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Abstract:  

The yield of a chemical reaction is obtained by solving the rate equation. This study 

introduces an approach for differentiating the yields using the parameters of the rate equation, 

which is expressed as a first-order linear differential equation. The yield derivative for a specific 

pair of reactant and product is derived by mathematically expressing the rate constant matrix 

contraction method, which is a simple kinetic analysis method. The parameters of the rate 

equation are the Gibbs energies of the intermediates and transition states in the reaction path 

network used to formulate the rate equation. Thus, the differentiating yield allows the numerical 

evaluation of the contribution of energy variation to the yield for each intermediate and transition 
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state in the reaction path network. In other words, a comparison of these values automatically 

extracts the factors affecting the yield from a complicated reaction path network consisting of 

numerous reaction paths and intermediates. This study verifies the behavior of the proposed 

approach through numerical experiments on the reaction path networks of a model system and 

the Rh-catalyzed hydroformylation reaction. Moreover, the possibility of using this approach for 

designing organometallic catalyst ligands is discussed. 

 

1. Introduction 

Chemical reactions are used in the manufacture of various products, such as medicines, 

clothing, and devices, and are a vital technology for human society. Much research has been 

conducted to develop reactions and improve their efficiency. In the research of chemical reactions, 

one of the critical challenges is to obtain the desired product selectively in high yields. Reaction 

yield is determined not only by the ease of the target reaction, but also by the competition between 

the target and side reactions. Therefore, chemists attempt to increase the reaction yield of the 

target product by using catalysts, modifying substrates, and optimizing reaction conditions. Most 

in silico reaction design focuses on the elementary steps that determine the yield of the desired 

product, the so-called rate- and selectivity-determining steps, and the modulation of the reaction 

barriers of the corresponding steps. However, a single reaction may have more than one or many 

such elementary steps (vide infra), and identifying all of them is generally not trivial. The in silico 

reaction design can go wrong if any of these steps are overlooked and not taken into account. It 

is generally challenging to systematically analyze all the possible side reactions experimentally. 

In contrast, quantum chemical calculations can be used to systematically search for paths of side 

reactions, which is expected to be helpful in identifying all rate- and selectivity-determining steps. 

Quantum chemical calculations play a critical role in the analysis of chemical 

reactions.1–6 Recently, it has become possible to systematically explore equilibrium (EQ) and 

transition state (TS) structures on potential energy surfaces.7–10 An elementary step (also called 
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reaction path in this paper) represents a transition from an EQ to the other EQ via a TS as shown 

in Figure 1a. A graph representing the obtained EQs as nodes and reaction paths as edges is called 

a reaction path network (Figure 1b). The transition state theory11,12 estimates the rate constants 

corresponding to each reaction path in the obtained reaction path network. Using these rate 

constants, kinetic simulations12–16 are performed starting from the given reactants at a specific 

temperature and time to predict the reaction yield of each EQ. On-the-fly kinetic simulation during 

the reaction path search has improved the efficiency of the reaction path search itself17 and has 

recently been deployed in quantum chemistry-aided retrosynthetic analysis (QCaRA).18,19 QCaRA 

provides possible reactant candidates that give a particular product by following the multistep 

reaction processes in the inverse way starting from the product. The accumulation of QCaRA 

reaction path network data has been proposed,20 and its data platform has been developed to 

enhance chemical reaction analysis and design.21  

 
Figure 1. Schematic picture explaining the relationship between the reaction path network and 

yield derivative. (a) Energy profile along a single reaction path. Nodes represent the EQ, and the 

edge represents the reaction path via the TS. (b) A reaction path network where reaction paths 

connect EQs. (c) Rate constant matrix, 𝐾𝐾, corresponding to (b). Gray elements indicate positive 

values, and black elements indicate negative values.  

 

In this study, the chemical kinetics is assumed to follow the first-order rate equation: 

d𝑥𝑥
d𝑡𝑡

(𝑡𝑡) = 𝐾𝐾𝑥𝑥(𝑡𝑡), (1) 

where 𝑥𝑥(𝑡𝑡) denotes the 𝑛𝑛-dimensional vector whose 𝑖𝑖th component 𝑥𝑥𝑖𝑖(𝑡𝑡) is the reaction yield of 

https://doi.org/10.26434/chemrxiv-2023-cl8tr ORCID: https://orcid.org/0000-0001-8313-3236 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-cl8tr
https://orcid.org/0000-0001-8313-3236
https://creativecommons.org/licenses/by-nc/4.0/


EQi at time 𝑡𝑡, and 𝐾𝐾 is an 𝑛𝑛 × 𝑛𝑛 rate constant matrix. Figure 1c shows a conceptual matrix 𝐾𝐾. 

