 250 MD frames

selected for QM-cluster model refinement, 2 to 10 water molecules are identified by probe

as having an interaction with chorismate (Figure 7). Intriguingly, the RINRUS -built QM-

cluster models of chorismate mutase derived from MD frames have on average 5.6 water

molecules interacting with the substrate. Frame 6981 is the only QM-cluster model with 2

waters in the active site, and ∆G‡ is predicted to be 10.8 kcal mol-1. At the other extreme,

the two QM-cluster models with 10 waters have a mean ∆G‡ value of 11.3 kcal mol-1. Only

29 models total have 2, 3, 8, 9, or 10 water molecules in the RIN. Despite low occurrence in

the sampled MD frames, these models have mean predicted ∆G‡ and ∆Grxn values of 10.9

± 3.0 kcal mol-1 and -14.8 ± 2.9 kcal mol-1, respectively; kinetics and thermodynamics are

within uncertainties of the total set of 250 models. The 221 QM-cluster models with 4 to

7 water molecules are qualitatively similar, 10.2 ± 2.6 kcal mol-1 for ∆G‡ and -15.4 ± 3.4

kcal mol-1 for ∆Grxn. Clearly, the number of waters in the BsCM active site has minimal

influence on the kinetic and thermodynamic properties of QM-cluster models. However, the

inclusion of any type of water network at the active site-solvent boundary in our MD-derived

QM-cluster models may be a factor in the ∼2 kcal mol-1 higher free energies of activation

observed compared to models constructed from the X-ray crystal structure.

Finally, we analyze groupings of the statistical ensemble of QM-cluster models (Table 1),

which showed minimal statistical difference with the overall mean kinetic and thermodynamic

values (∆G‡ = 10.3± 2.6 kcal mol-1 and ∆Grxn = −15.4± 3.4 kcal mol-1). Schemes labeled

XS2 to XS8, are expanded versions of S2 to S8, and include all frames from the 250 QM-

cluster models that fit the criteria of each Scheme. For example, XS2 includes the 30 frames

from S2 and the additional 118 frames from the 250 frame set that have an RMSD within 0.76

Å of the mean backbone atom RMSD. Kinetic and thermodynamic results for the expanded

schemes are given in Table 2.

The first scheme, S1, contains 20 frames and should be representative of a random and

unbiased distribution of activation and reaction free energies over the course of the entire
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MD simulation. Mean ∆G‡ and ∆Grxn values of the 20 frames used in S1 are lower than

the total set, but in reasonable agreement. Establishing that k-means clustering of S6 and

S7 was invalid, these two schemes also represent a random selection of frames. We combined

the frames of S1, S6, and S7 (100 total) into an expanded Scheme (S1 + S6 + S7) in Table

2. Interestingly, the kinetic and thermodynamic values of S1 + S6 + S7 are within 0.10

kcal mol-1 of the entire data set. This improved agreement suggests 20 randomly selected

frames (8% of the total data set) may not be a robust amount. Since most of the expanded

schemes have mean kinetic and thermodynamic values very similar to the total set of 250

MD frames, then a sample of 100 frames (40% of the data points in total set) may be an

upper bound needed to emulate the total set.

The next sets of schemes (S2, S3, and S4), take into account the fluctuation of the active

site residues and discard MD frames geometrically dissimilar to the X-ray crystal structure.

All three schemes predict mean ∆G‡ values slightly lower than the entire dataset. S2 and

S4 mean ∆Grxn values are lower than the total mean, while the S4 mean is slightly higher

than S2 and S3. The extended XS3 and XS4 schemes (Table 2) are closer to the total mean

statistics than XS2.

The S5 scheme used k-means clustering of the RMSDs (ranging from 1.46 to 4.22 Å

shown in Table S9) of the active site residues to group similar frames into clusters. The

three clusters for S5 are ordered from largest centroid RMSD value (S5-C1) to the lowest

(S5-C3). The (S5-C1) and (S5-C3) clusters have nearly the same mean ∆G‡ value, below

the mean ∆G‡ value of the total data set. The (S5-C2) cluster in contrast, is higher (11.0

kcal mol-1) than the total data set. Values of ∆Grxn become less negative as the centroid

RMSD value decreases from C3 to C1, and the extended Scheme XS5-C3 to XS5-C1 follows

the same pattern. Scheme S5 gives a mean ∆G‡ value closest to that of the total data set.