Higher-order rate equations are beyond the scope of this study. The rate constant matrix 𝐾𝐾 has 

positive values (indicated by gray in Figure 1c) in off-diagonal entries corresponding to the edges 

of the reaction path network shown in Figure 1a, and negative values in diagonal entries 

(indicated by black in Figure 1c). TSi–j corresponds to the reaction between EQi and EQj. The 

reaction path network shown in Figure 1a has six reaction paths that provide the six 

corresponding elements of 𝐾𝐾 (Figure 1c). The (𝑖𝑖, 𝑗𝑗) off-diagonal entry 𝐾𝐾𝑖𝑖𝑖𝑖 of 𝐾𝐾 is a rate constant 

of a reaction path from EQj to EQi, and the diagonal entry 𝐾𝐾𝑖𝑖𝑖𝑖 satisfies 𝐾𝐾𝑖𝑖𝑖𝑖 = −∑ 𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖≠𝑖𝑖 . In the 

canonical ensemble, the rate constant 𝐾𝐾𝑖𝑖𝑖𝑖 is given by 

𝐾𝐾𝑖𝑖𝑖𝑖 = Γ
𝑘𝑘B𝑇𝑇
ℎ exp�−

𝐺𝐺𝑖𝑖𝑖𝑖 − 𝐺𝐺𝑖𝑖
𝑅𝑅𝑇𝑇 � , (2) 

where 𝐺𝐺𝑖𝑖  and 𝐺𝐺𝑖𝑖𝑖𝑖  are the Gibbs energies of the EQj and TSi–j, respectively, 𝑘𝑘B is the Boltzmann 

constant, ℎ  is the Planck constant, 𝑅𝑅  is the gas constant, 𝑇𝑇  is temperature, and Γ  is the 

transmission coefficient. 

The rate constant matrix contraction (RCMC) method22,23 achieved an efficient kinetic 

simulation. In the RCMC method, the size of 𝐾𝐾 is reduced by an operation called contraction, and 

the yield is obtained through the recursive contraction process (details are provided in the 

methodology section). Recently, the accuracy of the RCMC method has been discussed,24 and the 

mathematical relationship between the Gibbs energy of each EQ and TS in the reaction path 

network and the reaction yield has been clarified. 

This study introduces the concept of differentiating the reaction yield of the target 

product using the TS and EQ Gibbs energies on a given reaction path network. Our approach 

differentiating the reaction yield is based on the mathematical formulation of the RCMC 

method.24 To understand the information that the yield derivative provides, we conduct numerical 

experiments on two reaction path networks of a model system and Rh-catalyzed 

hydroformylation.25–28 The numerical experiments show that the elementary processes with yield 
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derivatives of large magnitude correspond to chemically essential ones to control the reaction 

yields in the network, i.e., rate- and selectivity-determining steps. In other words, the present 

approach differentiating the reaction yield provides a numerical prediction of the extent to which 

EQ and TS stabilities affect the yield of a particular product. 

 

2. Methodology 

2.1 Mathematics of Rate Constant Matrix Contraction (RCMC) Method  

 The RCMC method was originally introduced by Sumiya et al.22 to reduce the number 

of variables in the kinetics equation (1) for the canonical ensemble and was later applied by 

Sumiya et al. to compute an approximate solution of (1) for the canonical and microcanonical 

ensembles. Below, we provide an overview of the method in the mathematically sophisticated 

formulation given in previous work.24 Readers are referred to Iwata et al. 24 for more details. 

 Let 𝑡𝑡 be the reaction time. The RCMC method first determines the set 𝑆𝑆 of EQs, which 

are regarded as “steady” at time 𝑡𝑡, by executing the following greedy procedure repeatedly. Let 𝑇𝑇 

be the complement of 𝑆𝑆. Initially, we set 𝑆𝑆 as the empty set and 𝑇𝑇 as the entire set of EQs. We 

seek 𝑖𝑖 ∈ 𝑇𝑇 that maximizes the diagonal 𝐾𝐾𝑖𝑖𝑖𝑖. If 
1

|𝐾𝐾𝑖𝑖𝑖𝑖|
≥ 𝑡𝑡, then the procedure halts. Otherwise, i is 

moved from 𝑇𝑇  to 𝑆𝑆 , and the rate constant matrix is updated as 𝐾𝐾 ←  𝐾𝐾𝑇𝑇𝑇𝑇 −
𝐾𝐾𝑇𝑇𝑖𝑖𝐾𝐾𝑖𝑖𝑇𝑇
𝐾𝐾𝑖𝑖𝑖𝑖

.  Here, 𝐾𝐾𝑇𝑇𝑇𝑇 

denotes the principal submatrix of 𝐾𝐾 whose rows and columns are indexed by 𝑇𝑇. Similarly, 𝐾𝐾𝑇𝑇𝑖𝑖 

and 𝐾𝐾𝑖𝑖𝑇𝑇 are the 𝑖𝑖th column (resp. row) vectors of 𝐾𝐾𝑇𝑇𝑇𝑇. We then return to determine the maximum 

diagonal. 

 Let 𝑆𝑆  be the set of steady EQs found by the greedy algorithm above and 𝑇𝑇  be its 

complement. By permuting the index of the EQs, we assume that 𝑆𝑆 = {1, . . . ,𝑘𝑘} and 𝑇𝑇 = {𝑘𝑘 +

 1, . . . , 𝑛𝑛}, where 𝑘𝑘 = |𝑆𝑆|. Then, the RCMC method computes the reaction yield 𝑞𝑞 at time 𝑡𝑡 by 

𝑞𝑞 = 𝑉𝑉𝑉𝑉, (3) 

where 𝑉𝑉 is a vector of the initial yields, and 𝑉𝑉 is an 𝑛𝑛 × 𝑛𝑛 matrix given by 
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𝑉𝑉 = �
𝐾𝐾𝑆𝑆𝑆𝑆−1𝐾𝐾𝑆𝑆𝑇𝑇𝑉𝑉𝑇𝑇𝑇𝑇𝐾𝐾𝑇𝑇𝑆𝑆𝐾𝐾𝑆𝑆𝑆𝑆−1 −𝐾𝐾𝑆𝑆𝑆𝑆−1𝐾𝐾𝑆𝑆𝑇𝑇𝑉𝑉𝑇𝑇𝑇𝑇
−𝑉𝑉𝑇𝑇𝑇𝑇𝐾𝐾𝑇𝑇𝑆𝑆𝐾𝐾𝑆𝑆𝑆𝑆−1 𝑉𝑉𝑇𝑇𝑇𝑇

� . (4) 

Here, 𝐾𝐾𝑆𝑆𝑆𝑆 , 𝐾𝐾𝑆𝑆𝑇𝑇  , and 𝐾𝐾𝑇𝑇𝑆𝑆  are the submatrices of 𝐾𝐾  whose rows are indexed by 𝑆𝑆 , 𝑆𝑆 , and 𝑇𝑇 , 

respectively, and whose columns are indexed by 𝑆𝑆 , 𝑇𝑇 , and 𝑆𝑆 , respectively. The matrix 𝑉𝑉𝑇𝑇𝑇𝑇  is 

defined by 𝑉𝑉𝑇𝑇𝑇𝑇 = diag(𝟏𝟏⊤𝑀𝑀), where 𝟏𝟏 is the column vector whose components are all one, 𝑀𝑀 =

𝐼𝐼 + 𝐾𝐾𝑇𝑇𝑆𝑆𝐾𝐾𝑆𝑆𝑆𝑆−2𝐾𝐾𝑆𝑆𝑇𝑇 (𝐼𝐼 is the identity matrix), and diag(𝑣𝑣) for a vector 𝑣𝑣 denotes the diagonal matrix 

obtained by arranging the components of 𝑣𝑣 to diagonals. Equations (3) and (4) give an explicit 

formulation of how the RCMC method computes the reaction yield 𝑞𝑞  from the rate constant 

matrix 𝐾𝐾 , provided the set 𝑆𝑆  of steady EQs and the initial yield 𝑉𝑉 . This nature of the RCMC 

method enables the analytical computation of the derivative of the yield 𝑞𝑞𝑖𝑖 of EQi with respect to 

the rate constants 𝐾𝐾 or potential energies of the EQs and TSs. 

 

2.2 Derivatives of reaction yields based on the RCMC method  

 This section describes the derivatives of the yield 𝑞𝑞𝑖𝑖 of EQi by the TS and EQ energies 

based on the mathematical understanding of the RCMC method. Using the chain rule, we first 

derive the derivatives of the yield by the rate constants, and then convert them to that by energies 

by multiplying the derivative of rate constants by energies to them. 