The mean ∆Grxn value for S5 is also quite close, but effectively random sampling in S6 and

S7 give a slightly better match to the total set.

The last scheme (S8) classified MD frames with k-means clustering according to probe
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interatomic contacts between the chorismate ligand and surrounding residues. All three

clusters of S8 predicted the mean ∆G‡ value to be 0.46 - 1.15 kcal mol-1 more negative than

the mean of the total dataset. The statistics of the expanded clusters of XS8 are much closer

to the total dataset. Notwithstanding, the largest magnitude differences between any frame

selection scheme and mean values of the 250 QM-cluster models are 0.62 kcal mol-1 for ∆G‡

and 1.56 kcal mol-1 for ∆Grxn. For the expanded schemes, the largest absolute differences

decrease to 0.17 kcal mol-1 for mean ∆G‡ and 0.78 kcal mol-1 for mean ∆Grxn.

In summary, efforts to find a subset of MD frame selection schemes that best reflect

the kinetic and thermodynamic values of a large statistical ensemble were inconclusive, yet

promising. All eight schemes shown in Table 1, with 20 - 40 MD frames in each refined

to QM-cluster models, give reasonable approximations to the larger set of 250 MD frames.

Expanded schemes with 69 - 186 selected MD frames give mean values even closer to the

larger data set. Schemes employing k-means clustering to partition frames via structural

metrics did not perform better than schemes with completely random selected MD frames.

However, the QM-cluster models were built from one of three trimeric BsCM active sites (the

Chain A/C interface) that exhibited the least conformational fluctuation during the course

of the 20 ns MD simulation. Machine-learned selection procedures like k-means clustering

may be more beneficial for enzymes with more disordered regions or that undergo substantial

conformational changes during the simulation time.

Conclusions

Over 50 QM-cluster models of Bacillus subtilis chorismate mutase based on the X-ray crys-

tal structure, and an additional 250 QM-cluster models obtained from sampling MD frames

were extensively tested with the RINRUS software package being developed by our group.

RINRUS automatically identifies and trims fragments that interact with a substrate, allow-

ing quantitative and reproducible analysis of how the active site fragments affect enzyme
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catalysis.

The smallest QM-cluster models built with probe, arpeggio and F-SAPT schemes showed

critical differences in how the kinetic and thermodynamics were altered by subsequent addi-

tion of residues. Once model building schemes approach the size of the “maximal” model,

all three iterative schemes behaved similarly. We have seen some methodological issues with

the arpeggio ranking scheme where ties can occur in the number of contact counts or con-

tact types. The tie issue in arpeggio was resolved manually, and fixed an outlying reaction

free energy that was observed in one of the smaller QM-cluster models. The solution to tie

interaction counts or types will require more automation to be incorporated into RINRUS

functionality.

The F-SAPT-based interaction energies highlight the importance of active site charged

residues. We recommend always using absolute values of F-SAPT interaction energies to

rank active site fragments in QM-cluster model construction. Rankings via signed inter-

action energies may de-prioritize important active site fragments that exhibit electrostatic

repulsion with a substrate. The unsigned F-SAPT ranking scheme showed slight improve-

ment of convergence compared to probe and arpeggio schemes, but no truncated models in

any of the schemes converged to within 1 kcal mol-1 of the respective maximal models. We

again validate that there is no correlation between the number of probe contact counts and

E int obtained from F-SAPT computations. More case studies are required to determine

if the small performance differences between schemes is related to the compact size of the

BsCM active site. Nevertheless, probe-based models, arpeggio and F-SAPT maximal models

are similar, providing evidence that the largest RINRUS -generated QM-cluster models are

robust and reliable.

As is widely known in the community and seen in our previous studies, B3LYP-GD3BJ

with small Pople-style basis sets and implicit solvation with CPCM systematically underes-

timates the free energies of activation of enzyme mechanisms compared to the experimental

kinetic value. A focus on the quality of the quantum chemical level of theory is purposefully
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avoided in this work, to instead efficiently provide insight about QM-cluster model building

approaches.