We review a convension of differentiation of a scalar by a matrix. Let 𝑦𝑦 be a scalar 

variable depending on an 𝑚𝑚 × 𝑛𝑛 matrix 𝑋𝑋 = �𝑋𝑋𝑖𝑖𝑖𝑖�𝑖𝑖𝑖𝑖. Here, we do not assume any structure in 𝑋𝑋; 

that is, every entry in 𝑋𝑋  is independent each other. The derivative of 𝑦𝑦  by 𝑋𝑋  is the following 

𝑛𝑛 × 𝑚𝑚 matrix 

d𝑦𝑦
d𝑋𝑋 =

⎝

⎜
⎜
⎜
⎜
⎛

∂𝑦𝑦
∂𝑋𝑋11

∂𝑦𝑦
∂𝑋𝑋21

⋯
∂𝑦𝑦
∂𝑋𝑋𝑚𝑚1

∂𝑦𝑦
∂𝑋𝑋12

∂𝑦𝑦
∂𝑋𝑋22

⋯
∂𝑦𝑦
∂𝑋𝑋𝑚𝑚2

⋮ ⋮ ⋱ ⋮
∂𝑦𝑦
∂𝑋𝑋1𝑛𝑛

∂𝑦𝑦
∂𝑋𝑋2𝑛𝑛

⋯
∂𝑦𝑦
∂𝑋𝑋𝑚𝑚𝑛𝑛⎠

⎟
⎟
⎟
⎟
⎞

. 
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Note that the (𝑖𝑖, 𝑗𝑗) entry in d𝑦𝑦
d𝑋𝑋

 is the derivative of 𝑦𝑦 by the (𝑗𝑗, 𝑖𝑖) entry in 𝑋𝑋. 

Let us define a matrix Ω∗ = �−𝐾𝐾𝑆𝑆𝑆𝑆
−1𝐾𝐾𝑆𝑆𝑇𝑇
𝐼𝐼𝑇𝑇

� and a vector 𝑤𝑤𝑖𝑖 = 𝑉𝑉{𝑇𝑇𝑇𝑇}Ω∗⊤𝑒𝑒𝑖𝑖 ∘ 𝑞𝑞𝑇𝑇. Here, for 

two vectors 𝑎𝑎 = (𝑎𝑎𝑖𝑖)𝑖𝑖 and 𝑏𝑏 = (𝑏𝑏𝑖𝑖)𝑖𝑖 of the same dimensions, we let 𝑎𝑎 ∘  𝑏𝑏 denote the component-

wise multiplication of 𝑎𝑎  and 𝑏𝑏 , i.e., 𝑎𝑎 ∘  𝑏𝑏 = (𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖)𝑖𝑖 . The derivative of 𝑞𝑞𝑖𝑖  by the rate constant 

matrix 𝐾𝐾 is given by 

⎝

⎜
⎛
𝜕𝜕𝑞𝑞𝑖𝑖
𝜕𝜕𝐾𝐾𝑆𝑆𝑆𝑆

𝜕𝜕𝑞𝑞𝑖𝑖
𝜕𝜕𝐾𝐾𝑇𝑇𝑆𝑆

𝜕𝜕𝑞𝑞𝑖𝑖
𝜕𝜕𝐾𝐾𝑆𝑆𝑇𝑇

𝜕𝜕𝑞𝑞𝑖𝑖
𝜕𝜕𝐾𝐾𝑇𝑇𝑇𝑇⎠

⎟
⎞

= �
−𝐾𝐾𝑆𝑆𝑆𝑆−1𝐾𝐾𝑆𝑆𝑇𝑇

𝜕𝜕𝑞𝑞𝑖𝑖
𝜕𝜕𝐾𝐾𝑆𝑆𝑇𝑇

−
𝜕𝜕𝑞𝑞𝑖𝑖
𝜕𝜕𝐾𝐾𝑇𝑇𝑆𝑆

𝐾𝐾𝑇𝑇𝑆𝑆𝐾𝐾𝑆𝑆𝑆𝑆−1 −𝐾𝐾𝑆𝑆𝑆𝑆−1𝑉𝑉𝑆𝑆𝑒𝑒𝑖𝑖⊤Ω∗𝑉𝑉𝑇𝑇𝑇𝑇

−𝑞𝑞𝑇𝑇𝑒𝑒𝑖𝑖⊤𝐾𝐾𝑆𝑆𝑆𝑆−1 + 𝑤𝑤𝑖𝑖𝟏𝟏𝑆𝑆⊤𝐾𝐾𝑆𝑆𝑆𝑆−1 𝑂𝑂
� 

if 𝑖𝑖 ∈ 𝑆𝑆 and 

⎝

⎜
⎛
𝜕𝜕𝑞𝑞𝑖𝑖
𝜕𝜕𝐾𝐾𝑆𝑆𝑆𝑆

𝜕𝜕𝑞𝑞𝑖𝑖
𝜕𝜕𝐾𝐾𝑇𝑇𝑆𝑆

𝜕𝜕𝑞𝑞𝑖𝑖
𝜕𝜕𝐾𝐾𝑆𝑆𝑇𝑇

𝜕𝜕𝑞𝑞𝑖𝑖
𝜕𝜕𝐾𝐾𝑇𝑇𝑇𝑇⎠

⎟
⎞

= �
−𝐾𝐾𝑆𝑆𝑆𝑆−1𝐾𝐾𝑆𝑆𝑇𝑇

𝜕𝜕𝑞𝑞𝑖𝑖
𝜕𝜕𝐾𝐾𝑆𝑆𝑇𝑇

−
𝜕𝜕𝑞𝑞𝑖𝑖
𝜕𝜕𝐾𝐾𝑇𝑇𝑆𝑆

𝐾𝐾𝑇𝑇𝑆𝑆𝐾𝐾𝑆𝑆𝑆𝑆−1 −𝐾𝐾𝑆𝑆𝑆𝑆−1𝑉𝑉𝑆𝑆𝑒𝑒𝑖𝑖⊤Ω∗𝑉𝑉𝑇𝑇𝑇𝑇

𝑤𝑤𝑖𝑖𝟏𝟏𝑆𝑆⊤𝐾𝐾𝑆𝑆𝑆𝑆−1 𝑂𝑂
� 

if 𝑖𝑖 ∈ 𝑇𝑇. 
Finally, using the equation (2), the yield derivative by the energy 𝐸𝐸𝑖𝑖  of EQj is calculated 

as 

𝜕𝜕𝑞𝑞𝑖𝑖
𝜕𝜕𝐸𝐸𝑖𝑖

= �
𝜕𝜕𝑞𝑞𝑖𝑖
𝜕𝜕𝐾𝐾𝑖𝑖′𝑖𝑖′

𝜕𝜕𝐾𝐾𝑖𝑖′𝑖𝑖′
𝜕𝜕𝐸𝐸𝑖𝑖

𝑛𝑛

𝑖𝑖′,𝑖𝑖′=1

= �
𝐾𝐾𝑖𝑖′𝑖𝑖
𝑅𝑅𝑇𝑇

𝜕𝜕𝑞𝑞𝑖𝑖
𝜕𝜕𝐾𝐾𝑖𝑖′𝑖𝑖𝑖𝑖′≠𝑖𝑖
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. 

Similarly, the yield derivative by the energy 𝐸𝐸𝑖𝑖𝑗𝑗 of TSj-k  is given by 
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𝜕𝜕𝐸𝐸𝑖𝑖𝑗𝑗
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𝜕𝜕𝐾𝐾𝑖𝑖𝑗𝑗

−
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𝜕𝜕𝑞𝑞𝑖𝑖
𝜕𝜕𝐾𝐾𝑗𝑗𝑖𝑖

+
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+
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𝜕𝜕𝑞𝑞𝑖𝑖
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. 

 

3. Results and Discussion 

3. 1 Application to a model reaction path network 

Figure 2 depicts the model network consisting of twelve EQs and sixteen TSs. Their 

Gibbs energy values relative to the most stable EQ11 are given near their location in kJ/mol. 

Table 1 also presents the EQ and TS energies in kJ/mol. Table 1a shows the yields Φ of these 
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EQs after the chemical reaction at 300 K starting from EQ0 and terminating at 86400 seconds. 

As shown in Table 1a, the reaction gives the major product P1 (EQ7) with Φ = 98.2 %, the side-

product P2 (EQ9) with Φ = 1.8 %, and another very minor side-product P3 (EQ11) with Φ = 

0.000006 %. In addition, Table 1 lists the yield derivatives of the yields of the three products 

(EQ7, EQ9, and EQ11) when a reaction starts with reactant EQ0 (R). The positive and negative 

yield derivatives indicate that destabilization and stabilization of the corresponding EQs and TSs, 

respectively, increase their yields. 