The crystallographic protein structure was then solvated within an explicit water bath

and, over a 20 ns equilibrated MD simulation, 250 frames were selected to construct 250 QM-

cluster models of the active site. The proposed catalyzed Claisen rearrangement mechanism

was computed for all QM-cluster 250 models, and the reaction thermodynamics are observed

to fluctuate, with the activation free energy spanning 10.34±2.62 kcal mol-1 and the reaction

free energy spanning −15.38 ± 3.40 kcal mol-1. The variation is shown to be primarily

due to the changes in residue/solvent/ligand positioning and conformation that occur over

the MD simulation, rather than differences in residue composition among the models. For

example, we noted that some active site residues highly ranked in the probe, arpeggio, and

F-SAPT schemes can be absent from specific MD frames when the residues shift to different

placements, but the computed kinetic and thermodynamic properties of those complexes

can still be reasonable given the QM-cluster model is suitably constructed. Furthermore,

while the catalytic mechanism is largely derived from charge stabilization interactions, and

we thus might expect the QM-cluster models to be very sensitive to changes in net model

charge. The results show most of the variation in ∆G‡ and ∆Grxn values is largely among

models with neutral net charge and a general insensitivity in predicted values with net charge

between ±1 was observed. The active site interface with bulk solvent is shown to influence

kinetics and thermodynamics of the QM-cluster models. However, the number of explicit

water molecules included in the models appear to be inconsequential.

Collectively, results from the MD to QM-cluster model refinement point to the changing

molecular positioning rather than model composition as the main source for changing reac-

tion thermodynamics over the sampled times. We attempted to trace the thermodynamic

differences to simple, easily quantifiable structural differences among the models, specifically

by grouping models based upon RMSDs in backbone or side chain atoms. Ultimately, none of

the metrics were better than random selection for acceptably sampling a statistical ensemble
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of structures. A more multifaceted technique will be required to efficiently cluster MD frames

for QM-cluster model refinement, especially if the enzyme undergoes major conformational

changes during the MD simulation.

This study exemplifies diverse features of the RINRUS toolkit by comparing the struc-

tural variation between X-ray crystal structure-based models and MD-based models of bacte-

rial chorismate mutase. Composition of QM-cluster models, or the QM region of a QM/MM

model is an essential part of reliability and accuracy in computational enzymology. For

far too long, a lack of automated model building techniques and software has hampered

advancement of the field as well as the reproducibility of seminal work. Here, QM-cluster

modeling provided insight into the enzymatic activity of chorismate mutase by connecting

the model composition, the contribution of charged residues, the influence of explicit solvent

water molecules, and positioning and orientation of active site residues to the computed

kinetic and thermodynamic values. Accompanying data can be easily used to perform fur-

ther cheminformatic analysis or to calibrate accuracy with more reliable quantum chemistry

methodologies; RINRUS was designed with reproducibility as a core feature.
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(29) Schnappauf, G.; Sträter, N.; Lipscomb, W. N.; Braus, G. H. A glutamate residue in

the catalytic center of the yeast chorismate mutase restricts enzyme activity to acidic

conditions. Proc. Natl. Acad. Sci. USA 1997, 94, 8491–8496.

32

https://doi.org/10.26434/chemrxiv-2023-fvzp6-v2 ORCID: https://orcid.org/0000-0002-1344-9734 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-fvzp6-v2
https://orcid.org/0000-0002-1344-9734
https://creativecommons.org/licenses/by-nc/4.0/


(30) Lassila, J. K.; Keeffe, J. R.; Kast, P.; Mayo, S. L. Exhaustive mutagenesis of six sec-

ondary active-site residues in Escherichia coli chorismate mutase shows the importance

of hydrophobic side chains and a helix N-capping position for stability and catalysis.