 
Figure 2. Model reaction path network. Circles and diamond shapes indicate EQs and TSs, 

respectively. The Gibbs energies for each EQ and TS are shown in kJ/mol relative to the most 

stable EQ, EQ 11. A reaction starting with reactant EQ0 (R) and yielding products EQ7 (P1), 

EQ9 (P2), and EQ11 (P3) with non-negligible yields is discussed. 

 
Table 1: Reaction yields and yield derivatives (a) for EQs and (b) for TSs on the reaction path 

network shown in Figure 2. The reaction yields are computed with 300 K and 86400 s, and the 
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reactant is set to EQ0 (R). The yield derivatives are for the yields of EQ7, EQ9, and EQ11. The 

yield derivative is shown in (kJ/mol)−1. 

(a) EQ      
 Gibbs energy  Derivative of Derivative of Derivative of 
 (kJ/mol) Yields Yield of EQ7 Yield of EQ9 Yield of EQ11 

EQ0 180  4.94×10－22 3.19×10－34 6.79×10－43 
EQ1 185 1.66×10－22 6.66×10－23 4.30×10－35 9.14×10－44 
EQ2 190 2.24×10－23 8.97×10－24 5.79×10－36 1.23×10－44 
EQ3 200 4.06×10－25 1.63×10－25 1.05×10－37 2.24×10－46 
EQ4 170 6.79×10－20 2.72×10－20 1.76×10－32 6.56×10－43 
EQ5 150 2.06×10－16 8.27×10－17 5.35×10－29 1.99×10－39 
EQ6 100 1.07×10－7 4.27×10－8 1.20×10－24 4.49×10－35 
EQ7 60 9.82×10－1 −4.27×10－8 0.00 0.00 
EQ8 190 5.46×10－26 2.19×10－26 3.25×10－34 3.00×10－47 
EQ9 10 1.78×10－2 0.00 −1.20×10－24 0.00 

EQ10 120 3.51×10－11 1.41×10－11 7.19×10－30 1.53×10－38 
EQ11 0 6.09×10－06 0.00 0.00 −4.49×10－35 
(b) TS      

 Gibbs energy  Derivative of Derivative of Derivative of 
 (kJ/mol)  Yield of EQ7 Yield of EQ9 Yield of EQ11 

TS0 190  −1.93×10－11 5.91×10－13 5.06×10－15 
TS1 195  2.34×10－11 −6.21×10－13 −1.54×10－13 
TS2 200  2.51×10－13 1.36×10－13 −2.28×10－14 
TS3 210  −1.11×10－11 −1.98×10－13 1.13×10－11 
TS4 205  −8.14×10－11 −1.45×10－12 8.25×10－11 
TS5 230  −2.31×10－6 −8.53×10－8 2.40×10－6 
TS6 205  3.10×10－7 −3.10×10－7 2.91×10－14 
TS7 220  −7.00×10－3 7.00×10－3 4.21×10－8 
TS8 195  −3.11×10－7 3.11×10－7 1.87×10－12 
TS9 230  6.99×10－3 −6.99×10－3 6.56×10－10 
TS10 215  1.71×10－5 −1.71×10－5 1.06×10－10 
TS11 260  −4.34×10－8 4.34×10－8 1.48×10－11 
TS12 225  −3.50×10－14 3.50×10－14 1.20×10－17 
TS13 260  2.40×10－6 4.34×10－8 −2.44×10－6 
TS14 260  2.50×10－13 1.04×10－10 −1.04×10－10 
TS15 180  0.00 0.00 0.00 

 

 

According to the network in Figure 2, the reaction first proceeds from EQ0 to the 

intermediate EQ5, following the sequence of EQ0-EQ2-EQ3-EQ4-EQ5, in both paths yielding 

EQ7 (P1) and EQ9 (P2). After reaching EQ5, the reaction proceeds from EQ5 to EQ7 (P1) and 

EQ9 (P2), following the sequence of EQ5-EQ4-EQ6-EQ7 and EQ5-EQ8-EQ9, respectively. 
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Comparing the yield derivatives for the yields of P1 and P2, those of TS6-TS10 are opposite in 

sign and are similar in magnitude. This is because the paths yielding P1 and P2 are in competition, 

and increasing or decreasing the yield of one has the opposite effect on the other. 