Biochem. 2007, 46, 6883–6891.
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Figure 1: 3D representation of the RINRUS maximal model, from the X-ray crystal structure
of Bacillus subtilis chorismate mutase, using the probe ranking scheme. Substrate carbon
atoms are colored in magenta. Except for those of the crystallographically resolved water
molecule, hydrogen atoms are omitted for clarity.
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Figure 2: Kinetics and thermodynamics of the iteratively grown QM-cluster models using the
probe ranking scheme. Computed ∆G‡ values are represented by circles and ∆Grxn values
by triangles. The black dashed line shows the experimental ∆G‡ value from reference.86
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Figure 3: Kinetics and thermodynamics of the iteratively grown QM-cluster models using
the arpeggio ranking scheme. Computed ∆G‡ values are represented by circles and ∆Grxn

values by triangles. The original ranking is given in magenta, while values from the tie-
breaking scheme are given in brown. The black dashed line shows the experimental ∆G‡

value from reference.86
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Figure 4: Kinetics and thermodynamics of the iteratively grown QM-cluster models using the
F-SAPT ranking scheme. Computed ∆G‡ values are represented by circles and ∆Grxn values
by triangles. The signed ranking order is given in magenta, while the unsigned ranking order
is given in brown. The black dashed line shows the experimental ∆G‡ value from reference.86
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Figure 5: Computed values of ∆G‡ (circle) and ∆Grxn (triangle) for the 250 maximal QM-
cluster models plotted against the select frame number (each representing a time scale of 1
ps). The black dashed line at the top is the experimental value from reference.86
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Figure 6: Charge distribution for the 250 QM-cluster models refined from MD frames. The
corresponding number of QM-cluster models for each net model charge is: charge -2 = 1
QM-cluster model, charge -1 = 14 QM-cluster models, charge 0 = 200 QM-cluster models,
charge +1 = 33 QM cluster models, and charge +2 = 2 QM-cluster models.
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Figure 7: Mean activation free energy (brown), reaction free energy (magenta), and number
of QM-cluster models with a given number of explicit water molecules (cyan) identified as
having interatomic contacts with the chorismate for the 250 QM-cluster models built from
selected MD frames.
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Table 1: Mean free energies of activation and reaction for the various MD frame selection
schemes. K-means clusters are labelled with a C (all in kcal mol-1).

Scheme Cluster # of frames ∆G‡ σ ∆Grxn σ

S1 20 10.07 ± 2.87 -16.23 ± 3.90
S2 30 10.12 ± 2.39 -16.28 ± 3.82
S3 30 10.03 ± 2.83 -14.99 ± 3.06
S4 30 10.06 ± 1.88 -15.92 ± 2.86
S5 30 10.29 ± 3.05 -15.57 ± 3.09

C1 10 9.90 ± 2.74 -16.78 ± 3.12
C2 10 11.03 ± 3.98 -15.54 ± 3.48
C3 10 9.95 ± 1.92 -14.40 ± 2.02

S6 40 10.23 ± 2.38 -15.24 ± 3.04
S7 40 10.74 ± 2.69 -15.35 ± 3.52
S8 30 10.96 ± 2.69 -13.82 ± 3.36

C1 10 10.83 ± 1.95 -13.85 ± 2.30
C2 10 10.80 ± 3.94 -13.57 ± 4.15
C3 10 11.49 ± 1.41 -14.06 ± 3.34

Combined 250 10.34 ± 2.62 -15.38 ± 3.40

Table 2: Mean free energies of activation and reaction for the expanded schemes. The
individual k-means clusters are labelled XC (all in kcal mol-1).

Scheme Cluster # of frames ∆G‡ σ ∆Grxn σ

S1+S6+S7 100 10.40 ± 2.63 -15.48 ± 3.44
XS2 148 10.17 ± 2.75 -15.64 ± 3.44
XS3 173 10.35 ± 2.70 -15.46 ± 3.50
XS4 186 10.39 ± 2.64 -15.36 ± 3.37
XS5

XC1 92 10.25 ± 2.63 -16.16 ± 3.92
XC2 89 10.30 ± 2.85 -15.00 ± 3.05
XC3 69 10.50 ± 2.28 -14.85 ± 2.83

XS8

XC1 77 10.42 ± 2.52 -15.38 ± 3.54
XC2 81 10.27 ± 2.86 -15.05 ± 3.39
XC3 92 10.32 ± 2.49 -15.69 ± 3.24

Combined 250 10.34 ± 2.62 -15.38 ± 3.40

48

https://doi.org/10.26434/chemrxiv-2023-fvzp6-v2 ORCID: https://orcid.org/0000-0002-1344-9734 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-fvzp6-v2
https://orcid.org/0000-0002-1344-9734
https://creativecommons.org/licenses/by-nc/4.0/