Let us consider the situation of identifying TSs that determine the P1 / P2 selectivity 

based on these yield derivatives. The highest TSs along the paths from EQ5 to EQ7 (P1) and from 

EQ5 to EQ9 (P2) are TS7 (230 kJ/mol) and TS9 (220 kJ/mol), respectively. Thus, the difference 

in reaction rates of crossing TS7 and TS9 towards P1 and P2, respectively, significantly affect 

their yields. For the yields of P1 and P2, the yield derivatives are exceptionally large in magnitude 

for TS7 and TS9, indicating that these two are the selectivity-determining TSs. In other words, 

the yield derivatives suggest that stabilizing TS7 or destabilizing TS9 improves the P1 selectivity. 

On the other hand, the yield derivatives for the yield of P3 tell that the P3 / (P1 + P2) 

selectivity is determined by the stabilities of TS5 and TS13. Their values are opposite in sign and 

similar in magnitude. On the network, P3 is thermodynamically the most stable. However, P3 is 

kinetically inaccessible from P1 and P2 due to high barriers. Therefore, P3 must be accessed from 

the reactant region including EQ0–EQ3 through TS13 under the reaction conditions (300 K, 

86400 s). In other words, the P3 selectivity is determined through the competition between the 

rates crossing TS5 and TS13 from the reactant region. 

In contrast, most of the other TSs in the network have negligible effects on the yields of 

the three products. For example, TS0–TS4 separates EQs in the reactant region EQ0–EQ3. Since 

these EQs quickly reach equilibrium under the reaction conditions, they show only small yield 

derivatives in magnitude. TS11, TS12, TS14, and TS15 are other examples of yield derivatives 

of small magnitude. These TSs serve as barriers along minor (less feasible) routes to each product 

and thus have a negligible effect on kinetics. In addition, the yield derivatives of EQs are all small 

in magnitude, indicating that the reaction is kinetically controlled under the reaction conditions. 

 

3.2 Application to a reaction path network of Rh-catalyzed hydroformylation 
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 The proposed approach was applied to the reaction path network of the Rh-catalyzed 

hydroformylation of 1-pentene. The network was previously reported by Matsuoka et al.29 The 

energies were computed at the ωB97X-D/Def2-SVP level, and the solvent effect of the 

dichloroethane was incorporated by the C-PCM method.30,31 The reaction path network was 

constructed using the single component-artificial force induced reaction (SC-AFIR) method32 

with the virtual ligand (VL) method,29,33 where the electronic and steric parameters of VL were 

tuned to reproduce those of PPh3. The details of the reaction path network calculation procedure 

have been described in the previous paper.29 

The reaction path network was preprocessed by a structure-based clustering. A group of 

similar local minima with the same bond connectivity pattern was considered an EQ, assuming 

that these local minima immediately reach equilibrium before moving on to any other local 

minima. That is, the rate constants between EQs were determined by the generalized pre-

equilibrium approximation (GPA) assuming pre-equilibrium among local minima in each EQ.34,35 

Based on GPA, the Boltzmann distribution of an EQ required for RCMC calculations was 

obtained by the sum of the Boltzmann distributions of the local minima belonging to the EQ. In 

the original network, each pair of EQs is connected by multiple paths, and the rate constant for 

the transition from one EQ to the other was calculated as the sum of the rate constants under the 

GPA for all paths connecting them. Once the rate constant matrix 𝐾𝐾 was defined for the EQs, the 

reaction yield of each EQ was estimated using the RCMC method. Consequently, the 

preprocessed reaction path network includes 357 EQs, as shown in Figure 4a. 

The kinetic simulations and the approach differentiating the yield were performed under 

the conditions of 343.15 K (70 ℃) and 1 day (86400 s). Under these conditions, hydroformylation 

simulated using the reaction path network starting from EQ0 yielded products shown in Figure 

4b, including linear and branched aldehydes. Within the reaction path network shown in Figure 

4a, EQ30 and EQ190 had the lowest energies among the EQs corresponding to the linear and 

branched products, respectively. The paths and EQs along the lowest energy path from the initial 
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structure (EQ0) to the linear product (EQ30) are highlighted with bold lines in the network. The 

linear aldehydes (EQ30 and EQ62) and branched aldehydes (EQ190 and EQ170) were predicted 

to be formed in about 78% and 19% of the total, respectively.  

Here, by differentiating yields, this study attempted to identify critical reaction paths 

that control the yield of linear products. Therefore, yield derivative values were calculated using 

EQ0 and EQ30 as the reactant and product, respectively. The results are summarized in Figure 

4c. This figure shows the four TSs with the highest absolute derivative values among all TSs. The 

reaction paths with the highest and second highest absolute derivative values (TSA and TSB) 

connected EQ7 to EQ55 and EQ34, respectively. These paths correspond to the insertion of 1-

pentene into the Rh-hydride complex, where TSA leads to the branched product, and TSB gives 

the linear product. EQ7 is the branching point of these routes, and the fact that TSA and TSB have 

the greatest influence on the yield of the linear product is reasonable, considering that the 

branched aldehyde is the second major product in this reaction (Figure 4b). The reaction paths 

with the third and fourth highest absolute derivative values (TSC and TSD) connect EQ34 to EQ43 

and EQ60 to EQ189, respectively. TSC is the transition state for CO insertion from the rhodium 

alkyl complex (EQ34), and TSD corresponds to the reductive elimination of pentane from the 

rhodium dihydride species (EQ60). Notably, TSD, which is isolated from the minimum energy 

route, has a greater influence on product yield than most reaction paths that are included or 

connected to the minimum energy route. This result is not apparent, and significant effort would 

be required to identify this elementary step by manually analyzing the complicated reaction path 

network. Therefore, this result highlights the utility of the yield derivative method as it enables 

rapid and automatic analysis of the reaction path network. 
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Figure 4. (a) Reaction path network for Rh-catalyzed hydroformylation of 1-pentene. The nodes 

represent EQs, and the edges represent reaction paths. (b) The reaction yields are calculated by 

the RCMC method. The conditions for simulation were set to be 343.15 K and 1 day. The initial 

population was assigned to EQ0. (c) Critical reaction paths that affect the yield of linear product 

(EQ30). The four yield derivatives with the largest absolute values are listed in the table, and the 

corresponding chemical transformations are shown in the boxes. 

 

As shown above, the present approach automatically and systematically extracts 

kinetically important EQs and TSs from a reaction path network. Such EQs and TSs, involved in 

rate- and selectivity-determining processes, have been used to understand and predict reactivity 

and selectivity for a variety of chemical reactions, including organo and organometallic 

catalysis.1–6 In addition, the automation of their conformation screening has been a long-standing 

topic in the field of computational catalyst modeling.36–40 On the other hand, in silico reaction 

design and discovery based on complex reaction path networks is one of the emerging topics. 41–
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43 However, there has been no systematic approach to finding all rate- and selectivity-determining 

EQs and TSs from a given reaction path network. The above examples show that the present 

approach works well for this purpose. This approach would be particularly useful in combination 

with the VLA screening approach,33,29 which describes the ligands of organometallic catalyst by 

a few parameters and performs the ligand feature screening for a set of given TSs in a parameter 

space. Previously, we demonstrated automated ligand feature screening using the VLA screening 

for the above Rh-catalyzed hydroformylation of 1-pentene, focusing on TSA and TSB identified 

as selectivity-determining TSs based on human intuition.33 Reaction path network calculation is 

also fully automated by our combined AFIR and RCMC methods. In addition, this study 

demonstrated full automation of the process of finding the rate- and selectivity-determining EQs 

and TSs from a given reaction path network. Therefore, the next challenge would be to fully 

automate a catalyst design starting from reaction path network exploration for a chemical 

transformation of interest, through automated extraction of rate- and selectivity-determining EQs 

and TSs, to the final VLA screening to identify the optimal ligand features. 

 

Conclusions 

This study proposed an approach to obtain numerical insight into the control of reaction 

yields in complicated chemical reactions by differentiating the yields of chemical reactions using 

EQ and TS Gibbs energies within reaction path networks. A mathematical understanding of the 

RCMC method22 enabled us to differentiate the yield in a complicated reaction path network. 

Differentiating the yields mathematically provided the extent of the contribution of each EQ or 

TS Gibbs energy to the reaction yields. A numerical experiment using a model reaction path 

network clarified the relationship between the derivative value and its effect on the reaction yield. 

Furthermore, application to a reaction path network of Rh-catalyzed hydroformylation revealed 

that the present approach automatically extracts the paths that influence the selectivity of the 

reaction from a complicated network. 
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The proposed approach will be particularly useful for systems lacking prior knowledge of 

the rate- and selectivity-determining processes. In other words, its applications to unexplored 

reactivities would be an interesting future direction. In particular, an application of the integrated 

AFIR-RCMC reaction path network exploration, the present approach differentiating the yields, and 

VLA screening approaches to organometallic catalyst discovery will be a significant future challenge. 
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